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The numerical computation of the ionic space charge and electric field produced by
corona discharge in a wire—plate electrostatic precipitator (ESP) is considered. The
electrostatic problem is defined by a reduced set of the Maxwell equations. Since self-
consistent conditions at the wire and at the plate cannot be specified a priori, a time-
consuming iterative numerical procedure is required. The efficiency of all numerical
solvers of the reduced Maxwell equations depends in particular on the accuracy
of the initial guess solution. The objectives of this work are two: first, we propose
a semianalytical technique based on the KarhuneavedKL) decomposition of
the current density field, which can significantly improve the performance of a
numerical solver; second, we devise a procedure to reconstruct the complete electric
field from a givenJ. The approximate solution of the current density field is based on
the derivation of an analytical approximatidnwhich, added to a linear combination
of few KL basis functions, constitutes an accurate approximatiod. of the first
place, this result is useful for optimization procedures of the current density field,
which involve the computation of many different configurations. Second, we show
that from the current density field we can obtain an accurate estimate for the complete
electrostatic field which can be used to speed up the convergence of the iterative
procedure of standard numerical solversg 2001 Academic Press

Key Wordswire—plate precipitators; reduced Maxwell equations; Karhuneav&o®
decomposition; low-order model; efficient computations.

1. INTRODUCTION

Electrostatic precipitators (ESPs) are widely used to separate dust particles or aerc
from a carrier fluid. Specifically, dust particles are charged and are then driven tow
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FIG. 1. Coupling among electrostatic field, fluid dynamics, and particle dispersion.

collecting electrodes by an applied electrostatic field. In the widely used wire—plate c
figuration, the dust-laden gas flows through a rectangular channel bounded by grour
vertical collecting plates. Thin vertical wires are placed in the middle of the channel a
are maintained at a potential larger than the local electrical breakdown, to emit ions
corona discharge. The presence of ions is required to charge the dust particles dispers
the carrier fluid, which are initially neutral. However, the ions also interact with the flui
molecules, which thus acquire momentum so that flows driven by the applied electrost
field are generated. These flows are called electrohydrodynamic (EHD) flows and cot
the fluid mechanics problem with the electric field—space charge problem. A further c
pling is introduced by the presence of particles, which, being charged, are coupled v
the electrostatic field and are also coupled with the fluid via the aerodynamic drag [1]
shown in Fig. 1. To compute the whole problem, one should solve the reduced Maxw
equations for the electrostatic field and space charge coupled with both particle dynar
and Navier—Stokes equations.

The solution of these equations for one set of parameters appears complex. If an opt
configuration is sought, the task of analyzing accurately the influence of the different
rameters on a large number of cases is beyond the capabilities of present-day compute
the past, we examined specific configurations for ESPs, and we observed the influence c
electrostatic field on particle collection efficiency [2]. Furthermore, we observed also tf
the large-scale structures generated by electrostatic forces modify the turbulence behe
in particular near the wall, and for certain configurations this might lead to a significant dr
reduction [3]. Based on our previous findings and inspired by the work in [4], tentative i
novative configurations for drag-optimized ESPs have been investigated [5] through a di
numerical simulation of the turbulent flow field coupled to the electrostatic field solved |
a standard numerical technique. However, since a complete numerical solution of the fl
dynamic problem coupled with the electrostatic problem is not feasible in an optimizati
procedure, because of the prohibitive computational requirements, we concluded that n
efficient algorithms and/or reduced-order models must be set up for both the electrost
and the fluid-dynamic problems. Our final goal is to devise a global numerical strate
for ESP optimization and/or control. In this work, we address the electrostatic part in
absence of couplings with fluid-dynamic field and particle-dynamic field. In particular, w
propose a semianalytic approximation of the current density field, which has two import
applications. First, it makes it possible to express the electrostatic body force appea
in the fluid-dynamic equations as a function of a reduced number of parameters, wt
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FIG. 2. Wire—duct precipitator geometry and computational domain.

can be easily treated in a global optimization procedure. Second, it leads to more effic
algorithms for the numerical solution of the space-charge coupled problem.

Consider the ideal wire—plate ESP configuration shown in Fig. 2. Under certain con
tions, the ion discharge may be assumed to be uniform along the wire, and the electros
problem can be solved in two dimensions. A major difficulty in the computation of th
problem is that all the conditions at the wire and at the plate cannot be specified a priori
self-consistent way. The usual procedure is to start from an initial guess of the charge del
and electric potential fieldg, andV, and to iterate the numerical solution of the reducec
Maxwell equations, adjusting at each iteration the valu¥ ¢&s, e.g., in Refs. [6-8]) qr
(as, e.g., in Refs. [9-11]) at the wire, until convergence is achieved. As a consequence
numerical computation of the electrostatic field is considerably time-consuming. Seve
algorithms have been used in the literature to reduce the computational cost and, in
ticular, by coupling efficient discretization and convergence acceleration techniques (¢
pseudo-transient approach with relaxation and multigrid [11] or Newton algorithm [12]).
different approach has been proposed in Ref. [13], in which the introduction of an auxili:
equation and an auxiliary variable makes it possible to solve the problem with New
iterations for all the unknowns simultaneously. However, no explicit information is give
in Ref. [13] on the efficiency of this method compared to previous ones.

In all cases, the computational procedures used for the solution of this problem req
an initial guess of the potential and charge density fields. Usually (see, for instance, [€
9)), a free space-charge field is assumed and then an analytical expression for the pote
is obtained [14].

