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In the present study, we use direct numerical simulations to examine the role of non-isotropic per-
meability on solutal convection in a fluid-saturated porous medium. The dense solute injected from
the top boundary is driven downwards by gravity and follows a complex time-dependent dynamics.
The process of solute dissolution, which is initially controlled by diffusion, becomes dominated by
convection as soon as fingers appear, grow, and interact. The dense solute finally reaches the bottom
boundary where, due to the prescribed impermeable boundary, it starts filling the domain so to enter the
shutdown stage. We present the entire transient dynamics for large Rayleigh-Darcy numbers, Ra, and
non-isotropic permeability. We also try to provide suitable and reliable models to parametrize it. With
the conceptual setup presented here, we aim at mimicking the process of liquid CO2 sequestration
into geological reservoirs. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975393]

I. INTRODUCTION

When a heavier fluid is injected at the top of a porous slab,
it is driven downward by gravity. After an initial diffusion
transport, fingers appear and merge into convective plumes,
whose strength and persistence depend on the magnitude of
the driving force. If the bottom boundary is impermeable,
the porous medium is eventually filled up by the liquid. The
major proportion of this process is characterized by convec-
tive phenomena, from onset1,2 (when convective overturning
starts) to shutdown (when the filling process is being com-
pleted and convection cannot exist anymore). The dynamics
described above has a fundamental importance in geological
CO2 sequestration, since it faithfully mimics the process of liq-
uid CO2 injection/transport in saline aquifers.3,4 The injection
of CO2 is realized at depths between 800 and 3000 m, where
CO2 exists at a supercritical (liquid) state.5 At the beginning,
CO2 is lighter than brine and rises up until reaching an imper-
meable cap rock that stops the rising motion and favours a
slower horizontal spreading. Under these conditions, CO2 has
time to dissolve into the brine thereby increasing the density
of brine. This new layer of dense saturated brine becomes
rapidly unstable, so to foster the downward transport and the
consequent deposition of CO2 at the bottom of the geological
reservoir.

Therefore, the problem of CO2-brine convection (solutal
convection) described above shares some similarities with the
thermal convection system (in a porous medium) character-
ized by two impermeable walls with prescribed temperature
(Rayleigh-Bénard convection). However, it does display a
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fundamental difference. In the classical Rayleigh-Bénard con-
vection system, convective transport occurs away from both
upper and lower boundaries and supports the existence of a
statistically steady state, whose dynamics depends only on the
value of the Rayleigh-Darcy number6–8 (Ra). In geological
reservoirs, solutal convection is driven by a source of buoyancy
occurring only at one boundary (the top one), a situation which
induces a complex evolution characterized by a sequence of
different regimes changing in time (time-dependent dynam-
ics). In the initial stage, the dynamics develops only from
the upper boundary, and the size of the system (or, in other
words, the Rayleigh-Darcy number Ra) is not influential until
flow structures reach the opposite boundary. After this stage,
the system starts depending on Ra. A comprehensive descrip-
tion of the above mentioned solutal convection in a porous
medium has been recently proposed by Slim.9 Through the
use of accurate numerical simulations, Slim9 extended previ-
ous experimental10,11 and numerical12–14 results found in the
literature and was finally able to provide a unified picture of the
entire dynamics for solute convection in an isotropic porous
medium.

However, one important aspect for geological CO2

sequestration is rock anisotropy. Sedimentary rocks, which are
composed by the subsequent accumulation of horizontal lay-
ers, are characterized by a horizontal permeability, kh, that is
larger compared to the vertical one, kv . Hence the vertical-
to-horizontal permeability ratio, γ = kv/kh, is typically γ < 1.
Despite this fact, a larger proportion of the studies in this
field consider the case of an isotropic porous medium (γ = 1).
There are only few works that focus on solutal convection in
an anisotropic porous slab (see the work of Cheng et al.15

and Green and Ennis-King,16 among others). However, these
studies were usually performed at lower Ra (Ra < 104) and
considered only the initial transient dynamics of the flow
(they did not provide a detailed description of the entire
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dissolution process dynamics). From the above considerations,
it is apparent that a specific study accounting for the effect of
γ on the entire solute dynamics at large Ra is still missing. We
planned our work so to bridge the gap between the simulations
of Slim9 and those of Green and Ennis-King.16 In particular,
compared with the simulations of Slim9 made for isotropic
media and high Ra, we extended the analysis to the case of
anisotropic media. Compared with the simulations of Green
and Ennis-King16 made for anisotropic media but at lower Ra,
we completed the analysis extending it to higher Ra cases.
Direct numerical simulations in anisotropic porous media at
large Ra are used here to provide a unifying picture of solute
dynamics in realistic geological reservoirs.

