Boundary Layer

As a fluid moves past an object, the molecules of the fluid near the object are disturbed and move
around the object. In fact, the molecules of the fluid right next to the object’s surface stick to it. The
molecules just above the surface are slowed down in their collisions with the molecules sticking to
the surface. These molecules in turn slow down the flow just above them. The farther one moves
away from the surface, the fewer the collisions are affected by the object surface. This creates a thin
layer of fluid near the surface in which the velocity changes from zero at the surface to the free
stream value away from the surface. This layer is usually called “boundary layer” because it occurs
on the boundary of the fluid.

Now, I want to focus on some basilar problems in boundary layer theory.

Boundary laver on an instantaneous accelerated plane

The 2-D equations which control the physic of this problem are:
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After some arrangements one can obtain the following form for the boundary layer equations (for
further details, see some specific books):
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Boundary conditions for the function f are:
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Eg. (2) with boundary conditions (3) has the following analytical solution:
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The numerical description of the problem is therefore controlled by the following equations:
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Here I show some results obtained by the numerical integration of egs. (5):
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Fig.3: Numerical solution, f
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Fig.4: Numerical solution, f’
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Fig.5: Comparison between numerical (blue dots) and

analytical (red) results for function f
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Fig.6: Velocity profiles at different time instants, from Fig.7: Evolution of boundary layer thickness (8) in
blue to red line (5,10,15,sec). time

Boundary laver over a fixed plane

Now, I want to investigate what happens once a fluid at constant velocity flows over a fixed plane
(Blasius boundary layer).
The equations which govern this phenomenon are:
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or, in terms of stream function:
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eq.(2) can be rewritten as:
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The prescribed boundary conditions are:
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The results obtained by the numerical integration of eq. (4), with the boundary conditions given by
(5), are reported below.
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Fig.1: Plot of functions: f (blue line), ' (green), Fig.1: Velocity profiles at different time instants
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Fig.3: Boundary layer thickness, 6, with respect to Fig.4: Shear stress at the wall

axial position
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Fig.5: Visualization of velocity profiles at different axial position (0.5, 1, 1.5, 2, 5, 9.9 meters)

Planar jet

Planar jet is another phenomenon that can be treated using the boundary layer theory.

The basilar equations are:
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With the usual similarity theory, we can rewrite the above equations as:
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The results obtained by the numerical solution of eq.(1) with the boundary conditions given by
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are presented below.
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Fig.1: Results for functions f (blue), f’(green), f*’(red)

Fig.2: Plot of f°
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Fig.3: Evolution of velocity profiles with respect of axial position