In the present paper, we propose a semianalytical procedure, based on the Karhu
Loeve (KL) decomposition [15], to parameterize the current density fiekgection 3).
This allowsJ to be expressed as a function of very few KL modes. This result is useful
control or optimization procedures in electrostatic precipitators, such as those mentic
previously, in which the electrostatic field must be optimized to reduce turbulent frictic
drag at the plates or to increase particle collection efficiency. Indeed, the electric volu
force exerted on the fluid depends only on the current density field; therefore, following
proposed KL decomposition, optimization procedures may derive the oplifieddl acting
on a significantly reduced number of parameters. Furthermore, this allows the optimiza
algorithm to be carried out only for the fluid dynamic part, usings a control parameter,
without solving the reduced Maxwell equations at each step. A procedure describet
Section 5 also permits all the operative electrostatic variables from the ogtifiedd given
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by the ESP optimization algorithm to be obtained. The proposed parameterization of
current density field has a second relevant application. Indeed, starting from it, an estin
of the complete electrostatic field is obtained as described in Section 4. It is shown that
estimate, which is computed at a negligible computational cost, is in many cases accu
enough to be an acceptable approximation of the solution. Otherwise, it can be used &
initialization for standard numerical solvers leading to dramatic gain in the efficiency of t
numerical algorithm.

2. PROBLEM DESCRIPTION AND ASSESSMENT
OF A FINITE-DIFFERENCE SOLVER

We consider a wire—duct electrostatic precipitator configuration, i.e., a series of equ
spaced wires at high voltage placed in the midplane between two parallel grounded ple
The electrical phenomenon is characterized by a nonuniform electrostatic field. The s
chargeis generated by ion emission from the corona around the wire and is also characte
by a nonuniform distribution. Neglecting the magnetic effects and considering the ste:
state, the governing electrostatic equations can be expressed as

AV = -2 1)
€0

p? =e€oVp - VV, ()

wherep is the space-charge density,is the electrical potential, ang is the permittivity
of the gas. The electric field and the current density are obtained\framd o as follows:
E = —VV andJ = pBE, wherep is the ionic mobility.

Because of symmetry considerations, the computational domain can be reduced tc
rectangle ABCD of dimensiorts, x h, as shown in Fig. 2, with Neumann boundary con-
ditions E; = 0 along AB andEy = 0 along BC and DA. To close the previous system of
equations, Dirichlet conditions are also applied by setting the potential at the grounc
plate to zero, i.e., along CD, and by imposing both potential and charge density at the v
(point A). The input values in our procedure are the average current density at the p
Jp, the wire potentiaVy, and the wire radiua. They can be specified from experimental
data, if available. In our computations, experimental values are us&g érda, while the
value of J, is calculated using a current—voltage formula defined in [16]. More precisel
the following equation is numerically solved by means of a Newton algorithm,

3/2 3
3Jp s mwah, mTa 2 2h, a
— (Vo—-Vy+—=—E|=||=—E —J — | =—Ec] . 3
,360< 0 0 + 2hx c) [<2hx c) + ﬂéo p 2hx C ( )
where E; is the strength of the electric field at the corona surface\&pds the corona
onset voltage, i.e\ corresponding td, = 0. The starting voltage can be obtained by the
formula V> = aln(d/a)E,, whered is an equivalent cylinder radius defined in [1HE,

is determined by the semiempirical Peek’s formula [18] for a gas at standard pressure
temperature and for a polished wire:

~ &
Ec(@) =D<1+ ﬁ) (4)
TheD and€ coefficients are taken equal to.32< 10° and 002619 in S| units, respectively
(see [11)).
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The wire-charge density is hot known a priori. It is initially estimated as a function of
Jp anda using the following wire condition [6]:

2Jphy

B wap Iéc .

Then, a numerical algorithm, similar to the one proposed in Ref. [9], is applied. T
knowledge ofpg and of the initialp andV fields makes it possible to solve Eq. (2), and
then, using the updatedfield, Eq. (1) is solved giving a new potential field. The valug®f
is adjusted and the computation@éndV fields repeated until the average current densit)
at the plate differs from the desired odgwithin a specified tolerance. More precisely, the
convergence criterion is

Lo ®)

|Jp_Jg(k)|/Jp<CJ’ (6)

wherng(k) is the average plate density charge computed at iterktéonc; is the spec-
ified tolerance. The adjustment pf is directly correlated with the previous convergence
criterion as

po(k+1) = p(k) [14 A (Jp — IF(K)) / Ip].

wherea is a constant given a priork(= 0.01 herein). Note thaE defined by Eq. (5) is
used in the algorithm only to find an initial value of. The corona electric fielé& is not
an input value of the problem and thus is varied during the computation.

As for the numerical discretization of Egs. (1) and (2), the finite-difference method (FDI
has often been used, particularly in early studies (e.g., [6, 9]). However, to more accura
compute the near wire region characterized by strong gradients, other approaches
been developed: non-Cartesian FDM [8] and methods which can use unstructured g
such as the finite-element method (FEM) [10, 13] or the finite-volume method (FVM) [1!
Moreover, FEM, which is well adapted to the solution of the elliptic Poisson equatio
can be combined with methods suitable for the hyperbolic equation, e.g., FEM—FDM |
FEM—FVM [12], FEM, and method of characteristics [19, 20] (for a review see [11]).

The present approach is based on a finite-difference method similar to the one define
Ref. [6], with a uniform value of and a nonuniform grid system. This method is certainly no
the most efficient one among those proposed in the literature; however, comparisons beti
experimental and numerical data have shown that accurate solutions can be obtained.

