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The numerical computation of the ionic space charge and electric field produced by
corona discharge in a wire–plate electrostatic precipitator (ESP) is considered. The
electrostatic problem is defined by a reduced set of the Maxwell equations. Since self-
consistent conditions at the wire and at the plate cannot be specified a priori, a time-
consuming iterative numerical procedure is required. The efficiency of all numerical
solvers of the reduced Maxwell equations depends in particular on the accuracy
of the initial guess solution. The objectives of this work are two: first, we propose
a semianalytical technique based on the Karhunen–Lo`eve (KL) decomposition of
the current density fieldJ, which can significantly improve the performance of a
numerical solver; second, we devise a procedure to reconstruct the complete electric
field from a givenJ. The approximate solution of the current density field is based on
the derivation of an analytical approximationJ̃, which, added to a linear combination
of few KL basis functions, constitutes an accurate approximation ofJ. In the first
place, this result is useful for optimization procedures of the current density field,
which involve the computation of many different configurations. Second, we show
that from the current density field we can obtain an accurate estimate for the complete
electrostatic field which can be used to speed up the convergence of the iterative
procedure of standard numerical solvers.c© 2001 Academic Press

Key Words:wire–plate precipitators; reduced Maxwell equations; Karhunen–Lo`eve
decomposition; low-order model; efficient computations.

1. INTRODUCTION

Electrostatic precipitators (ESPs) are widely used to separate dust particles or aerosols
from a carrier fluid. Specifically, dust particles are charged and are then driven toward
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FIG. 1. Coupling among electrostatic field, fluid dynamics, and particle dispersion.

collecting electrodes by an applied electrostatic field. In the widely used wire–plate con-
figuration, the dust-laden gas flows through a rectangular channel bounded by grounded
vertical collecting plates. Thin vertical wires are placed in the middle of the channel and
are maintained at a potential larger than the local electrical breakdown, to emit ions by
corona discharge. The presence of ions is required to charge the dust particles dispersed in
the carrier fluid, which are initially neutral. However, the ions also interact with the fluid
molecules, which thus acquire momentum so that flows driven by the applied electrostatic
field are generated. These flows are called electrohydrodynamic (EHD) flows and couple
the fluid mechanics problem with the electric field–space charge problem. A further cou-
pling is introduced by the presence of particles, which, being charged, are coupled with
the electrostatic field and are also coupled with the fluid via the aerodynamic drag [1] as
shown in Fig. 1. To compute the whole problem, one should solve the reduced Maxwell
equations for the electrostatic field and space charge coupled with both particle dynamics
and Navier–Stokes equations.

The solution of these equations for one set of parameters appears complex. If an optimal
configuration is sought, the task of analyzing accurately the influence of the different pa-
rameters on a large number of cases is beyond the capabilities of present-day computers. In
the past, we examined specific configurations for ESPs, and we observed the influence of the
electrostatic field on particle collection efficiency [2]. Furthermore, we observed also that
the large-scale structures generated by electrostatic forces modify the turbulence behavior,
in particular near the wall, and for certain configurations this might lead to a significant drag
reduction [3]. Based on our previous findings and inspired by the work in [4], tentative in-
novative configurations for drag-optimized ESPs have been investigated [5] through a direct
numerical simulation of the turbulent flow field coupled to the electrostatic field solved by
a standard numerical technique. However, since a complete numerical solution of the fluid-
dynamic problem coupled with the electrostatic problem is not feasible in an optimization
procedure, because of the prohibitive computational requirements, we concluded that more
efficient algorithms and/or reduced-order models must be set up for both the electrostatic
and the fluid-dynamic problems. Our final goal is to devise a global numerical strategy
for ESP optimization and/or control. In this work, we address the electrostatic part in the
absence of couplings with fluid-dynamic field and particle-dynamic field. In particular, we
propose a semianalytic approximation of the current density field, which has two important
applications. First, it makes it possible to express the electrostatic body force appearing
in the fluid-dynamic equations as a function of a reduced number of parameters, which
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FIG. 2. Wire–duct precipitator geometry and computational domain.

can be easily treated in a global optimization procedure. Second, it leads to more efficient
algorithms for the numerical solution of the space-charge coupled problem.

Consider the ideal wire–plate ESP configuration shown in Fig. 2. Under certain condi-
tions, the ion discharge may be assumed to be uniform along the wire, and the electrostatic
problem can be solved in two dimensions. A major difficulty in the computation of this
problem is that all the conditions at the wire and at the plate cannot be specified a priori in a
self-consistent way. The usual procedure is to start from an initial guess of the charge density
and electric potential fields,ρ andV , and to iterate the numerical solution of the reduced
Maxwell equations, adjusting at each iteration the value ofV (as, e.g., in Refs. [6–8]) orρ
(as, e.g., in Refs. [9–11]) at the wire, until convergence is achieved. As a consequence, the
numerical computation of the electrostatic field is considerably time-consuming. Several
algorithms have been used in the literature to reduce the computational cost and, in par-
ticular, by coupling efficient discretization and convergence acceleration techniques (e.g.,
pseudo-transient approach with relaxation and multigrid [11] or Newton algorithm [12]). A
different approach has been proposed in Ref. [13], in which the introduction of an auxiliary
equation and an auxiliary variable makes it possible to solve the problem with Newton
iterations for all the unknowns simultaneously. However, no explicit information is given
in Ref. [13] on the efficiency of this method compared to previous ones.

In all cases, the computational procedures used for the solution of this problem require
an initial guess of the potential and charge density fields. Usually (see, for instance, [6, 7,
9]), a free space-charge field is assumed and then an analytical expression for the potential
is obtained [14].