The paper is organized as follows: In Sec. II, the phys-
ical and numerical setup will be presented and discussed. In
Sec. III, we will present the main results obtained from our
simulations. We will characterize the entire solute dynamics,
from the initial stages dominated by diffusion, up to the final
shutdown stage. We will also provide parametrizations and
suitable correlations for each stage of the solute dynamics.
In Sec. IV, we will use our numerical results to develop a
simple phenomenological model that provides a good esti-
mate of the time required by the solute to fill the reservoir
(shutdown time). We will finally draw conclusions and outline
future developments.

II. METHODOLOGY

We consider a porous medium in a two dimensional
domain, where x∗ is the horizontal direction and z∗ the vertical
direction. The porous medium, which is filled with CO2 + brine
mixture (solute) and pure brine (ambient fluid), is charac-
terized by a uniform porosity φ (fixed parameter between
different simulations) and by different values of the vertical
(kv) to horizontal (kh) permeability ratio γ = kv/kh. To repre-
sent physical geological situations, we choose 1/2 ≤ γ ≤ 1.17

At the beginning, the CO2 concentration is zero everywhere
but at the top boundary, where CO2 is injected. As a con-
sequence, the solute is driven by the composition-induced
density difference in the vertical direction (with heavier fluid
laying on top of lighter fluid) and is governed by a modified
version of the Darcy’s law written under the assumptions of the
Oberbeck-Boussinesq approximation.18 A natural reference
velocity scale for this flow is the free-fall buoyancy velocity,
W∗ = gkv∆ρ∗/µ, with µ the fluid viscosity, g the acceleration
due to gravity, and∆ρ∗ the initial top-to-bottom density differ-
ence of the solute. The corresponding reference length scale is
h∗ = φD/W∗, with D the solute diffusivity. To account for the
effect of anisotropy, we use different velocity/length scales in
the vertical and horizontal directions through the introduction
of the scaling factor

√
γ. As a consequence, variables are made

dimensionless as15

x =
x∗

h∗/
√
γ

, z =
z∗

h∗
, u =

u∗

W∗/
√
γ

, w =
w∗

W∗
, (1)

p =
p∗

∆ρ∗gh∗
, C =

C∗

C∗s
, t =

t∗

φh∗/W∗
, (2)

where t∗ is time, and u∗ and w∗ are the velocities in the hori-
zontal (x∗) and vertical (z∗) directions, whereas p∗ and C∗ are

pressure and solute concentration (with C∗s the solute concen-
tration at the top boundary). Note that the superscript ∗ is used
to represent dimensional quantities. The dependency of the
fluid density with the concentration is given by the equation
of state

ρ∗ = ρ∗s

[
1 −
∆ρ∗

ρ∗sC∗s

(
C∗s − C∗

)]
, (3)

with ρ∗s the density at the top boundary. In the present study,
we assume that the solute density is the only physical property
that depends on concentration. This is a fair approximation
for CO2 + brine dissolving into pure brine.10,19 By contrast, a
different modelling approach should be used when considering
CO2 immersed in ambient brine. In this case, viscosity may
change with solute concentration and may lead to important
flow modifications.20 Using the above scalings, the dynamics
of the solute is described by the following set of dimensionless
equations:

u = −
∂P
∂x

, w = −
∂P
∂z
− C, (4)

∂u
∂x
+
∂w

∂z
= 0, (5)

∂C
∂t
+ u

∂C
∂x
+ w

∂C
∂z
= γ

∂2C

∂x2
+
∂2C

∂z2
, (6)

with P= p+ z(ρ∗s/∆ρ
∗ − 1) the reduced pressure. Boundary

conditions for the governing equations are as follows: the top
boundary is an impermeable boundary characterized by a fixed
solute concentration (mimicking the presence of a saturated
solution near the top boundary), whereas the bottom boundary
is an impermeable boundary for both the fluid and solute (i.e.,
no-flux boundary). Periodicity is applied at the side boundaries
(along x). In dimensionless form, these boundary conditions
become

w = 0, C = 1 for z = 0, (7)

w = 0,
∂C
∂z
= 0 for z = −Ra . (8)

A sketch of the computational domain together with the indi-
cation of the boundary conditions and a contour map of the
concentration C at a given time instant is shown in Fig. 1.