In particular, we consider a wire—duct precipitator configuration that has been stud
numerically (e.g., [7]) as well as experimentally [21]. This test case is characterized
h, = 0.1143 m,hy = 0.0762 m,a = 0.152 mm, andvy = 25.415 kV. With ionic mobil-
ity of 1.9 x 104 m?/V s, the current-voltage formula (Eq. (3)) givds = 3.77 x 10°*
A/m?2. We will refer to this configuration as configuratioh We used four different uni-
form grids with 23x 34, 34x 51, 45x 67, and 67x 99 points, respectively. A 28 34
nonuniform grid, with points clustered near the wire, has also been used. The sens
ity of the solution to the convergence criterion has been preliminary analyzed, and it |
been found that independence is reached when the error between computed and spe
Jp is less than 1%, i.e.,c; = 0.001 in Eq. (6). Thus, all the results presented belov
are obtained with this convergence tolerance. In Figs. 3a and 3b, the potential distr
tions obtained with different meshes are compared with the experimental data of |-
If we exclude the coarsest uniform grid, the results are independent of grid resoluti
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FIG. 3. Comparison between electric potential fields obtained with different meshes and experimental c
from [21], for h, = 0.1143 m,h, = 0.0762 m,a = 0.152 mm, andV, = 25.415 kV. (a) Distribution along AD

and (b) distribution along BC.

except for slight differences observed near the wire as shown in Fig. 3a, and all are
good agreement with experiments. The same conclusions can be drawn from com
isons carried out for different experimental configurations (not shown here for the s¢
of brevity). In particular, the use of the 2334 nonuniform grid allows us to satisfacto-

rily capture the strong gradients near the wire with reduced computational times. The
fore, the electrostatic fields obtained by the finite-difference solver on this nonunifol
grid will be considered as reference solutions to evaluate the accuracy of the propc

procedures.
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3. PARAMETERIZATION OF THE CURRENT DENSITY FIELD

3.1. Analytical Approximation

In this section, the procedure used to obtain an analytical approximation of the curt
density field is described.
The governing equation far is

vV.J=0, @)

which represents the continuity of steady currents. Boundary conditions for the conside
problem are (see Fig. 2, = 0 on AB, J, = 0 on BC, CD, and DA, and; = 2Jphy/ma
at the wire, whereJ; is the radial component of the current density vector. It is clear th:
Eq. (7) and these boundary conditions are not sufficient to uniquely detedmine

We wish to obtain here an approximatiah, of the exact current density field, which
satisfies Eq. (7) and the boundary conditions mentioned above. To derive an analy
expression ofl, the following assumption is made:

VxJ=0. )

By writing J asB4E, it can easily be shown that hypothesis (8) is equivalent to assumil
the electric field and the charge density gradient to be parallel. In particular, this impl
that a functiond exists such thal = V®. Using Eq. (7),® can be determined from

V2d =0 9)

with the Neumann boundary conditions derived from thoseJfdrhis problem has now a
unique solution that can be obtained from classical tools used in hydrodynamic proble
such as singularity distributions and elliptic functions. In particular, using the reflecti
technique, it can be shown that Eq. (9) and the corresponding boundary conditions
satisfied by an infinite sequence in tkalirection of sources of intensityJ4hy located

at (+2khy,0), k=1,..., 00, and by an infinite row of alternating sources and sinks o
intensity 4phy alongz at (0, +2jh,), j =0,...,00 (j even corresponds to a source,
while j odd to a sink). Finally,J andJ, can be obtained as the real and the imaginary pa
of the complex function

W(X,2) =4Iphy [C(X +iZ) — ¢ (X +iz — 2hy)], (10)

where¢ denotes the Weierstraggunction (see, for instance, [22]) and= /—1.

Since, in general, assumption (8) is not verified by the exact solution of Egs. (1) &
(2), J obtained in this way can be considered only an approximation of the exact curr
density field. It can be easily verified, however, tiatatisfies the boundary conditions of
the original nonlinear problem. In particular we have

1M
2—hx /hx 3 (X, hy) dx = J. (11)

In Figs. 4a and 4b, the isocontours of the approximate and FD (i.e., obtained fr
the standard finite-difference solvel) are plotted for configuratiomd. Note thatJ, is
characterized by high values in a small region near the wire, which corresponds to the w
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(b)

FIG. 4. Isocontours of (a)J, and (b)J,. Isocontours range from 0 (black) to 0.002 A/twhite) with a step
of 2 x 1074
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zone in the figures and is well captured by the analytical approximation. The maximi
value in the field is about 0.12 A/t the wire. In Fig. 4 only isocontours ranging from 0 to
0.002 A/n? are shown, to compare very small variations (of 20~* A/m?), in particular,
near the plate.

In spite of the differences visible between Figs. 4a and 4b, the global behavior of
analytic field is rather close to the reference FD one. The same considerations can be r
for the componend, (not shown here for the sake of brevity). Thus, a functior: J — J
which satisfies Eq. (7) can be defined, but with homogeneous boundary conditions;
field can be easily decomposed by using the KL technique as shown in Section 3.2.

Moreover, as shown in Figs. 4a and 4bis not too far from the reference FD solution,
and, thus, it can be used to derive an approximation of the exact electrical field. This
be employed as an initial condition for the numerical solution of the original electrosta
problem (see Section 4).

3.2. Karhunen-Léve Decomposition

The KL decomposition, classically used in probability theory [15], has also been utiliz
in fluid dynamics as a reduced-order model. In that context, it is usually called proper
thogonal decomposition (see, e.g., [23]) and is employed to describe the dynamical beh:
of the flow by considering only a finite number of modes.