In the present paper, we propose a semianalytical procedure, based on the Karhunen–
Loève (KL) decomposition [15], to parameterize the current density field,J (Section 3).
This allowsJ to be expressed as a function of very few KL modes. This result is useful in
control or optimization procedures in electrostatic precipitators, such as those mentioned
previously, in which the electrostatic field must be optimized to reduce turbulent friction
drag at the plates or to increase particle collection efficiency. Indeed, the electric volume
force exerted on the fluid depends only on the current density field; therefore, following the
proposed KL decomposition, optimization procedures may derive the optimalJ field acting
on a significantly reduced number of parameters. Furthermore, this allows the optimization
algorithm to be carried out only for the fluid dynamic part, usingJ as a control parameter,
without solving the reduced Maxwell equations at each step. A procedure described in
Section 5 also permits all the operative electrostatic variables from the optimalJ field given
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by the ESP optimization algorithm to be obtained. The proposed parameterization of the
current density field has a second relevant application. Indeed, starting from it, an estimate
of the complete electrostatic field is obtained as described in Section 4. It is shown that this
estimate, which is computed at a negligible computational cost, is in many cases accurate
enough to be an acceptable approximation of the solution. Otherwise, it can be used as an
initialization for standard numerical solvers leading to dramatic gain in the efficiency of the
numerical algorithm.

2. PROBLEM DESCRIPTION AND ASSESSMENT

OF A FINITE-DIFFERENCE SOLVER

We consider a wire–duct electrostatic precipitator configuration, i.e., a series of equally
spaced wires at high voltage placed in the midplane between two parallel grounded plates.
The electrical phenomenon is characterized by a nonuniform electrostatic field. The space
charge is generated by ion emission from the corona around the wire and is also characterized
by a nonuniform distribution. Neglecting the magnetic effects and considering the steady
state, the governing electrostatic equations can be expressed as

1V = − ρ
ε0
, (1)

ρ2 = ε0∇ρ · ∇V, (2)

whereρ is the space-charge density,V is the electrical potential, andε0 is the permittivity
of the gas. The electric field and the current density are obtained fromV andρ as follows:
E = −∇V andJ = ρβE, whereβ is the ionic mobility.

Because of symmetry considerations, the computational domain can be reduced to the
rectangle ABCD of dimensionshx × hz as shown in Fig. 2, with Neumann boundary con-
ditions Ez = 0 along AB andEx = 0 along BC and DA. To close the previous system of
equations, Dirichlet conditions are also applied by setting the potential at the grounded
plate to zero, i.e., along CD, and by imposing both potential and charge density at the wire
(point A). The input values in our procedure are the average current density at the plate
Jp, the wire potentialV0, and the wire radiusa. They can be specified from experimental
data, if available. In our computations, experimental values are used forV0 anda, while the
value of Jp is calculated using a current–voltage formula defined in [16]. More precisely,
the following equation is numerically solved by means of a Newton algorithm,

3Jp

βε0

(
V0− V S

0 +
πahz

2hx
Ec

)
=
[(

πa

2hx
Ec

)2

+ 2hz

βε0
Jp

]3/2

−
(
πa

2hx
Ec

)3

, (3)

whereEc is the strength of the electric field at the corona surface andV S
0 is the corona

onset voltage, i.e.,V0 corresponding toJp = 0. The starting voltage can be obtained by the
formula V S

0 = a ln(d/a)Ec, whered is an equivalent cylinder radius defined in [17].Ec

is determined by the semiempirical Peek’s formula [18] for a gas at standard pressure and
temperature and for a polished wire:

Ẽc(a) = D
(

1+ E√
a

)
. (4)

TheD andE coefficients are taken equal to 32.3× 105 and 0.02619 in SI units, respectively
(see [11]).
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The wire-charge densityρ0 is not known a priori. It is initially estimated as a function of
Jp anda using the following wire condition [6]:

ρ0 = 2Jphx

πaβ Ẽc
. (5)

Then, a numerical algorithm, similar to the one proposed in Ref. [9], is applied. The
knowledge ofρ0 and of the initialρ andV fields makes it possible to solve Eq. (2), and
then, using the updatedρ field, Eq. (1) is solved giving a new potential field. The value ofρ0

is adjusted and the computation ofρ andV fields repeated until the average current density
at the plate differs from the desired oneJp within a specified tolerance. More precisely, the
convergence criterion is ∣∣Jp − Jd

p (k)
∣∣/Jp < cJ, (6)

whereJd
p (k) is the average plate density charge computed at iterationk andcJ is the spec-

ified tolerance. The adjustment ofρ0 is directly correlated with the previous convergence
criterion as

ρ0(k+ 1) = ρ(k)[1+ λ(Jp − Jd
p (k)

)/
Jp
]
,

whereλ is a constant given a priori (λ = 0.01 herein). Note that̃Ec defined by Eq. (5) is
used in the algorithm only to find an initial value ofρ0. The corona electric fieldEc is not
an input value of the problem and thus is varied during the computation.

As for the numerical discretization of Eqs. (1) and (2), the finite-difference method (FDM)
has often been used, particularly in early studies (e.g., [6, 9]). However, to more accurately
compute the near wire region characterized by strong gradients, other approaches have
been developed: non-Cartesian FDM [8] and methods which can use unstructured grids,
such as the finite-element method (FEM) [10, 13] or the finite-volume method (FVM) [11].
Moreover, FEM, which is well adapted to the solution of the elliptic Poisson equation,
can be combined with methods suitable for the hyperbolic equation, e.g., FEM–FDM [7],
FEM–FVM [12], FEM, and method of characteristics [19, 20] (for a review see [11]).