The main parameter of the simulation is the Rayleigh-
Darcy number, which is the ratio of diffusive to convective
time scales, defined as

Ra =
gH∗kv∆ρ∗

µφD
, (9)

where H∗ represents the domain height. With the proposed
scalings, Ra appears only in the boundary conditions (but not
in the governing equations) and can be viewed as a dimen-
sionless layer thickness. This clearly reveals that the value
of Ra is not important until plumes impinge on the bottom
boundary. Only after plumes impingement the presence of the
bottom boundary is perceived by the entire fluid and Ra starts
playing a major role on the subsequent dynamics.9 Note that
the effect of anisotropy (γ) is explicit only in Eq. (6) but it
is also present in the other equations through the reference
length/velocity scales defined above. In the present study, we
obtain γ < 1 by increasing the horizontal permeability kh while
keeping kv constant (i.e., keeping the same Ra). Following this
strategy, we are able to compare simulations at the same Ra
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FIG. 1. Sketch of the computational domain with explicit indication of the
boundary conditions (Eqs. (7) and (8)) employed. The contour map of the
solute concentration C at a given time instant t is also shown to provide a flow
visualization of the dynamics for the present physical configuration (injection
of CO2 from the upper boundary).

(i.e., same driving force or same domain height) but different
γ (i.e., different porous medium).

Governing equations (Eqs. (4)–(6)) have been solved
through a pseudo-spectral Chebyshev-Tau method, which
makes use of discrete Fourier transform in the horizontal
direction, and Chebyshev polynomials in the vertical direction.

The time step, ∆t = 1/2, has been chosen to ensure stabil-
ity conditions. The spatial resolution ranges from 2048 × 513
in the isotropic case to 8192 × 1025 in the case of γ = 1/2.
Further details on the numerical method can be found in
the work of De Paoli et al.,8 Zonta and Soldati,21 and
Zonta et al.22

III. RESULTS

In this section, we discuss the results obtained from our
numerical simulations of the concentration-driven CO2 disso-
lution process in geological reservoirs. As in previous works,9

we assume as initial condition the diffusive concentration
profile

C(z, t) = 1 + erf
( z
√

4t

)
(10)

perturbed with a random noise. In particular, we follow the
entire time-dependent dynamics of the flow field for a given
Ra number (Ra = 2 × 104) and different values of γ (γ = 1,
3/4, and 1/2). The value of Ra has been inspired by the
data referring to the geological reservoir of the Sleipner site
(North Sea). Following the work of Bickle et al.23 and Neufeld
et al.,10 we assume a porous layer (domain) having H∗ ≈ 20
m, kv = 4× 10−12 m2, and φ= 0.375. At the typical depth of
solute injection, the fluid properties are12 ∆ρ = 10.45 kg/m,3

µ = 5.95 × 10−4 Pa s, and D = 2 × 10−9 m2/s, which finally
give a Rayleigh-Darcy number Ra ≈ 1.8 × 104.

We start our discussion considering the case of an isotropic
porous medium (Ra = 2 × 104, γ = 1). We will briefly discuss
the different flow regimes observed in the present computation,
since some of these observations will be useful in the following
while discussing the effects of γ on the solute dynamics.

The entire time-dependent solute dynamics is made of
six consecutive regimes. At the beginning, solute transport
occurs from the upper boundary only (where CO2 is injected)
and is essentially dominated by solute diffusion: a diffusion
(i) and a linear-growth regime (ii) are here observed. Later,
small fingers form, grow, interact, and merge into megaplumes
so to enter a long transient phase dominated by convection.
Three different regimes are now encountered: flux growth
(iii), merging (iv), and constant flux regimes (v). Finally,
megaplumes reach the bottom boundary (which is imperme-
able for both the fluid and solute), and the reservoir starts filling
up with dense solute: the flow enters the so-called shutdown
regime (vi).

A comprehensive picture of the entire time-dependent
flow dynamics just drafted above is shown in Fig. 2. The cen-
tral panel of this figure (Fig. 2(b)) presents the behaviour of
the solute flux F(t) as a function of time. The dashed lines
represent the analytical prediction of F(t) found in the liter-
ature for the different flow regimes; the extensions of which
are explicitly indicated as well (further details on the differ-
ent scalings and analytical expressions will be explicitly given
in Secs. III A–III C). Associated with the changes of F(t) in
time, we expect a modification of the flow structure. This is
clearly shown in Figs. 2(a)–2(c), where the time evolution of
the concentration C measured along a horizontal slice located
close to the top wall is plotted. This provides a good repre-
sentation for the behaviour of plumes in time. In particular,
we note that diffusion dominates for t < 103 (Fig. 2(a)), with
plumes appearing only at the end of the linear growth regime
(emergence of dark roots at t ' 103 in Fig. 2(a)). For t > 103,
plumes start interacting (merging and constant flux regimes in
Fig. 2(a)). Later, during the constant flux regime and for most
of the shutdown regime, the dominating dynamics consists of
small protoplumes (small ribs in Fig. 2(c)) generated at the wall
and merging into larger megaplumes (long roots in Fig. 2(c)).
Note that during the shutdown regime, the relative strength
of protoplumes and megaplumes compared to the surrounding
flow decreases with time (flow homogenization for t > 105,
Fig. 2(c)). The above dynamics of solute convection in an
isotropic porous medium has been widely investigated from
both the numerical and the experimental point of view.9,10,12,13

However, it has been only slightly characterized for a non-
isotropic porous medium.15,16,24

In the following, we try to fill this gap, discussing the effect
of γ on the solute dynamics. We will recast the entire dynamics
into three main stages: a diffusion dominated stage (including
diffusion and linear growth), a convective dominated stage
(including flux growth, merging, and constant flux), and a
shutdown stage (shutdown).