Inthe present section, this technique is employed for the parameterization of the devia
of the FD current density field from the approximate one. As mentioned previously, t
analytical approximatiod satisfies the boundary conditions for the current density fielc
and, in particular, the average valueldadt the plate is equal td,. Thus, the Karhunen—lave
decomposition is applied to the remaining homogeneous part of the current density fie

For afixed configuration of the wire—plate precipitator, i.e., for givgandh,, the current
density depends both on space positfoa: (x, z) and on electric configuratioh = (Vg, a)

(Jp is obtained fronil' using a current—voltage formula). Starting from a setodliscrete

J fields obtained for different configurations, a Karhunen—kewé decomposition which
supplies the current density field as a functioriTofan be defined. More precisely, from
a set ofns snapshotsl}, the KL technique generates modesp; = 3, aij (3 — %),
which are mutually orthogonal basis functions, with respect to the canonical inner prod
in the Hilbert spacé 2. These modes have been defined to give an optimal representat
of (I — 5'T) in the L2 norm, as explained, for example, in [23]. The coefficientsare
obtained as the components of thih eigenvector of the correlation matri (Kj; =

(3 — 3%, 3} — Jhy/ng). The following decomposition is then obtained fhr

Ns
IXT)=J(X, Ip(M) + > _ci(Mgj(X) wherec; = (I —J.¢j). (12
j=1
The reconstructed depends on the snapshots chosen for the decomposition and, a
on ng,, the number of modes used for the reconstruction:

Nm
IR, 2)=J(x. 2+ > _cjej(x.2) with ny < ns. (13)
=1
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The following discrete approximation is used for the computation of the inner produc
involved in the present procedure,

U, v € (L2(D)Z (U, v)a = Y Aik(u(Xi, 20, v(%, Z)) re, (14)
i,k

whereA; « is the area of a cell centered ¢x, z,) andD is the computational domain.

For the construction of the database of snapshots, the wire—duct precipitator geom
of Fig. 2 is employed. Ten different configurations are defined by varying the wire r
dius between @ and 1016 mm, the plate current density betweer 50> and 1557 x
10-3 A/m?, and the ionic mobility between@ x 10~* and 19 x 10~* m?/V's. Five con-
figurations coincide with those in the experiments in Ref. [21], whereas the other five
defined by applying the current—voltage formula to spebffya, and J, consistently. In
all cases,J is obtained numerically by using the algorithm presented in Section 2. Tl
nonuniform 23x 34 mesh has been used, since it has been shown in Section 2 that
accurate estimate of the electrostatic field is obtained with this grid resolution. Thus,
numerically computed is here considered the reference FD solution.

As an example of the accuracy of the KL reconstruction, let us consider the reconstruc
field obtained witms = 10 andn,, = 2 for the previously defined configuraticf

In Fig. 5a, thez distribution of JR at x = 0.0234 m is compared to the FD solution.
The same comparison is made in Fig. 5b fortidistribution of JR atz = 0.0387 m. The
reconstructed field collapses onto the FD one.

To obtain a global indicator of the difference between the FD solution and the recc
structed one, the following error is defineslj = |3 — JR|la/(N Jp), where]| - |4 is the
norm associated to the discrete scalar producty defined in Eq. (14) andN is the
number of mesh points. The normalization By allows different configurations to be
compared.

In Fig. 6,ey is plotted for the same previous configuration as a functiompf.e., the
number of KL modes used for the reconstruction (note mhat 0 simply corresponds to
JR = J). The values obtained by using all the 1dields (s = 10) and those computed
by considering only 3 of therm{ = 3) are shown. Note that the case analyzed in Fig. !
corresponds tey = 5.91 x 1074, Thus, in both cases good accuracy is obtained with fev
KL modes. Surprisingly, the reconstruction accuracy obtained with only 3 snapshots is be
than that corresponding to the 10 snapshots. This is because this configuration coinc
with one of the snapshots used for the KL basis definition. In general, the lower the num
of considered snapshots, the higher the importance of each one in the basis definition,
hence its KL reconstruction is accurate.

Results obtained for the second configuration, which is not among the 10 fields used
the KL basis definition, are also reported in Fig. 6. In this case, good accuracy is obtai
only by using all of the 10 snapshots. However, very few modes are again sufficient
obtain an accurate reconstructionXf

The previous results are only a few examples of many other tests which have been
ried out and are not reported here for the sake of brevity. In all the cases considere
appears, first, thal can be accurately parameterized by very few KL modes (less the
4) and, second, that a reasonable number of snapshots is needed to construct th
basis.
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FIG. 5. Comparison of current density field¥y(= 25.415 kV anda = 0.152 mm): reference numerical
solution J, analytic approximatiord, and reconstructed fieldR, with n; = 10 andn,, = 2. (a)z component at
X = 0.0234 m and (bx component az = 0.0387 m.