The present approach is based on a finite-difference method similar to the one defined in
Ref. [6], with a uniform value ofβ and a nonuniform grid system. This method is certainly not
the most efficient one among those proposed in the literature; however, comparisons between
experimental and numerical data have shown that accurate solutions can be obtained.

In particular, we consider a wire–duct precipitator configuration that has been studied
numerically (e.g., [7]) as well as experimentally [21]. This test case is characterized by
hz = 0.1143 m,hx = 0.0762 m,a = 0.152 mm, andV0 = 25.415 kV. With ionic mobil-
ity of 1.9× 10−4 m2/V s, the current–voltage formula (Eq. (3)) givesJp = 3.77× 10−4

A/m2. We will refer to this configuration as configurationA. We used four different uni-
form grids with 23× 34, 34× 51, 45× 67, and 67× 99 points, respectively. A 23× 34
nonuniform grid, with points clustered near the wire, has also been used. The sensitiv-
ity of the solution to the convergence criterion has been preliminary analyzed, and it has
been found that independence is reached when the error between computed and specified
Jp is less than 0.1%, i.e.,cJ = 0.001 in Eq. (6). Thus, all the results presented below
are obtained with this convergence tolerance. In Figs. 3a and 3b, the potential distribu-
tions obtained with different meshes are compared with the experimental data of [21].
If we exclude the coarsest uniform grid, the results are independent of grid resolution,
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FIG. 3. Comparison between electric potential fields obtained with different meshes and experimental data
from [21], for hz = 0.1143 m,hx = 0.0762 m,a = 0.152 mm, andV0 = 25.415 kV. (a) Distribution along AD
and (b) distribution along BC.

except for slight differences observed near the wire as shown in Fig. 3a, and all are in
good agreement with experiments. The same conclusions can be drawn from compar-
isons carried out for different experimental configurations (not shown here for the sake
of brevity). In particular, the use of the 23× 34 nonuniform grid allows us to satisfacto-
rily capture the strong gradients near the wire with reduced computational times. There-
fore, the electrostatic fields obtained by the finite-difference solver on this nonuniform
grid will be considered as reference solutions to evaluate the accuracy of the proposed
procedures.
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3. PARAMETERIZATION OF THE CURRENT DENSITY FIELD

3.1. Analytical Approximation

In this section, the procedure used to obtain an analytical approximation of the current
density field is described.

The governing equation forJ is

∇ · J = 0, (7)

which represents the continuity of steady currents. Boundary conditions for the considered
problem are (see Fig. 2)Jz = 0 on AB, Jx = 0 on BC, CD, and DA, andJr = 2Jphx/πa
at the wire, whereJr is the radial component of the current density vector. It is clear that
Eq. (7) and these boundary conditions are not sufficient to uniquely determineJ.

We wish to obtain here an approximation,J̃, of the exact current density field, which
satisfies Eq. (7) and the boundary conditions mentioned above. To derive an analytical
expression ofJ̃, the following assumption is made:

∇ × J̃ = 0. (8)

By writing J̃ asβρ̃ Ẽ, it can easily be shown that hypothesis (8) is equivalent to assuming
the electric field and the charge density gradient to be parallel. In particular, this implies
that a function8 exists such that̃J = ∇8. Using Eq. (7),8 can be determined from

∇28 = 0 (9)

with the Neumann boundary conditions derived from those forJ. This problem has now a
unique solution that can be obtained from classical tools used in hydrodynamic problems,
such as singularity distributions and elliptic functions. In particular, using the reflection
technique, it can be shown that Eq. (9) and the corresponding boundary conditions are
satisfied by an infinite sequence in thex direction of sources of intensity 4Jphx located
at (±2khx, 0), k = 1, . . . ,∞, and by an infinite row of alternating sources and sinks of
intensity 4Jphx along z at (0,±2 jhz), j = 0, . . . ,∞ ( j even corresponds to a source,
while j odd to a sink). Finally,̃Jx and J̃z can be obtained as the real and the imaginary part
of the complex function

9(x, z) = 4Jphx [ζ(x + i z)− ζ(x + i z− 2hz)] , (10)

whereζ denotes the Weierstrassζ function (see, for instance, [22]) andi = √−1.
Since, in general, assumption (8) is not verified by the exact solution of Eqs. (1) and

(2), J̃ obtained in this way can be considered only an approximation of the exact current
density field. It can be easily verified, however, thatJ̃ satisfies the boundary conditions of
the original nonlinear problem. In particular we have

1

2hx

∫ hx

−hx

Jz(x, hz) dx = Jp. (11)

In Figs. 4a and 4b, the isocontours of the approximate and FD (i.e., obtained from
the standard finite-difference solver)Jz are plotted for configurationA. Note thatJz is
characterized by high values in a small region near the wire, which corresponds to the white
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FIG. 4. Isocontours of (a)Jz and (b)J̃z. Isocontours range from 0 (black) to 0.002 A/m2 (white) with a step
of 2× 10−4.
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zone in the figures and is well captured by the analytical approximation. The maximum
value in the field is about 0.12 A/m2 at the wire. In Fig. 4 only isocontours ranging from 0 to
0.002 A/m2 are shown, to compare very small variations (of 2× 10−4 A/m2), in particular,
near the plate.

In spite of the differences visible between Figs. 4a and 4b, the global behavior of the
analytic field is rather close to the reference FD one. The same considerations can be made
for the componentJx (not shown here for the sake of brevity). Thus, a functionJ = J − J̃
which satisfies Eq. (7) can be defined, but with homogeneous boundary conditions; this
field can be easily decomposed by using the KL technique as shown in Section 3.2.