A. The diffusion-dominated stage

As already discussed, upon injection from the top bound-
ary, the solute moves downwards by diffusion. Since solute
diffusion is very slow, the bottom boundary can be considered
sufficiently far from the top boundary during this stage. There-
fore, we can approximate the bottom boundary conditions
as

w = 0, C ≈ 0 at z = −Ra. (11)
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FIG. 2. Time behaviour of the solute dissolution for
Ra= 2× 104 and γ = 1. Main panel (panel (b)): disso-
lution flux F(t) as a function of time. Solid line refers
to the present numerical simulation. Dashed lines indi-
cate analytical predictions found in the literature for the
diffusion regime (t < 103, Eq. (13)); the constant flux
regime (2× 104 < t < 2× 105, Eq. (17)); and the shut-
down regime (2× 105 < t < 3× 106, Eq. (19)). The formu-
lation of these theoretical predictions is explicitly given
in the text (Sec. III). Note that the extent of the differ-
ent flow regimes is also explicitly indicated. Side panels
(panels (a) and (c)): time behaviour of the concentration
field measured along an horizontal slice (x) located close
to the top wall (z = �20 for panel (a), z = �50 for panel
(c)) measured for different time windows during the tran-
sient evolution (panel (a) refers to 2× 102 ≤ t ≤ 4× 104,
whereas panel c refers to 4 × 105 ≤ t ≤ 15 × 105).

Within this framework, the solution of Eq. (6) yields

C(z, t) = 1 + erf
( z
√

4t

)
, (12)

with the dimensionless solute flux being

F(t) =
1
L

∫ L

0

∂C
∂z

����z=0
dx =

1
√
πt

, (13)

where L is the dimensionless domain width. The correspond-
ing amount of solute dissolved in time, G(t), is given by the
integral of the solute flux F(t),

G(t) =
∫ t

0
F(τ)dτ =

2
√

t
√
π

. (14)

The profiles of F(t) and G(t) obtained from the present compu-
tations are shown in the two panels of Fig. 3 for Ra = 2 × 104

and different values of γ (symbols in Fig. 3). The dashed line

in Fig. 3 indicates the analytical prediction given by Eq. (13).
We first consider Fig. 3(a). For t < 103, we observe that the
behaviour of F(t) is independent of γ and follows nicely the
theoretical predictions. Later in time, at t = ton (onset time of
convection), convection is triggered and the profile of F(t)
departs from the theoretical prediction of a pure diffusive flow.
In the literature, there are different expressions to find the value
of ton as a function of γ,16 essentially because ton depends on
the initial conditions prescribed in the simulations. To predict
the value of ton, we follow the expression of Cheng et al.,15

ton = 47.9γ0.79. (15)

In the present cases, we obtain ton = 47.9 (γ = 1), ton = 38
(γ = 3/4), and ton = 27 (γ = 1/2). The departure of F(t) from
the purely diffusive profile for t > ton is barely visible at the
beginning. Well beyond ton, at time t = td , diffusion is balanced
by convection and the dissolution flux reaches a minimum. We
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FIG. 3. (a) Solute dissolution flux F(t) vs time t in the early stages of the
simulations, plotted for Ra= 2× 104 and γ = 1/2, 3/4, and 1. The dashed
line represents the dissolution flux computed as in Eq. (13). (b) Total solute
dissolved from t = 0 for the different permeability ratios considered (solid
lines) and from the theory (Eq. (14)). We report the same simulations presented
in (a), and the lower the permeability ratio, the sooner the flux deviates from
diffusion.