4. EFFICIENT COMPUTATIONS BY SUITABLE INITIALIZATION

4.1. Methodology

The procedure for the computation of the wire—duct electrostatic precipitator requi
an initialization of the charge density and electric potential fields and thus a first a pri
estimation of these two fields. Following Cooperman [14], the usual way is to assume
space charge uniformly equal to zero and then to solve a Laplace equation for the potel
However, this initialization gives fieldg, p, E, andJ rather far from the FD solution. A
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FIG. 6. Normalized erroey as a function of, for ng = 10 andns = 3 and for two different configurations.

better initial field can be obtained from the previously described analytic approximati
and parameterization ¢f. More precisely, we define potential, electric, and charge densi
fields using only the knowledge df,, a, andVyp. From J,,, an approximate current field

is defined as described in Section 3.1 and a classical estimation of the wire-charge del
value, po, is obtained by Eq. (5). Starting from and pp a charge density field can be
obtained. Indeed, the following equationgrand J can be easily derived from Eq. (2):

’3 3+VpJ—o (15)

Equation (15) is simply a modification of the continuity equation for the current density fie
(Eq. (2)), thus also being a nonlinear hyperbolic equatign the numerical approximation
of this equation can be carried out in a way similar to that for Eq. (2), i.e., by using a finit
difference approach similar to the one defined in Ref. [6]. Finally, the following discretize
expression of the charge density field is obtained,

1/3

Pik = {—?vL\/(T,kr/g— {Blk‘*‘\/cli} ’ (16)

where

ik

Bix = —%{ Pi—1k + J_k_pl k— 1} A =2z — 7z q, Al =% — Xi_1,
ik
G= (45)+ (59)° with A= 5|3+ % .

For a suitableJ, and, in particular, ifJ; and J, have only nonnegative values, as in the
present case; i is well defined by Eqg. (16).
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For a fixed wire-charge density valipg and a given], the entire charge density field is
obtained explicitly from Eg. (16), coupled with the following boundary conditigns: =
0o, JF¥ =0, andJ}'! = 0. From the knowledge ¢f andJ, the electric field is immediately
derived fromE = J/(8p) and the potentiaV is obtained fromE = —VV. The first way
to reconstrucl is to use an upwind first-order finite-difference scheMe._1 = Vi« +
AKELK. This appears to be a natural way in our formulation because it is exactly the inve
procedure of the one used in the Maxwell solver to obggirfrom V. Since the potential
is equal to zero at the plat¥, x can be expressed as

Nk
Vik= Y ASE}S. (17)
s=k+1

One possible drawback to this construction is that only information from the seco
component of the electric field has been used. Moreover, in this way we have, first
accumulation of approximation errors moving away from the plate, i.e., kitetreases,
and second, near the wire—wire middle pladegives a poor approximation of the exact
current density field. This is clearly shown in Fig. 7, in which #everage of the relative
error obtained for configuratiad is plotted. Thez-average relative error is defined as

i R S N R VIR
eIZ(J) - z(nk - 2) Z ‘]i),(k + ‘]i%k

The approximation of the potential field is inaccurate near the line BC, and in particul
close to point B.

1.2 T T T T T T ll)(

approximate reconstruction ——

analytic solution - /

08} i

06} y.

04+

z average relative error

0 001 002 003 004 005 006 007 008
X axis

FIG. 7. Thezaverage relative erra, for both J and JR (with ip = 3n; /4). V, = 25.415 kV anda = 0.152.
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As an alternative approach, tlig field can be used to relate the potential evaluated &
two points in thex direction. This is done by integrating with respecktbetweernx; and
X, and using a trapezium formula, the following reconstruction is found:

Vik=Vjk—

NI =

i—1
Z (E;"k + E;Hl,k) Ag+l. (18)
q=j

However, since in this case the Dirichlet boundary condition is not availabl¥ fior
the x direction to initialize the procedure, a mixed approach using Bgtand E, can be
envisaged, using the first approach in the left part of the domain and the second one ir
right part. More precisely, léy be an index larger than one; for smaller than or equal to
io, EQ. (17) is used, whereas fior- i relation (18) is employed with = io. This allows, in
particular, the Neumann conditions to be verified on the wire—wire middle plane, as shc
for instance in Fig. 8.

In summary, an initial field for the numerical solution of the governing equations
the wire—duct precipitator problem has been defined from the analyticalJibldusing
Egs. (16)—(18). However, in the described procedure, the wire pot&¥gtials not been used
explicitly. Thus, the obtained initial field may be characterized by a valig significantly
different from the exact one, as shown for instance in Fig. 8. To furtherimprove the accur:
of the initial field evaluation, the same procedure can be repeated using the parameteriz:
of the current density field described in Section 3.2, i.e., starting frahwéiich verifies
Eq. (13). The coefficients cannot be exactly computed as in Eq. (12) because the exe
field is not known a priori; thus they are obtained here by an optimization algorithm
obtain a wire-potential value close Y. More precisely, the KL coefficients are computed

26 | I . - T T T
. i FD solution —
::t\ solution from KL parameterization of J -+
2%, solution from analytic J --x— |
0%\ Cooperman's analytic solution --x-- |
5
X
g
=
-
o}
2 ]
0f
*.
B :.,* LR L aEE 3

Y000 00z 00 004 005 008 007 008
Distance from wire in x direction

FIG. 8. Potential along AB 4 = 0.152 mm andV, = 25.415 kV) for the fully converged solution,
Cooperman’s analytic solution, the solution frdfand the solution frord Rwith ns = 10,n,, = 6, and, = 3n; /4.
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by minimizing the functional = (V1.1 — Vo)2/2VZ. Thus, starting with all the coefficients
equal to zero, i.e.)° equal toJ, the following iterative procedure is carried out:

e Charge density and potential fields are obtained using Eg. (16) and Eqgs. (17) and (
respectively.
e The mode coefficients are updated using a gradient descent method:

alP
l=1,...,n PHL_ P .
m G G —w 3G
Using the expression ofy 1, i.e.,V11 = A';E% -k and introducing the field and

its parameterization, the derivativeslotan be written as

Al (Vii— Vo) o= AK 1k 31k Pk
_ WV E —Z | (g — J7+ E ci(p) K , (19
g BVE — Pk 7l 1P a¢ (19)

where L& d"” can be expressed exactly from Eq. (16) as a functio?%gﬁ in the following
way,

3p1k 230 BBk _129C1k
K o ) C /2 >
90 { } g g
1 @Jr - 2B 9By Le ]_1/2861,k (20)
61 2 1.k P 1.k —80' )

where
Cik _ e €I 2( )l.k _ 3 o1kt 9Bk
o — pak| \3paf ) W2 2 ag |’

0,
B = — o puica(p + ki),

The derivatives are entirely determined by stating that= oo is independent of;, and
thus, %% = 0.