Moreover, as shown in Figs. 4a and 4b,J̃ is not too far from the reference FD solution,
and, thus, it can be used to derive an approximation of the exact electrical field. This can
be employed as an initial condition for the numerical solution of the original electrostatic
problem (see Section 4).

3.2. Karhunen–Lòeve Decomposition

The KL decomposition, classically used in probability theory [15], has also been utilized
in fluid dynamics as a reduced-order model. In that context, it is usually called proper or-
thogonal decomposition (see, e.g., [23]) and is employed to describe the dynamical behavior
of the flow by considering only a finite number of modes.

In the present section, this technique is employed for the parameterization of the deviation
of the FD current density field from the approximate one. As mentioned previously, the
analytical approximatioñJ satisfies the boundary conditions for the current density field,
and, in particular, the average value ofJ̃ at the plate is equal toJp. Thus, the Karhunen–Lo`eve
decomposition is applied to the remaining homogeneous part of the current density field.

For a fixed configuration of the wire–plate precipitator, i.e., for givenhx andhz, the current
density depends both on space positionX = (x, z)and on electric configurationT = (V0,a)
(Jp is obtained fromT using a current–voltage formula). Starting from a set ofns discrete
J fields obtained for differentT configurations, a Karhunen–Lo`eve decomposition which
supplies the current density field as a function ofT can be defined. More precisely, from
a set ofns snapshotsJl

T , the KL technique generatesns modes,ϕ j =
∑

l αl j (Jl
T − J̃l

T ),
which are mutually orthogonal basis functions, with respect to the canonical inner product
in the Hilbert spaceL2. These modes have been defined to give an optimal representation
of (Jl

T − J̃l
T ) in the L2 norm, as explained, for example, in [23]. The coefficientsαl j are

obtained as the components of thej th eigenvector of the correlation matrixK (Kl j =
〈Jl

T − J̃l
T , J j

T − J̃ j
T 〉/ns). The following decomposition is then obtained forJ:

J(X, T) = J̃(X, Jp(T))+
ns∑
j=1

cj (T)ϕ j (X) wherecj = 〈J − J̃, ϕ j 〉. (12)

The reconstructedJ depends on the snapshots chosen for the decomposition and, also,
onnm, the number of modes used for the reconstruction:

J R(x, z) = J̃(x, z)+
nm∑
j=1

cjϕ j (x, z) with nm ≤ ns. (13)
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The following discrete approximation is used for the computation of the inner products
involved in the present procedure,

u, v ∈ (L2(D))2: 〈u, v〉d =
∑
i,k

Ai,k〈u(xi , zk), v(xi , zk)〉IR2, (14)

whereAi,k is the area of a cell centered on(xi , zk) andD is the computational domain.
For the construction of the database of snapshots, the wire–duct precipitator geometry

of Fig. 2 is employed. Ten different configurations are defined by varying the wire ra-
dius between 0.1 and 1.016 mm, the plate current density between 5× 10−5 and 1.557×
10−3 A/m2, and the ionic mobility between 1.6× 10−4 and 1.9× 10−4 m2/V s. Five con-
figurations coincide with those in the experiments in Ref. [21], whereas the other five are
defined by applying the current–voltage formula to specifyV0, a, and Jp consistently. In
all cases,J is obtained numerically by using the algorithm presented in Section 2. The
nonuniform 23× 34 mesh has been used, since it has been shown in Section 2 that an
accurate estimate of the electrostatic field is obtained with this grid resolution. Thus, the
numerically computedJ is here considered the reference FD solution.

As an example of the accuracy of the KL reconstruction, let us consider the reconstructed
field obtained withns = 10 andnm = 2 for the previously defined configurationA.

In Fig. 5a, thez distribution of J R
z at x = 0.0234 m is compared to the FD solution.

The same comparison is made in Fig. 5b for thex distribution ofJ R
x at z= 0.0387 m. The

reconstructed field collapses onto the FD one.
To obtain a global indicator of the difference between the FD solution and the recon-

structed one, the following error is defined:eN = ‖J − J R‖d/(N Jp), where‖ · ‖d is the
norm associated to the discrete scalar product〈·, ·〉d defined in Eq. (14) andN is the
number of mesh points. The normalization byJp allows different configurations to be
compared.

In Fig. 6,eN is plotted for the same previous configuration as a function ofnm, i.e., the
number of KL modes used for the reconstruction (note thatnm = 0 simply corresponds to
J R = J̃). The values obtained by using all the 10J fields (ns = 10) and those computed
by considering only 3 of them (ns = 3) are shown. Note that the case analyzed in Fig. 5
corresponds toeN = 5.91× 10−4. Thus, in both cases good accuracy is obtained with few
KL modes. Surprisingly, the reconstruction accuracy obtained with only 3 snapshots is better
than that corresponding to the 10 snapshots. This is because this configuration coincides
with one of the snapshots used for the KL basis definition. In general, the lower the number
of considered snapshots, the higher the importance of each one in the basis definition, and
hence its KL reconstruction is accurate.

Results obtained for the second configuration, which is not among the 10 fields used for
the KL basis definition, are also reported in Fig. 6. In this case, good accuracy is obtained
only by using all of the 10 snapshots. However, very few modes are again sufficient to
obtain an accurate reconstruction ofJ.

