Dott. Cesare Miani Direttore S.O.C. di OtorinolaringoiatriaDipartimento di Chirurgia Azienda Ospedaliera Santa Maria degli Angeli Pordenone

Olfaction

- The most ancient of distal senses
 - · In nearly all air-, water-, and land-dwelling creatures
- Determines flavor of foods and beverages
- Significant role in nutrition, safety, and in the maintenance of quality of life
- 2.7 million (1.4%) adults in the U.S. alone with olfactory dysfunction

"I sense a hint of oak and butterscotch"

- Many depend upon smell for livelihood or safety:
 - · Cooks
 - · Homemakers
 - · Firefighters
 - · Plumbers
 - · Wine merchants
 - · Perfumers
 - Cosmetic retailers
 - Chemical Plant Workers

The Sense of Smell

- Often downplayed
- Vital to our everyday existence
 - Stop and smell the roses
 - · Has the milk expired?
- Essential in our ability to taste
- Occasionally the first sign of other disorders
- Rarely tested

Definitions

- Total Anosmia: inability to smell all odorants on both sides of the nose
- Partial Anosmia: inability to smell certain odorants
- Specific Anosmia: lack of ability to smell one or a few odorants
- Hyperosmia: abnormally acute smell function and often interpreted as hypersensitivity to odors
- Dysosmia: distorted or perverted smell perception

Definitions

- Parosmi olfactory
- Phantos olfactory
- Olfactory
 sensatio
 language
 Presbyo

Figure 41-13. Relationship between the University of Pennsylvania Smell Identification Test scores, age, and gender in a large heterogeneous group of subjects. (From Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav. 1984;32:489.)

quality of an

absence of an

cognize odor essing, n intact aging

Nasal Anatomy and Olfaction

- Odor reception is a result of input from:
 - · Olfactory Nerve (CN I)
 - Trigeminal Nerve (CN V)
 - Glossopharyngeal Nerve (CN IX)
 - · Vagus Nerve (CN X)

Nasal Anatomy

8

The Glossopharyngeal Nerves -IX

Olfactory Nerve Stimulation

- Requires odorant's molecules reaching the olfactory mucosa at the top of the nasal cavity
- Olfaction requires some type of nasal airflow
- Orthonasal flow: airflow toward the olfactory epithelium on inhalation
- Retronasal flow: during eating, stimulates olfactory receptors and contributes greatly to the flavor of food

Physiologic Airflow of the Nasal Passages

- 50% of the total airflow passes through the middle meatus
- 35 % of total airflow passes through the inferior meatus
- 15% of total airflow passes through the olfactory region

10

Why do we sniff?

- Effects of a rapid change in flow velocity on the in vivo airflow pattern remains unknown
- Scherer and colleagues found percentage and velocity of airflow to the olfactory region are similar for various steady-state airflow rates in the physiologic range
- Sniffing remains an almost universally performed maneuver when presented with an olfactory stimulus
- Sniff may allow trigeminal nerve to alert olfactory neurons that an odorant is coming
- Our natural sniff seems to be the optimal for our nasal anatomy

Olfactory Anatomy

- Olfactory molecules must pass through the tall but narrow nasal passageways
- Olfactory epithelium is wet, has variable thickness, and aerodynamically "rough"
 - Schneider and Wolf observed olfactory ability to be best when epithelium is moderately congested, wet, and red
- Olfactory ability seems to improve with narrowed nasal chambers
- Nasal cycle does not have any effect on olfactory ability

Olfactory Anatomy

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Olfactory Anatomy

Absorption of Molecules

- Mucus-lined walls absorb molecules from the air stream and increase their travel time through the nasal passageways
- · This may influence the spectrum of chemicals reaching the olfactory cleft
- Absorption of molecules may separate/sort odorants before reaching the olfactory mucosa
 - Highly absorbable chemicals may have minimal or no odor as they never reach the olfactory cleft

Olfactory Mucus

- When odorant molecules reach olfactory region, must interact with mucus overlying the receptor cells
- Produced by Bowman's glands and adjacent respiratory mucosa (goblet cells)
- Partitioning of odorant's molecules between air phase and mucus phase important in reaching olfactory epithelium
- Must be soluble in mucus but not too strongly captured to interact with the receptors
- Adrenergic, cholinergic, and peptidergic agents change the properties of mucus overlying the olfactory receptors

Olfactory Mucus

- In the olfactory mucus-epithelial system, clearing odorants is equally as important as absorption
- Olfactory mucus may exert a differential role in deactivating, removing, or desorbing odorants from the olfactory area

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganong's Review of Medical Physiology,