The validation of the previous derivation, i.e., Egs. (19) and (20), has been performec
comparison with approximate derivatives computed by divided finite differences.

4.2. Examples

We present now some numerical examples to evaluate the accuracy of the initial f
reconstructed as described previously. The effect of the new initialization on the efficiel
of the numerical computation of the electric field is also analyzed.

As afirst example, configuratiod is again considered here. Figures 9a and 9b, in whic
the plots corresponding to Figs. 5a and 5b are reported, show the improvement obtalned
when the KL parameterization is used instead of only the analyticalfie#tbreover, Fig. 7
shows that now the relative error seems to be uniformly distributed on the computatic
domain, with an average error of about 20% alongttlieection. However, itis also apparent
that theg coefficient values obtained by the algorithm defined by Egs. (16)—(20) (takir
io = 3n;/4) are still rather far from optimal values. A first source of inaccuracy is due to tf



908 BEUX ET AL.

0.0005

(.00045 -
0.0004 -

0.00035

0.0003 ‘ ) 1
approximate reconstruction  x

N L ]
5 000025 FD field —

0.0002 analytic field x|
0.00015
0.0001

56-05 (a)

o 0w o 0B 01 0i2

2 axis

~-0.00016 T — T T x T

X

approximate reconstruction
* analytic flield x4
FD field —

0.00014

T
<
<

0.00012
0.0001

X 8605
6e-05
4e-05

2e-05

0 001 002 003 0.64 0.05 0]06 0.67 0.08
X axis

FIG. 9. Comparison of current density field¥,(= 25.415 kV anda = 0.152 mm): referencel, analytic
approximationJ, and approximate reconstructed fidl§, with n; = 10,n,, = 6, and, = 3n; /4 . (a)zcomponent
atx = 0.0234 m and (bx component az = 0.0387 m.

value ofpg used in the algorithm, which is not the exact one but an estimate. But above
the use of a Cartesian finite-difference method, which imposes a rectangular computati
domain, does not allow the boundary conditions around the corona to be exactly impo:
Nevertheless, as shown in Fig. 8, in which the potential distribution along the line A
is plotted, a large improvement with respect to the analytical formula of Cooperman
also obtained for the potential field by using Egs. (16)—(20). Apparently, in some ca:
the proposed reconstruction may be used directly to obtain an acceptable approxime
of the exact solution at a negligible computational cost. Indeed, in the considered c:
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L Cooperman’s analytic formula
0.1 [ KL parameterization of J «- .- -«
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I‘]P—ng

To 00001 |
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FIG. 10. Convergence histories for the configuratian= 0.152 mm andV, = 25.415 kV. Initial fields:
Cooperman’s analytic solution and the solution obtained using a KL parameterizatibwftirng = 10,n,,, = 6,
andip = 3n; /4.

approximately 0.1 s CPU is required on a PC to compute this approximation, while
numerical solution of the reduced Maxwell equations by the previously described fini
difference solver takes abolh CPU. The reconstructed field can also be used, as mention
previously, as initialization for standard numerical solvers of the original Maxwell probler
The effect of more suitable initidl andp fields is clearly shown in Fig. 10, in which the
convergence histories for both our approach and the classical initialization are showr
particular, the logarithm afJ, — Jg(k)|/Jp is shown as a function of the iteration number.
The form of the convergence curve is due to the fact that the {egm- Jg(k)) does
not decrease uniformly to zero, but oscillates with values which can be both positive «
negative. Thus, the local minima are due to the change of sigdgjn- Jg(k)) values.

In practice, convergence is considered reached only if Eq. (6) is verifiddcforsecutive
iterations (we take hele= 40) to avoid local minima. A very fast initial convergence rate
is observed with the new approach, which allows one to reduce the number of iteration:
about 80% (566 instead of 2654) to reach an agreement between computed and spe
values ofJ, within 0.1%. The gain in efficiency obtained by this faster convergence is n
decreased by the cost of the computation of the inifiand o fields. Indeed, the cost of
the whole initialization procedure presented in Section 4.1 has been found to be lower t
that of the classical initialization, in which the truncated Cooperman series [14] is usec
each mesh point.

In Figs. 11 and 12 the convergence history for two other cases is shown. In the cas
Fig. 11, which corresponds to the configuratign= 55 kV anda = 0.85mm (J, ~ 1.33 x
1073 A/Im?), iy is taken equal torg /4 for the potential field construction. The convergence
improvement here is more limited, with a reduction of about 40% in the number of iteratic
(1507 instead of 2609). Conversely, very good convergence behavior is observed for the
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FIG.11. Convergence histories for the configuratéos: 0.85 mmand/, = 55kV. Initial fields: Cooperman’s
analytic solution and the solution obtained using a KL parameterizatiod feith ns = 10, n,, = 6, andi, =
3n; /4.