The previous results are only a few examples of many other tests which have been car-
ried out and are not reported here for the sake of brevity. In all the cases considered, it
appears, first, thatJ can be accurately parameterized by very few KL modes (less than
4) and, second, that a reasonable number of snapshots is needed to construct the KL
basis.
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FIG. 5. Comparison of current density fields (V0 = 25.415 kV anda = 0.152 mm): reference numerical
solution J, analytic approximatioñJ, and reconstructed fieldJ R, with ns = 10 andnm = 2. (a)z component at
x = 0.0234 m and (b)x component atz= 0.0387 m.

4. EFFICIENT COMPUTATIONS BY SUITABLE INITIALIZATION

4.1. Methodology

The procedure for the computation of the wire–duct electrostatic precipitator requires
an initialization of the charge density and electric potential fields and thus a first a priori
estimation of these two fields. Following Cooperman [14], the usual way is to assume the
space charge uniformly equal to zero and then to solve a Laplace equation for the potential.
However, this initialization gives fieldsV, ρ, E, and J rather far from the FD solution. A



904 BEUX ET AL.

FIG. 6. Normalized erroreN as a function ofnm for ns = 10 andns = 3 and for two different configurations.

better initial field can be obtained from the previously described analytic approximation
and parameterization ofJ. More precisely, we define potential, electric, and charge density
fields using only the knowledge ofJp,a, andV0. From Jp, an approximate current field̃J
is defined as described in Section 3.1 and a classical estimation of the wire-charge density
value,ρ0, is obtained by Eq. (5). Starting from̃J andρ0 a charge density field can be
obtained. Indeed, the following equation inρ andJ can be easily derived from Eq. (2):

β

ε0
ρ3+∇ρ J = 0. (15)

Equation (15) is simply a modification of the continuity equation for the current density field
(Eq. (2)), thus also being a nonlinear hyperbolic equation inρ. The numerical approximation
of this equation can be carried out in a way similar to that for Eq. (2), i.e., by using a finite-
difference approach similar to the one defined in Ref. [6]. Finally, the following discretized
expression of the charge density field is obtained,

ρi,k =
[
−Bi,k

2
+√Ci,k

]1/3

−
[Bi,k

2
+√Ci,k

]1/3

, (16)

where 
Bi,k = − ε0

β

[
Ji,k

x

1i
x
ρi−1,k + Ji,k

z

1k
z
ρi,k−1

]
1k

z = zk − zk−1, 1
i
x = xi − xi−1,

Ci,k =
(Ai,k

3

)3+ (Bi,k

2

)2
with Ai,k = ε0

β

[
Ji,k

x

1i
x
+ Ji,k

z

1k
z

]
.

For a suitableJ, and, in particular, ifJx and Jz have only nonnegative values, as in the
present case,ρi,k is well defined by Eq. (16).
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For a fixed wire-charge density valueρ0 and a givenJ, the entire charge density field is
obtained explicitly from Eq. (16), coupled with the following boundary conditions:ρ1,1 =
ρ0, J1,k

x = 0, andJi,1
z = 0. From the knowledge ofρ andJ, the electric field is immediately

derived fromE = J/(βρ) and the potentialV is obtained fromE = −∇V . The first way
to reconstructV is to use an upwind first-order finite-difference scheme:Vi,k−1 = Vi,k +
1k

zEi,k
z . This appears to be a natural way in our formulation because it is exactly the inverse

procedure of the one used in the Maxwell solver to obtainEz from V . Since the potential
is equal to zero at the plate,Vi,k can be expressed as

Vi,k =
nk∑

s=k+1

1s
zEi,s

z . (17)

One possible drawback to this construction is that only information from the second
component of the electric field has been used. Moreover, in this way we have, first an
accumulation of approximation errors moving away from the plate, i.e., whenk decreases,
and second, near the wire–wire middle plane,J̃ gives a poor approximation of the exact
current density field. This is clearly shown in Fig. 7, in which thez average of the relative
error obtained for configurationA is plotted. Thez-average relative error is defined as

ei
z( J̃) =

1

2(nk − 2)

nk−1∑
k=2

[∣∣Jx
i,k − J̃x

i,k

∣∣
Jx

i,k

+
∣∣Jz

i,k − J̃z
i,k

∣∣
Jz

i,k

]
.

The approximation of the potential field is inaccurate near the line BC, and in particular,
close to point B.

FIG. 7. Thez-average relative errorei
z for both J̃ andJ R (with i0 = 3ni /4). V0 = 25.415 kV anda = 0.152.
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As an alternative approach, theEx field can be used to relate the potential evaluated at
two points in thex direction. This is done by integrating with respect tox betweenxj and
xi , and using a trapezium formula, the following reconstruction is found:

Vi,k = Vj,k − 1

2

i−1∑
q= j

(
Eq,k

x + Eq+1,k
x

)
1q+1

x . (18)

However, since in this case the Dirichlet boundary condition is not available forV in
thex direction to initialize the procedure, a mixed approach using bothEz andEx can be
envisaged, using the first approach in the left part of the domain and the second one in the
right part. More precisely, leti0 be an indexi larger than one; fori smaller than or equal to
i0, Eq. (17) is used, whereas fori > i0 relation (18) is employed withj = i0. This allows, in
particular, the Neumann conditions to be verified on the wire–wire middle plane, as shown
for instance in Fig. 8.