further remark here that there is a large difference between ton

and td (td is on average two orders of magnitude larger than
ton). The decrease of γ (i.e., the increase of the horizontal per-
meability) reduces the value of td (and also of ton), indicating
that convection is triggered early when γ < 1. In particular,
we found td ' 2.2 × 103 (γ = 1), td ' 1.6 × 103 (γ = 3/4),
and td ' 1.1× 103 (γ = 1/2). Just after td , the dissolution flux
increases sharply. For this reason, td is sometimes taken as
a practical measure of the onset time of convection. From
a phenomenological point of view, after td fingers become
visible and start transporting efficiently dense solute away
from the boundary, so to increase the dissolution flux. Fin-
gers are at first characterized by negligible lateral movements
(see also the regular, and parallel, footprint of fingers during
the flux growth regime in Fig. 2). Later, fingers increase their
length and strength and start modifying the entire velocity field.
This causes fingers to come closer and eventually merge with
the neighbours (as also shown by the evolution of the finger
roots during the merging regime in Fig. 2(a)) to create larger
plumes. The merging process decreases the number of plumes
and increases the boundary layer thickness, hence reduc-
ing the dissolution flux (decrease of F(t) for t > 0.2× 104 in
Fig. 3). By looking at the behaviour of G(t) in Fig. 3(b), one
important observation can be made. After the initial transient
where G(t) follows the pure diffusional profile (regardless of
the value of γ), we note that solute dissolution appears more
efficient for decreasing γ. At t = 104, the amount of solute
dissolved for γ = 1/2 can be up to 20% larger compared to
γ = 1.

B. The convection-dominated stage

After the initial diffusive dynamics, the flow enters a
convection dominated stage called constant flux regime.9,25,26

During this regime, primary plumes already generated in the
previous stages of the flow rapidly grow. At the same time, the
diffusive boundary layer between adjacent plumes becomes
unstable and continuously produces new protoplumes. The
newly formed protoplumes are driven laterally by the back-
ground flow and coalesce with primary plumes. During this
stage, the average flux of solute fluctuates around a mean
constant value (Fig. 4). For isotropic conditions (γ = 1), we

FIG. 4. Constant flux regime. Dimensionless solute flux F(t) for three
different permeability ratios (1/2, 3/4, and 1) at fixed Rayleigh number
(Ra = 2 × 104). In the constant flux regime, the simulations (solid lines) are
in good agreement with the predictions of Green and Ennis-King16 (dashed
lines).

recover the value F(t) = 1.7 × 10−2 proposed by Pau et al.,12

Slim,9 and Hesse,27 among others. The dimensional solute flux
can be expressed as10,16

F∗(t∗) = 0.017
√

khkv
C∗s∆ρ

∗g

µ
(16)

or, in dimensionless form,

F(t) = 0.017γ−1/2. (17)

The theoretical predictions given by Eq. (17) are shown
by the dashed lines (– –) in Fig. 4. We note a fair agree-
ment between numerical results (symbols) and theoretical
predictions (dashed lines), which demonstrates for the first
time that the scaling law proposed in the literature16 for
lower values of Ra (103 ≤ Ra ≤ 9× 103) can be extended up to
Ra= 2× 104, as shown by the present results. Note that,
although the time at which the constant flux regime starts
does depend on the initial conditions of the flow, the aver-
age value of the dissolution rate F(t) in the constant flux
regime does not.9 This indicates also that the constant flux
regime and the final shutdown regime are universal stages
in which the effects of different initial conditions are only
chaotic fluctuations around the average behaviour. There-
fore, the corresponding parametrization (presented in this sec-
tion and in Sec. III C) is universal and does not depend on
the specific initial conditions. We wish to remark here that
this dynamics does not change substantially in 3D domains.
The main difference between 2D and 3D results is that the
time fluctuation of F(t) around its average value is large
for 2D rather than for 3D cases.12 This was also observed
by Hewitt et al.,28 using different boundary conditions (i.e.,
Dirichlet type boundary conditions at both top and bottom
boundaries).

C. The shutdown stage

Once the plumes reach the bottom boundary, the domain
starts filling up with dense solute and the flow enters the
last stage of its dynamics, usually called the shutdown stage.
Despite its practical importance, the shutdown stage in non-
isotropic porous media has never been explicitly computed,
with the only available predictions8 being based on extrapo-
lations from different flow configurations (different bound-
ary conditions at the bottom wall). In the present paper,



026601-6 De Paoli, Zonta, and Soldati Phys. Fluids 29, 026601 (2017)

we explicitly compute the solute dynamics in the shut-
down regime for γ < 1. This has never been done before.
Results are shown in Fig. 5. Symbols in Fig. 5(a) refer to
the behaviour of F(t) for γ = 1. These results are obtained
running four different simulations with different initial ran-
dom perturbations, and averaging the corresponding results
to observe a smoother profile. The dashed line represents
the theoretical prediction of F(t) based on numerical results
for the two-sided configuration.8 We briefly recall here that
these theoretical predictions prescribe that F(t) depends on
the permeability ratio γ and on the convective time scale
t̂ = φH∗/W∗ as

F∗(t∗) =
4αγn t̂(

t̂ + 4αγnt∗
)2

H∗φC∗s , (18)

with α = 0.006 88 and n = �0.25. Upon rescaling this expres-
sion with the present length and time scales, we obtain the
following behaviour for the dimensionless dissolution flux
F(t):