23rd Edition: http://www.accessmedicine.com

Olfactory Epithelium

- Olfactory sensory neurons protected in a 1-mmwide crevice of the posterosuperior nose
- Covers roughly 1 cm² on each side
- Neuroepithelium is pseudostratified columnar epithelium
- Neurons exposed to the outside world through their dendrites and cilia
- Axons of these neurons synapse at the base of the brain in the olfactory bulb
- As least six morphologically and biochemically distinct cell types

Olfactory Neuroepithelium

 Bipolar receptor cell: projects from the nasal cavity into the brain without an intervening synapse

Olfactory Receptor Cell

- Each receptor cell expresses a single odorant receptor gene
- > 1,000 different types of receptor cells present within the olfactory epithelium
- Olfactory receptor genes account for ~1% of all expressed genes of the human genome
 - · Largest known vertebrate gene family
- Receptors not randomly distributed but confined to one of several nonoverlapping striplike zones
- Each cell is responsive to a wide, but circumscribed, range of stimuli
- Olfactory receptor proteins linked to stimulatory guanine nucleotide-binding protein G_{olf}

Olfactory Receptor Cell

- Derived from ectoderm
- First-order neurons, can regenerate after they are damaged
- Glial-type cells that ensheathe olfactory neurons support axonal growth of both olfactory and nonolfactory neurons
 - Interest as potential agents for reversing spinal cord injuries and demyelinating disease

Olfactory Cilia

- Cilia differ from respiratory epithelium in being much longer, lacking dynein arms (lacking motility)
- Surface area of cilia exceeds 22 cm² in humans
 - Exceeds 700 cm² in German Shepherd dog

Olfactory Epithelium

- Supporting or sustentacular cell: contain microvilli and insulate the biopolar receptor cells and help to regulate composition of the mucus
 - Involved in deactivating odorants and assisting in protecting epithelium from foreign agents
- Microvillar cells: poorly understood cells located at the epithelial surface
- Fourth cell type lines the Bowman's glands and ducts
- Horizontal (dark) and Globose (light) basal cells: located near the basement membrane from which the other cell types arise

Olfactory Bulb

- Lies in base of frontal cortex in anterior fossa
- First relay station in olfactory pathway
- Synapses and their postsynaptic partners form dense aggregates of neutrophil called glomeruli
- Given region of the bulb receives its most dense input from a particular region of the mucosa, inputs to a particular region of the bulb converge from many receptor cells distributed throughout a certain zone of the mucosa
- Excitatory and inhibitory influences narrow the neural stimulus
- Olfactory bulb specialized to narrow the spatial pattern of glomerular activation by an odorant or mixture of odorants

Olfactory Bulb

Olfactory connections to the Brain

Olfactory Connections

Olfactory Transduction

- Olfactory Binding Proteins: bind and solubilize the hydrophobic odorant molecules into hydrophilic olfactory mucus
 - Increases concentration into the surrounding environment as much as 1,000 to 10,000 times more than their concentration in ambient air
 - May also act to remove odorant molecules from the region of the receptor cell

Olfactory Transduction

Olfactory Transduction

- cAMP and IP3 are primary signaling pathways mediating olfactory transduction
- G_{olf}: Guanine-nucleotide binding protein exclusively localized to the olfactory epithelilum
- cAMP binds to Na, Ca ion channel depolarizing the cell creating an action potential

Olfactory Odor Map

- Mouse model shows their olfactory epithelium is roughly divided into four zones
- Group of different olfactory receptor subtypes confined within the designated zone
- Clinical evidence exists for receptor specificity of odorants
 - Loss of specific odor receptor genes creates an inability to perceive particular odorants

Olfactory Cognition

- We understand odors largely on experience; develop our own hedonic code within cultural restraints
- Studies show odor memory can last at least 1 year while visual memory lasts only a few months
 - Odor memory is facilitated by bilateral nasal stimulation, one study suggests patients with one-sided nasal obstruction may form poorer odor memories
- Macfarlane examined 30 newborns and 30 women
 - Women underwent washing of one breast and babies were placed in prone position between their breasts
 - 22 of the 30 newborns selected the unwashed (odorous) breast

Clinical Evaluation of Olfaction

- An evaluation of 750 patients with chemosensory dysfunction, demonstrated that most patients presented with both smell and taste loss, few (<5%) have identifiable whole-mouth gustatory deficits
 - · Taste: true gustation
 - · Flavor: olfactory-derived sensations from foods
- Whole-mouth taste function much more resistant to injury than olfactory function largely due to redundancy of innervation
- When CN I is damaged, leaves only sweet, sour, salty, bitter and umami sensation

Physical Examination

- Complete otolaryngologic examination with anterior rhinoscopy and nasal endoscopy
 - · Unfortunately, nasal endoscopy is not overly sensitive
 - During endoscopy, examine nasal mucosa for color, surface texture, swelling, inflammation, exudate, ulceration, epithelial metaplasia, erosion, and atrophy
 - Even minor polypoid disease at the olfactory cleft can account for olfactory dysfunction
- Cranial nerve examination
- Optic disc examination to determine presence of increased intracranial pressure