In summary, an initial field for the numerical solution of the governing equations of
the wire–duct precipitator problem has been defined from the analytical fieldJ̃ by using
Eqs. (16)–(18). However, in the described procedure, the wire potentialV0 has not been used
explicitly. Thus, the obtained initial field may be characterized by a value ofV0 significantly
different from the exact one, as shown for instance in Fig. 8. To further improve the accuracy
of the initial field evaluation, the same procedure can be repeated using the parameterization
of the current density field described in Section 3.2, i.e., starting from aJ which verifies
Eq. (13). The coefficientscl cannot be exactly computed as in Eq. (12) because the exact
field is not known a priori; thus they are obtained here by an optimization algorithm to
obtain a wire-potential value close toV0. More precisely, the KL coefficients are computed

FIG. 8. Potential along AB (a = 0.152 mm andV0 = 25.415 kV) for the fully converged solution,
Cooperman’s analytic solution, the solution fromJ̃, and the solution fromJ R with ns = 10,nm = 6, andi0 = 3ni /4.
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by minimizing the functionalI = (V1,1− V0)
2/2V2

0 . Thus, starting with all the coefficients
equal to zero, i.e.,J0 equal toJ̃, the following iterative procedure is carried out:

• Charge density and potential fields are obtained using Eq. (16) and Eqs. (17) and (18),
respectively.
• The mode coefficients are updated using a gradient descent method:

l = 1, . . . ,nm cp+1
l = cp

l − ω
∂ I p

∂cl
.

Using the expression ofV1,1, i.e.,V1,1 =
∑nk

k=21
k
zE1,k

z , and introducing theJ field and
its parameterization, the derivatives ofI can be written as

∂ I

∂cl
= (V1,1− V0)

βV2
0

nk∑
k=2

1k
z

ρ1,k

(ϕz)
1,k
l −

1

ρ1,k

(
J̃1,k

z +
nm∑
j=1

cj (ϕz)
1,k
j

)
∂ρ1,k

∂cl

, (19)

where ∂ρ1,k

∂cl
can be expressed exactly from Eq. (16) as a function of∂ρ1,k−1

∂cl
in the following

way,

∂ρ1,k

∂cl
= 1

6

[
−B1,k

2
+√C1,k

]−2/3 [
−∂B1,k

∂cl
+ [C1,k]−1/2∂C1,k

∂cl

]
− 1

6

[B1,k

2
+√C1,k

]−2/3 [
∂B1,k

∂cl
+ [C1,k]−1/2∂C1,k

∂cl

]
, (20)

where 
∂C1,k

∂cl
= ε0

β1k
z

[ (
ε0 J1,k

z

3β1k
z

)2
(ϕz)

1,k
l − J1,k

z ρ1,k−1

2
∂B1,k

∂cl

]
,

∂B1,k

∂cl
= − ε0

β1k
z

(
ρ1,k−1(ϕz)

1,k
l + J1,k

z
∂ρ1,k−1

∂cl

)
.

The derivatives are entirely determined by stating thatρ1,1 = ρ0 is independent ofcl , and
thus, ∂ρ1,1

∂cl
= 0.

The validation of the previous derivation, i.e., Eqs. (19) and (20), has been performed by
comparison with approximate derivatives computed by divided finite differences.

4.2. Examples

We present now some numerical examples to evaluate the accuracy of the initial field
reconstructed as described previously. The effect of the new initialization on the efficiency
of the numerical computation of the electric field is also analyzed.

As a first example, configurationA is again considered here. Figures 9a and 9b, in which
the plots corresponding to Figs. 5a and 5b are reported, show the improvement obtained onJ
when the KL parameterization is used instead of only the analytical fieldJ̃. Moreover, Fig. 7
shows that now the relative error seems to be uniformly distributed on the computational
domain, with an average error of about 20% along thezdirection. However, it is also apparent
that thecl coefficient values obtained by the algorithm defined by Eqs. (16)–(20) (taking
i0 = 3ni /4) are still rather far from optimal values. A first source of inaccuracy is due to the
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FIG. 9. Comparison of current density fields (V0 = 25.415 kV anda = 0.152 mm): referenceJ, analytic
approximationJ̃, and approximate reconstructed fieldJ R, with ns = 10,nm = 6, andi0 = 3ni /4 . (a)zcomponent
at x = 0.0234 m and (b)x component atz= 0.0387 m.

value ofρ0 used in the algorithm, which is not the exact one but an estimate. But above all,
the use of a Cartesian finite-difference method, which imposes a rectangular computational
domain, does not allow the boundary conditions around the corona to be exactly imposed.
Nevertheless, as shown in Fig. 8, in which the potential distribution along the line AB
is plotted, a large improvement with respect to the analytical formula of Cooperman is
also obtained for the potential field by using Eqs. (16)–(20). Apparently, in some cases
the proposed reconstruction may be used directly to obtain an acceptable approximation
of the exact solution at a negligible computational cost. Indeed, in the considered case,
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FIG. 10. Convergence histories for the configurationa = 0.152 mm andV0 = 25.415 kV. Initial fields:
Cooperman’s analytic solution and the solution obtained using a KL parameterization forJ with ns = 10,nm = 6,
andi0 = 3ni /4.

approximately 0.1 s CPU is required on a PC to compute this approximation, while the
numerical solution of the reduced Maxwell equations by the previously described finite-
difference solver takes about 1 h CPU. The reconstructed field can also be used, as mentioned
previously, as initialization for standard numerical solvers of the original Maxwell problem.
The effect of more suitable initialV andρ fields is clearly shown in Fig. 10, in which the
convergence histories for both our approach and the classical initialization are shown. In
particular, the logarithm of|Jp − Jd

p (k)|/Jp is shown as a function of the iteration number.
The form of the convergence curve is due to the fact that the term(Jp − Jd

p (k)) does
not decrease uniformly to zero, but oscillates with values which can be both positive and
negative. Thus, the local minima are due to the change of sign in(Jp − Jd

p (k)) values.
In practice, convergence is considered reached only if Eq. (6) is verified forl consecutive
iterations (we take herel = 40) to avoid local minima. A very fast initial convergence rate
is observed with the new approach, which allows one to reduce the number of iterations by
about 80% (566 instead of 2654) to reach an agreement between computed and specified
values ofJp within 0.1%. The gain in efficiency obtained by this faster convergence is not
decreased by the cost of the computation of the initialV andρ fields. Indeed, the cost of
the whole initialization procedure presented in Section 4.1 has been found to be lower than
that of the classical initialization, in which the truncated Cooperman series [14] is used at
each mesh point.