F(t) =
4αγn(

1 + 4αγnt/Ra
)2

. (19)

For γ → 1, Eq. (19) tends to the expression given by Hewitt
et al.13 First note that the temporal extension of the shut-
down stage (O(106)) is at least an order of magnitude larger
than that of the previous stages (O(105)). We clearly observe
that the prediction obtained using the theoretical model fol-
lows nicely the numerical simulations, but during the tran-
sition of the flow from the constant flux to the shutdown
regime, up to t ' 4× 105. The source of this discrepancy lies
on the model hypothesis of having a well mixed C(t) profile,
which is not fulfilled during this transition. The corresponding
behaviour of the solute dissolved in time during the shutdown
stage, G(t), is shown in the inset of Fig. 5(a) for γ = 1. As
expected, G(t) increases sharply at the beginning and levels
for larger times, due to the ongoing weakening of convection.
To highlight the role of γ on the dynamics of the shutdown
regime, in Fig. 5(b) we show the behaviour of the normal-
ized difference G(γ)/G(1)− 1 between the solute dissolved
for γ , 1 and that dissolved for γ = 1. We clearly observe
that the amount of solute dissolved for γ , 1 can be defi-
nitely larger (up to 25% for γ = 1/2) than that dissolved for
γ = 1. Note that this difference increases for decreasing γ.
As expected, in the long term limit (t > 20× 105), the solute
dissolved depends only on the available volume but not on γ
(i.e., limt→∞

[
G(γ)/G(1) − 1

]
= 0).

From the discussion presented above, it is apparent that
most of the solute dissolution occurs during the constant
flux and the shutdown regime (they cover a large propor-
tion of the dynamics, t > 2× 104). For this reason, deriving
simple and reliable models of these two regimes based on
accurate small-scales simulations is crucial for the devel-
opment of numerical tools for the prediction of the solute
dynamics in realistic applications (large scale reservoirs with
non-isotropic permeability). This will be accomplished in
Sec. IV.

IV. MODEL DEFINITION

In Sec. III, we have revisited the available models found
in the literature8,9,13,16 to describe the solute dissolution
in geological reservoirs having non-isotropic rock perme-
ability. From the present study, we propose the following
parametrization of the solute flux F(t) for γ < 1:

F(t) =




1/
√
πt, 0 ≤ t < t1

0.017γ−1/2, t1 ≤ t < t2
4αγn/

(
1 + 4αγnt/Ra

)2 , t2 ≤ t < +∞
, (20)

where t1 and t2 represent the time at which the constant flux and
the shutdown regimes start, respectively. We wish to remark
here that the present parametrization is a generalization of
previous literature models,9,13,16 yet satisfying such models
for isotropic, high-Ra numbers flows9,13 and for anisotropic,
intermediate-Ra number flows.16 Although the expression of
F(t) is well defined for the different regimes, the time instants
at which the different regimes start and finish still remain
unclear. To resolve this problem, we propose the following
reasoning.

At the beginning, the entire domain is fully saturated with
pure brine, such that

C∗(x, z , 0, t = 0) = 0 ∀ x. (21)

At t > 0, CO2 is injected from the top boundary and the domain
starts filling up with dense solute. The maximum quantity of
solute that can be dissolved is given by the available volume of
the reservoir per unit depth, φH∗, multiplied by the concentra-
tion of the saturated upper boundary C∗s . The amount of solute
dissolved from time zero to time t∗, G∗(t∗) [kg/m2], is

G∗(t∗) =
∫ t∗

0
F∗(τ∗)dτ∗. (22)

FIG. 5. (a) Time behaviour of the solute dissolution flux
F(t) for Ra= 2× 104 and γ = 1 (−◦−) during the shut-
down regime (and including also a small part of the
constant flux regime, t < 4× 105). The theoretical pre-
diction given by the model of De Paoli et al.8 is also
shown (dashed line, – –). The amount of solute dis-
solved in time, G(t), is shown in the inset for γ = 1.
(b) Time behaviour of the normalized amount of solute
(G(γ)−G(1))/G(1) dissolved for γ = 1/2 and γ = 3/4
during the shutdown regime.
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Upon rescaling of G∗ by φC∗s H∗, we have8 G(t → +∞) = Ra.
This imposes a constraint for the dimensionless flux F(t), since∫ +∞

0
F(τ)dτ = Ra. (23)

Neglecting the contribution of the flux growth and merging
regimes to the solute dissolution process (these two regimes
are short in time, depend on the initial condition, and are
hard to parametrize9), and using the expression summarized
in Eq. (20) for F(t), we obtain