Olfactory Testing

- Essential for multiple factors:
 - · Validate patient's complaint
 - · Characterize specific nature of the problem
 - Monitor changes in function over time
 - Detect malingering
 - Establish compensation for permanent disability
- Many patients complaining of anosmia or hyposmia have normal function relative to age and gender
 - 90% of patients with idiopathic Parkinson's Disease have demonstrable smell loss, yet less than 15% are aware of their problem
Olfactory Testing

- Asking a patient to sniff odors is like testing vision by shining a light in each eye and asking whether the patient can see the light
- No current testing that can distinguish central and peripheral deficits
- Unilateral testing is often warranted
 - Sealing contralateral naris using Microfoam tape and having the patient sniff naturally and exhale through the mouth to prevent retronasal stimulation

Olfactory Testing

- Psychophysical Testing
- Electrophysiologic Testing
- Neuropsychologic Testing

Psychophysical Testing

- **UPSIT or Smell Identificiation Test**
 - · Can be administered in 10 to 15 minutes by most patients
 - · 4 booklets of 10 odorants apiece

•

- Stimuli embedded into 10- to 50-µm diameter microencapsulated crystals
- · Multiple choice questions with four response alternatives
- Test is forced-choice, required to choose an answer even if none seems appropriate
- Chance performance is 10 out of 40, lower scores can represent avoidance
- Norms available based on administration to 4,000 people
- Individuals are ranked relative to age and gender

UPSIT (continued)

- Test can classify individual's function into 6 categories:
 - · Normosmia
 - Mild microsmia
 - Moderate microsmia
 - · Severe microsmia
 - · Anosmia
 - · Probable malingering
- Very high reliability, test-retest Pearson r = 0.94

Electrophysiologic Testing

- 2 procedures are available but application largely experimental
- Odor event-related potentials (OERPs)
- Electro-olfactogram (EOG)

Odor Event-Related Potentials (OERPs)

- Discerning synchronized brain EEG activity recorded on the scalp from overall EEG activity following presentations of odorants
- Stimuli presented in precise manner using equipment that produces stimuli embedded in warm, humidified air stream
- Unable to perform necessary trials and test reliability is suspect
- No inference can be made regarding location of a lesion or deficit
- · Can be usefully in detecting malingering

OERP

Electro-olfactogram (EOG)

- Measures electrode placed on the surface of the olfactory epithelium
- Few patients amenable to recordings
- Must place electrode under endoscopic guidance without local anesthesia
 - Can be quite unpleasant and sneezing/mucous discharge common
- Cannot reliably record in many subjects
- Presence of robust EOG does
 not always represent olfactory
 functioning

Neuroimaging

- Olfactory dysfunction of idiopathic etiology warrants CT imaging
 - High-resolution CT is most useful and cost-effective screening tool
- MRI: useful in evaluating olfactory bulbs, olfactory tract, and intracranial structures
 - MRI can detect decrements associated with anosmia and patients with schizophrenia

Olfactory Biopsy

- Small amount of superior septal tissue removed by experienced rhinologist
- Multiple biopsies needed to obtain true neuroepithelium

Disorders of Olfaction

- Obstructive Nasal and Sinus Disease
- Upper Respiratory Infection
- · Head Trauma
- · Aging
- Congenital Dysfunction
- Toxic Exposure
- Neoplasms
- · HIV
- Epilepsy and Psychiatric Disorders
- Medications
- · Surgery
- Idiopathic Loss

Disorders of Olfaction

Table 41-1

Spectrum of Olfactory Loss as Reported at Four Chemosensory Centers

	Goodspeed and Colleagues (1987) ²³⁹ *	Davidson and Colleagues (1987) ²²⁶ †	Leopold and Colleagues (1987) ²²² ‡	Heywood and Costanzo (1986) ¹⁶⁹ §
Total no. patients	441	63	198	133
Etiologic category (%):				
Obstructive nasal and sinus disease	30	33	29	20
Post-upper respiratory infection	19	32	15	17
Head trauma	9	10	19	32
Aging	0	0	8	6
Congenital	0	5	8	0
Toxins	1	11	3	0
Miscellaneous	14	10	8	16
Idiopathic	26	0	10	10

*Connecticut Chemosensory Clinical Research Center, Farmington, Connecticut.

†Chemosensory Perception Laboratory, University of California, San Diego.

*Clinical Olfactory Research Center, SUNY Health Science University, Syracuse, New York.

§Smell and Taste Clinic, Medical College of Virginia, Richmond, Virginia.