In Figs. 11 and 12 the convergence history for two other cases is shown. In the case of
Fig. 11, which corresponds to the configurationV0 = 55 kV anda = 0.85 mm (Jp ' 1.33×
10−3 A/m2), i0 is taken equal to 3ni /4 for the potential field construction. The convergence
improvement here is more limited, with a reduction of about 40% in the number of iterations
(1507 instead of 2609). Conversely, very good convergence behavior is observed for the case
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FIG. 11. Convergence histories for the configurationa = 0.85 mm andV0 = 55 kV. Initial fields: Cooperman’s
analytic solution and the solution obtained using a KL parameterization forJ with ns = 10, nm = 6, andi0 =
3ni /4.

FIG. 12. Convergence histories for the configurationa = 0.3 mm andV0 = 35 kV. Initial fields: Cooperman’s
analytic solution, the solution obtained usingJ̃, and the solution computed using a KL parameterization forJ
with ns = 10,nm = 6, andi0 = ni /2.
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shown in Fig. 12, with more than 85% reduction in the number of iterations (385 instead of
2652). A gain of only 10% is achieved by using the analytical fieldJ̃ for the initialization.
This case corresponds to the configurationV0 = 35 kV anda = 0.3 mm (Jp ' 5.94×
10−4 A/m2) andi0 = ni /2. This particularly fast rate of convergence coincides with a very
good agreement of the initial potential field, as shown in Figs. 13a and 13b.

The performance of the present algorithm depends on both the particular considered case
and the way the potential field is constructed, i.e., on the choice ofi0. For this precipitator

FIG. 13. Electric potential fields (a = 0.3 mm andV0 = 35 kV) for the fully converged solution, Cooperman’s
analytic solution, the solution from̃J, and the solution fromJ R with ns = 10, nm = 6, andi0 = ni /2. Potential
(a) along AB and (b) along AD.
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geometry, the best results are obtained fori0 betweenni /2 and 3ni /4, i.e., takingxi0 between
hx/3 and 2hx/3. However, the efficiency of the numerical computation was significantly
increased by the new initialization in all the cases and for all the choices ofi0 that were tested.

The initialization of theρ andV fields is strictly related to the numerical method used
to discretize the problem. We have used here a finite-difference approach similar to the one
employed in the numerical solution of the reduced Maxwell equations described in Section 2.
Nevertheless, the analytical field̃J and also the KL decomposition are independent of the
particular discretization, and thus, starting from Eq. (15) other approaches can be developed
to obtain theρ andV fields. It is likely that the use of a more suitable discretization method,
in which the corona boundary conditions are well imposed, might improve substantially the
optimization algorithm, even though in this case, the explicit extraction of an exact gradient
as done in Eqs. (19) and (20) could be more critical. Nevertheless, thanks to the low cost
of the algorithm, an approximate gradient computation by divided finite differences can be
envisaged without particular drawbacks.

Obviously, the efficiency improvement of the numerical solution of the original electro-
static problem obtained with the new initialization procedure may quantitatively depend on
the particular solver used. Thus, present results can only give a qualitative indication. How-
ever, it is reasonable to infer that a more accurate initialization should lead to a substantial
reduction of the computational cost for all numerical solvers.

5. RECONSTRUCTION FROM A CURRENT DENSITY FIELD

For an optimal flow configuration in a wire–plate ESP [3, 5], the optimization procedure
gives a value ofJ from which the operative electrostatic variables must be derived. In this
section, we will show how this can be done.

From Eq. (15) and a givenJ, the charge density field can be easily obtained ifρ0 is
known. However, since in this caseV0 anda are unknown, it is not straightforward to find
a wire-charge density value. An estimate ofρ0 can be obtained in the following way. By
assuming a linear variation ofJ close to the corona region in bothx andz directions and by
interpolating theJ values near the wire, the corona current densityJ0 is found as a linear
function of the wire radiusa. Then, using the approximationJ0 = 2Jphx/πa, a second-
order equation ina is obtained. From the value ofa and using Eqs. (3)–(5), bothρ0 andV0

are estimated.
From the discretization (16) defined in Section 4, with the estimatedρ0 value, a charge

density field is obtained, while the construction of the potential field is carried out using
only Eq. (17). Indeed, starting from a known current field, the errors onEz described in
Section 4 do not appear here. These two fields are then used as initialization for the solution
of Eqs. (1) and (2). The electrostatic governing equations are solved iterating onρ0 as
described in Section 2, but here at each iterationV0 is updated fromρ0 and Jp. More
precisely, for givenρ0 and Jp, a second-order equation in

√
a is obtained by combining

Eqs. (4) and (5). Then,V0 is given by the current–voltage formula, i.e., Eq. (3).
The distribution of the resulting potential field along AD is plotted in Fig. 14a for config-

urationA. This shows that a rather good approximation of the FD field is obtained with a
computation cost equivalent to a direct resolution of the electrostatic problem. However, in
the algorithm for the resolution of Eqs. (1) and (2) the iterative criterion is based onJp; thus,
only little information from the knownJ has been used, and moreover, the wire potential
valueV0 is estimated fromρ0 by a semiempirical formula. In some cases, the reconstruction
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FIG. 14. Potential along AD for (a) configurationA and (b)V0 = 55 kV andJp = 1.33× 10−3 A/m2. Com-
parison between the reference solution and the solutions after the different steps of the reconstruction.