2
√
π

√
t1 + 0.017γ−1/2(t2 − t1) +

Ra
1 + 4αγnt2/Ra

= Ra. (24)

From both literature predictions9 and present results, we
have t1 = O(103). We can easily show that, for large Ra, the
amount of solute dissolved during diffusion, G = O(10), is neg-
ligible compared to the total amount of solute dissolved in the
entire dissolution process, G(∞) = Ra = O(104). Therefore,
assuming t1 → 0 in Eq. (24), we obtain

t2
Ra
=

(
4αγn

0.017γ−1/2
− 1

)
1

4αγn , (25)

which gives t2/Ra(γ = 1) = 22.6. According to this result, the
shutdown time t2 is much larger than the expected one, i.e.,
15–16 × Ra, see also the work of Hewitt et al.13 and Slim.9

As already mentioned, the difference between theoretical and
numerical predictions of the shutdown time is due to the
behaviour of the solute concentration during the transition
from the constant flux regime to the shutdown regime. During
this transition, the assumption of having a well-mixed concen-
tration profile used to derive the model8 is not fulfilled. This
is apparent in Fig. 6, where the solute concentration in the
domain is explicitly shown at different times (from P1 to P4).
The distribution of C is definitely not uniform for P1, P2, and
P3 (hence the concentration profile is not uniform, i.e., solute

is not well-mixed), whereas it becomes more homogeneous
for P4 (solute is well-mixed). In an effort to obtain a more
precise estimate of the time at which the shutdown regime
starts (t2), we should model the time evolution of the con-
centration profile during the transition between the constant
flux regime and the shutdown regime. From the results of our
numerical simulations (Fig. 7(a)), we observe that the horizon-
tally averaged concentration profile at a certain time instant t
during the constant flux regime, C(z, t)= 1/L ∫L C(x, z, t)dx,
exhibits an almost linear variation along the vertical coordi-
nate z (see the solid line in Fig. 7(a)). Therefore, C(z, t) can be
expressed as

C(z, t) = −
C1(t)
z1(t)

[z − z1(t)], (26)

with z1 ≤ z ≤ 0 for any t. The linear prediction of C(z, t) given
by Eq. (26) is also shown in Fig. 7(a) (dashed line, - -) together
with the numerical results. To determine the value of the two
constants of the model (C1 and z1, which in general do depend
on time), we use the following constraints. At the beginning
(t = 0), the domain is solute-free (fully saturated with pure
brine). At t > 0, CO2 is injected from the top boundary. There-
fore, the amount of solute dissolved from time t > 0 up to time
t is equal to the amount of solute contained in the volume V at
time t,∫ t

0

(∫
L

∂C(x, z, τ)
∂z

����z=0
dx

)
dτ =

∫
V

C(x, z, t)dV . (27)

Eq. (27) can be integrated using Eq. (26) (to express C(x,z,t))
and Eq. (17) (to express ∂C(x, z, τ)/∂z) to give

C1(t)z1(t) = −0.034γ−1/2t. (28)

From our numerical simulations, we observe that C1(t) (that
is the position at which the concentration starts showing a lin-
ear dependence on z, see Fig. 7(a)) is almost constant with
time, regardless of the value of γ. In particular, we found

FIG. 6. Transition phase between the constant flux and
the shutdown regime. Solid line (–) indicates the time
evolution of the dissolution flux F(t), whereas the dashed
lines (– –) correspond to the theoretical predictions given
by the models (see Eqs. (17) and (19)). Four different
snapshots of the solute concentrations are also shown.
In P1, plumes are far from the bottom boundary (con-
stant flux); plumes reach the bottom boundary in P2; later,
the domain starts filling up with dense solute (P3) until
convection shutdown (P4).
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FIG. 7. Panels (a) and (c): Horizontally
averaged concentration profile C com-
puted at t̃1 ≈ 11×104 and t̃2 ≈ 19×104.
The profiles obtained from the simu-
lation (γ = 3/4, solid lines) are plotted
against the model (dashed lines). Panel
(b) the “averaged plume tip” z1(t) (left
side) and the local concentration mini-
mum (right side) are plotted. The values
obtained from the simulations (circles)
are well approximated from the model
(dashed line). The filled circles represent
the instants related to the left and right
panel profiles. Application of the model
to other values of γ gives similar results
(not shown here).