1l¢g T T T T T
\ Cooperman’s analytic formula

0.1 [ analytic J —— ]

0.01 J KL parameterization of J - -- - --
0.001 |
|Jp — ng | )

To 0.0001

T

le-05

1le-06

1e-07

13-08 | ! 1 { | )
0 1000 2000 3000 4000 5000 6000 7000

iterations

FIG.12. Convergence histories for the configuratéoe: 0.3 mm andv, = 35 kV. Initial fields: Cooperman’s
analytic solution, the solution obtained usidgand the solution computed using a KL parameterizationJfor
with ng = 10,n,, = 6, andi, = n; /2.
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shown in Fig. 12, with more than 85% reduction in the number of iterations (385 insteac
2652). A gain of only 10% is achieved by using the analytical fifdr the initialization.
This case corresponds to the configuratign= 35 kV anda = 0.3 mm (J, >~ 5.94 x
10~* A/m?) andiy = n; /2. This particularly fast rate of convergence coincides with a ver
good agreement of the initial potential field, as shown in Figs. 13a and 13b.

The performance of the present algorithm depends on both the particular considered
and the way the potential field is constructed, i.e., on the choigg Bbr this precipitator

35 ; . . : : ; :
FD solution —
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0t . ) 1
§ solution from analytic J -
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~ 5L
>
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T 20
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151 .
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5 L 1 1 L 1 1 L
0 001 002 003 004 005 006 007 008
Distance from wire in x direction
35 T T T T T
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30 : solution from KL parameterization of J —— |
? solution from analytic J —x—
25 I Cooperman’s analytic solution - |
S .
X .
g 20}
g
§ 15}
o]
o
10+
51
0

0 0 004 00 088 01 02
Distance from wire in z direction

FIG.13. Electric potential fieldsg = 0.3 mm andv, = 35 kV) for the fully converged solution, Cooperman’s
analytic solution, the solution frord, and the solution frond® with n, = 10, n,, = 6, andi, = n; /2. Potential
(a) along AB and (b) along AD.
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geometry, the bestresults are obtaineddtyetweem; /2 and 3; /4, i.e., taking, between
hx/3 and 2y /3. However, the efficiency of the numerical computation was significantl
increased by the new initialization in all the cases and for all the choicgthatt were tested.

The initialization of thep andV fields is strictly related to the numerical method usec
to discretize the problem. We have used here a finite-difference approach similar to the
employed inthe numerical solution of the reduced Maxwell equations described in Sectio
Nevertheless, the analytical fieldand also the KL decomposition are independent of th
particular discretization, and thus, starting from Eq. (15) other approaches can be develc
to obtain theo andV fields. Itis likely that the use of a more suitable discretization methoc
in which the corona boundary conditions are well imposed, might improve substantially 1
optimization algorithm, even though in this case, the explicit extraction of an exact gradi
as done in Egs. (19) and (20) could be more critical. Nevertheless, thanks to the low
of the algorithm, an approximate gradient computation by divided finite differences can
envisaged without particular drawbacks.

Obviously, the efficiency improvement of the numerical solution of the original electr
static problem obtained with the new initialization procedure may guantitatively depend
the particular solver used. Thus, present results can only give a qualitative indication. H
ever, it is reasonable to infer that a more accurate initialization should lead to a substatr
reduction of the computational cost for all numerical solvers.

5. RECONSTRUCTION FROM A CURRENT DENSITY FIELD

For an optimal flow configuration in a wire—plate ESP [3, 5], the optimization procedu
gives a value of] from which the operative electrostatic variables must be derived. In th
section, we will show how this can be done.

From Eg. (15) and a gived, the charge density field can be easily obtainegdyiis
known. However, since in this casg anda are unknown, it is not straightforward to find
a wire-charge density value. An estimatecgfcan be obtained in the following way. By
assuming a linear variation dfclose to the corona region in battandz directions and by
interpolating thel values near the wire, the corona current dengdjtis found as a linear
function of the wire radius. Then, using the approximatiody = 2J,hy/7a, a second-
order equation im is obtained. From the value afand using Egs. (3)—(5), boiy andV,
are estimated.

From the discretization (16) defined in Section 4, with the estimagedlue, a charge
density field is obtained, while the construction of the potential field is carried out usil
only Eq. (17). Indeed, starting from a known current field, the error&pdescribed in
Section 4 do not appear here. These two fields are then used as initialization for the solL
of Egs. (1) and (2). The electrostatic governing equations are solved iteratipg as
described in Section 2, but here at each iteratfyris updated fromop and J,. More
precisely, for giverpg and J,, a second-order equation iffa is obtained by combining
Egs. (4) and (5). TheN is given by the current—voltage formula, i.e., Eq. (3).

The distribution of the resulting potential field along AD is plotted in Fig. 14a for config
uration.A. This shows that a rather good approximation of the FD field is obtained with
computation cost equivalent to a direct resolution of the electrostatic problem. However
the algorithm for the resolution of Egs. (1) and (2) the iterative criterion is baségt ¢mus,
only little information from the known) has been used, and moreover, the wire potentic
valueV is estimated fronpg by a semiempirical formula. In some cases, the reconstructic



ELECTROSTATIC FIELD BY A LOW-ORDER MODEL 913

25 T T T T T J
Initial estimate  +
solution after resolution of Egs. 1-2  «
20l reference solution — |
2
c 15F
g
T
)
2 Or  vo=zs415v
Jp=0.000377 Am2
5t
(a)
R I TS Y- - B E R X
distance from wire in z direction
50 Initial estimate  +
solution after resolution of Egs. 1-2
solution after minimization on VO «
40 [ reference solution — |
s |-
4
C
< a0t
8
T
2
£ o0l V0=55000V
Jp=0.00133 A/m2
10}
(b)
0 |

0o 00F 006 088 01 012
distance from wire in z direction

FIG. 14. Potential along AD for (a) configuratiad and (b)V, = 55kV andJ, = 1.33 x 10~ A/m?. Com-
parison between the reference solution and the solutions after the different steps of the reconstruction.

procedure can give less accurate results, as shown in Fig. 14b, in which the potential di
bution is plotted for the configuration defined Yy = 55 kV andJ, = 1.33 x 103 A/m?.