procedure can give less accurate results, as shown in Fig. 14b, in which the potential distri-
bution is plotted for the configuration defined byV0 = 55 kV andJp = 1.33× 10−3 A/m2.
To further improve the algorithm, an optimization can be done on the value ofV0 to obtain
a current density field close to the desired one. With this aim, the following functional is
defined,

I(V̄0) = 1

(Jp)2

∑
i,k

‖ J̄i,k − Ji,k‖2IR2, (21)

whereJ̄ represents the current density field obtained by solving the electrostatic governing
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equations, (1) and (2), with the initialρ andV fields from Eqs. (16) and (17), and̄V0 as
wire-potential value. The corresponding wire radiusā, which is useful to define an initial
ρ0 value, is obtained from Eq. (3) by a Newton algorithm.

A classical univariate minimization is applied onI(V0) with an initial search of the
interval in which the minimum is located, completed by a quadratic interpolation algorithm.

Starting from the values obtained by the initial reconstruction algorithm, which gives
in this caseṼ0 = 43.79 kV andI(Ṽ0) = 27.69 (see also Fig. 14b), after 15 cost function
evaluations a large reduction of the functionalI is obtained withV∗0 = 55.196 kV and
I(V∗0 ) = 5.07× 10−4. Because of better convergence in the solution of Eqs. (1) and (2), the
CPU cost of this minimization is only about four times the cost of the initial reconstruction.
The good behavior of the reconstruction is shown in Fig. 14b, in which the reconstructed
potential is plotted after 11 cost evaluations (I = 3.29× 10−3).

The complete procedure, including the minimization ofI(V0), is more suitable for prac-
tical applications, in which the solution to be reconstructed is obviously not known. In
this case, the accuracy of the reconstructed field can be measured by the reduction of the
functional value.

6. CONCLUSIONS

The numerical computation of the ionic space charge and of the electric field produced
by corona discharge in an electrostatic precipitator has been considered.

An analytical approximation of the current density field has been obtained, which is
divergence free and satisfies the same boundary conditions as the exact field. This analytical
approximation is derived under the additional assumption of irrotationality of the current
density field and is obtained by singularity distributions and elliptic functions, classical
tools used for hydrodynamic problems.

Since the approximated current density field satisfies the exact boundary conditions
of the problem, a homogeneous field can be obtained, which can be parameterized by
the Karhunen–Lo`eve decomposition. The current density field is thus expressed as the
sum of its analytical approximation and a linear combination of the KL functions. We
compared the current density field obtained from a reference numerical solver to those
recovered from the KL decomposition, with only a limited number of modes, for different
configurations. The reference solution was given by a standard finite-difference solver of
the partial difference equations governing the original problem, the accuracy of which was
assessed by comparison with experimental data and by grid independence analysis. It has
been shown that only very few KL modes, typically three or four, are needed to obtain an
accurate reproduction of the reference field. Thus, the proposed parameterization could be
useful in many practical applications, for instance, when the current density field must be
optimized to a certain target (turbulent drag reduction, particle deposition increase). Note
that the volume force experienced by charged particles or by the fluid in an electrostatic
precipitator depends only on the current density field.

Moreover, the analytical approximation of the current density field can be used to obtain
a guess of the ionic space charge and of the electric field. Starting from the knowledge of
the current density field and from an empirical estimate of the wire-charge density value,
the ionic space charge and the electric field can be reconstructed numerically. The same
procedure can be used starting from the KL decomposition ofJ, in which the unknown
coefficients are estimated by an optimization algorithm to obtain a global electric field which
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gives the exact value of the potential at the wire (input of the problem). It has been shown
that the resulting reconstruction of the global electric field is very close to the exact one,
and in many cases it could be considered a satisfactory approximation of the exact solution,
obtained at a negligible computational cost. In all cases, it is significantly more accurate
than the initial guesses based on empirical formulas, which are typically used to initialize
all numerical solvers. Consequently, by employing the proposed reconstruction for the
initialization, the efficiency of the iterative numerical solver of the original problem increases
significantly (up to a factor of 85%) and, hence, the computational cost is substantially
decreased. Even though we obtained these results for a particular solver of the reduced
Maxwell equations, it seems reasonable to extend the validity of our findings to any other
iterative solver, at least from a qualitative viewpoint.

Finally, a procedure has been proposed to reconstruct the solution of the original Maxwell
problem from a given current density field. This is of significance in practical applications
to obtain, for instance, the electric configuration that gives a calculated optimized current
density field. In this case, however, the values of both space charge and potential at the
wire are unknown. An empirical estimate is used as initial guess and the electric and space-
charge fields are reconstructed following the procedure described previously. Then, they are
employed to initialize the numerical algorithm used for the solution of the original problem.
In this procedure, the value of the space charge at the wire is progressively updated and
the convergence criterion is based on the value of the current density at the plate, which
is known. Simultaneously, an optimization algorithm, in which the wire potential is also
progressively updated, is carried out to ensure that the global electrostatic solution obtained
from the proposed procedure corresponds to a current density field as close as possible to
the given one. The accuracy of the reconstruction has been assessed by comparison with
reference direct solutions of the original Maxwell problem for different configurations. The
computational cost is significant, but this reconstruction must be carried out only once,
when the optimumJ field has been obtained.
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