0.21 < C1 < 0.26 for 1/2 ≤ γ ≤ 1. This information on C1 can
be used, together with Eq. (28) to obtain the value of z1, which
can be seen as the position of the wavefront of a falling solu-
tal wave (or as the averaged tip position of falling plumes).
Therefore the wavefront moves downward at a constant
speed ∂z1/∂t = w = −0.034γ−1/2/C1. For γ = 1, C1 = 0.21
and w = �0.16, in fair agreement with the results obtained by
Slim9 (C1 = 0.27 and w = �0.13). Note that the constant speed
of the solutal wavefront, which is a consequence of the lin-
ear behaviour adopted in the model, is also supported by the
present numerical results. To demonstrate this, in Fig. 7(b), we
plot the time behaviour of z1 obtained from simulations (sym-
bols, − ◦ −), together with the theoretical behaviour (dashed
line, – –) obtained for a constant velocity profile (i.e., a linear
variation of z1 with t). Although some discrepancies between
numerical and analytical results are present, the agreement is
satisfactory and demonstrates the reliability of the model.

After the plumes reach the bottom boundary, the solute
concentration C increases from bottom to top. During this
stage, the concentration profile C(z, t) has a bilinear shape
(see Fig. 7(c)). When the solute wavefront reaches the bottom
(t = tb), we have

C(z, tb) =
z + Ra

Ra
C1. (29)

For t > tb, after an initial redistribution phase during which
C fluctuates at the bottom boundary, we can assume that the
solute wavefront bounces back and moves upwards with the
same average velocity of the falling phase,w, but opposite sign.
We also assume that the concentration at the bottom boundary
is fixed and equal to C1 (this is in fair agreement with the
results of the simulations, see the solid line in Fig. 7(c)). From
this assumptions, we find that the position of the kink of the
concentration profile (z2(t) in Fig. 7(c)) moves upward from
z2 = �Ra until z2 = 0 as

z2(t) = −Ra − w[t − (1 + η)tb]. (30)

Note that η is a parameter accounting for the redistribution
phase of solute after the first impact of the wavefront on the
bottom boundary. For γ = 1, 3/4, and 1/2, the parameter η
results to be 0.4, 0.3, and 0.2, respectively. This reflects the
physical intuition that the smaller is γ (larger kh, i.e., smaller
horizontal resistance to the flow), the shorter the redistribution

phase. Using the bilinear model, we are able to predict the
shutdown time t2 (i.e., the time the solute wavefront takes to
reach the bottom boundary and back to the top one),

t2 =
(2 + η) Ra
|w |

=
(2 + η)C1

0.034γ−1/2
Ra . (31)

For the isotropic case (γ = 1, C1 = 0.21, and η = 0.4), we have
t2 ' 15×Ra, in good agreement with literature results9,13

15–16 × Ra. The shutdown time predicted by Eq. (31), pre-
sented here for the first time, accounts for the effect of
anisotropy on the fluid redistribution after plume impingement
(via the parameter η) and gives more accurate results compared
to those given by Eq. (25).

We finally note that the shutdown time predicted by
Eq. (31) reduces for reducing γ. This is also supported by
the present numerical results (see the different times at which
the profile starts decreasing in Fig. 4).

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work, we focused on the transient dynamics of
solute convection in a two-dimensional anisotropic porous
medium. The gap existing between the knowledge of solutal
regimes in isotropic9 and in anisotropic16 porous media at large
Rayleigh number has been investigated. Dense solute, which
was initially injected from the top boundary, was driven down
by gravity and finally accumulated at the bottom impermeable
boundary. With this conceptual setup, we aimed at mimicking
the process of liquid CO2 sequestration in realistic geological
reservoirs.

With the aid of accurate numerical simulations, we
characterized and discussed the entire solute dynamics at
high Rayleigh-Darcy number (Ra= 2× 104), from the ini-
tial diffusion-dominated stage up to the final convection-
dominated and shutdown stages. The role of the anisotropic
flow permeability (γ) throughout the entire process was sin-
gled out. For the first time, we were able to provide a unifying
picture of the solute dynamics in realistic geological reservoirs.
Compared to the isotropic case (γ = 1), solute convection is
triggered early when γ < 1 and solute dissolution appears in
turn more efficient. In particular, we observe that the finite-time
amount (short-term limit) of solute dissolved and stored inside
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the reservoir is larger for decreasing γ (up to 25% for γ = 1/2).
As expected, in the long-term limit (asymptotic behaviour),
the amount of solute dissolved depends only on the available
volume but not on γ.

Based on our current original results obtained for γ < 1,
simplified theoretical models used to predict the value of the
solute flux, F(t), throughout the entire dissolution process
have also been developed. These small-scale models can be
easily nested into larger scale models to obtain accurate pre-
dictions of the dissolution flux in realistic applications, where
heterogeneities and anisotropies are inherently present.

Further steps of this study will be the description of the
solute dissolution process of a given amount of solute in a close
reservoir characterized by impermeable conditions for both the
fluid and solute on either the top and the bottom walls. In this
case, a more sophisticated approach describing the dynam-
ics of two immiscible (or partially miscible) species could be
developed and applied.
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