To further improve the algorithm, an optimization can be done on the valugtofobtain

a current density field close to the desired one. With this aim, the following functional
defined,

I(Vo) = —— Z 13k = JclFees (21)
<Jp>

whereJ represents the current density field obtained by solving the electrostatic governr
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equations, (1) and (2), with the initial andV fields from Eqgs. (16) and (17), and as
wire-potential value. The corresponding wire radiysvhich is useful to define an initial
po value, is obtained from Eg. (3) by a Newton algorithm.

A classical univariate minimization is applied dVp) with an initial search of the
interval in which the minimum is located, completed by a quadratic interpolation algorithi

Starting from the values obtained by the initial reconstruction algorithm, which give
in this caseVy = 43.79 kV andZ (V) = 27.69 (see also Fig. 14b), after 15 cost function
evaluations a large reduction of the functiofals obtained withV; = 55196 kV and
T(V¢) = 5.07 x 104, Because of better convergence in the solution of Egs. (1) and (2), t
CPU cost of this minimization is only about four times the cost of the initial reconstructio
The good behavior of the reconstruction is shown in Fig. 14b, in which the reconstruc
potential is plotted after 11 cost evaluatior £ 3.29 x 1073).

The complete procedure, including the minimizatio ¢¥y), is more suitable for prac-
tical applications, in which the solution to be reconstructed is obviously not known.
this case, the accuracy of the reconstructed field can be measured by the reduction ¢
functional value.

6. CONCLUSIONS

The numerical computation of the ionic space charge and of the electric field produt
by corona discharge in an electrostatic precipitator has been considered.

An analytical approximation of the current density field has been obtained, which
divergence free and satisfies the same boundary conditions as the exact field. This analy
approximation is derived under the additional assumption of irrotationality of the curre
density field and is obtained by singularity distributions and elliptic functions, classic
tools used for hydrodynamic problems.

Since the approximated current density field satisfies the exact boundary conditi
of the problem, a homogeneous field can be obtained, which can be parameterize
the Karhunen—Leve decomposition. The current density field is thus expressed as |
sum of its analytical approximation and a linear combination of the KL functions. W
compared the current density field obtained from a reference numerical solver to th
recovered from the KL decomposition, with only a limited number of modes, for differel
configurations. The reference solution was given by a standard finite-difference solve
the partial difference equations governing the original problem, the accuracy of which v
assessed by comparison with experimental data and by grid independence analysis. |
been shown that only very few KL modes, typically three or four, are needed to obtain
accurate reproduction of the reference field. Thus, the proposed parameterization coul
useful in many practical applications, for instance, when the current density field must
optimized to a certain target (turbulent drag reduction, particle deposition increase). N
that the volume force experienced by charged particles or by the fluid in an electrost
precipitator depends only on the current density field.

Moreover, the analytical approximation of the current density field can be used to obt
a guess of the ionic space charge and of the electric field. Starting from the knowledg
the current density field and from an empirical estimate of the wire-charge density val
the ionic space charge and the electric field can be reconstructed numerically. The s
procedure can be used starting from the KL decompositiod, dfi which the unknown
coefficients are estimated by an optimization algorithm to obtain a global electric field whi
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gives the exact value of the potential at the wire (input of the problem). It has been shc
that the resulting reconstruction of the global electric field is very close to the exact o
and in many cases it could be considered a satisfactory approximation of the exact solu
obtained at a negligible computational cost. In all cases, it is significantly more accur
than the initial guesses based on empirical formulas, which are typically used to initial
all numerical solvers. Consequently, by employing the proposed reconstruction for

initialization, the efficiency of the iterative numerical solver of the original problemincreas
significantly (up to a factor of 85%) and, hence, the computational cost is substanti
decreased. Even though we obtained these results for a particular solver of the red
Maxwell equations, it seems reasonable to extend the validity of our findings to any ot
iterative solver, at least from a qualitative viewpoint.

Finally, a procedure has been proposed to reconstruct the solution of the original Max
problem from a given current density field. This is of significance in practical applicatio
to obtain, for instance, the electric configuration that gives a calculated optimized curr
density field. In this case, however, the values of both space charge and potential a
wire are unknown. An empirical estimate is used as initial guess and the electric and sp
charge fields are reconstructed following the procedure described previously. Then, the!
employed to initialize the numerical algorithm used for the solution of the original proble:
In this procedure, the value of the space charge at the wire is progressively updated
the convergence criterion is based on the value of the current density at the plate, w
is known. Simultaneously, an optimization algorithm, in which the wire potential is als
progressively updated, is carried out to ensure that the global electrostatic solution obta
from the proposed procedure corresponds to a current density field as close as possit
the given one. The accuracy of the reconstruction has been assessed by comparisor
reference direct solutions of the original Maxwell problem for different configurations. Tt
computational cost is significant, but this reconstruction must be carried out only on
when the optimun field has been obtained.
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