EUROMECH Colloquium 513 on Non-Spherical Particles in Fluid Turbulence April. 6-8, 2011, Udine

Two-way coupled simulation on ellipsoids suspensions in turbulent channel flow

Lihao Zhao \& H. I. Andersson

Dept. of Energy and Process Engineering, NTNU, Norway

Norwegian University of Science and Technology

Content

I. Research Background

II. Strategies and Governing Equations
III. Results
IV. Summary

Norwegian University of Science and Technology

Background

- Ellipsoidal particles suspensions in turbulence is complicated

Animation of fiber suspensions in the channel flow

Background

- Background
- Wood fibres in paper making industry
- Drag reduction in the turbulent channel flow
- Carbon nanotubes
- Approach of current work
- Eulerian-Lagrangian point-particle approach with two-way coupling.
- Motivation of current work
- Investigation on the mechanisms of interaction between ellipsoidal particles and fluid in the turbulent channel flow.

Fig. Physical model of the channel flow

Strategies

- Fluid representation
- Eulerian frame
- Direct numerical simulation
- Particle representation
- Lagrangian point particle approach with two-way coupling
- Force-coupling
- Torque-coupling *
(* Please refer to the presentation given by Dr. Barri
Fri. 09:00-09:20 M. Barri 'New scheme for torque coupling')

Norwegian University of Science and Technology

Eulerian fluid representation

- Incompressible and isothermal Newtonian fluid.
- Frictional Reynolds number: $\operatorname{Re}_{\tau}=\frac{u_{\tau} h}{v}$
- Governing equations (non-dimensional):
- Mass balance $\quad \nabla \cdot \vec{u}=0$
- Momentum balance $\rho\left[\frac{\partial u}{\partial t}+(u \cdot \nabla) u\right]=-\nabla p+\mu \nabla^{2} u+F_{p}$
- Direct numerical simulation (DNS), i.e. turbulence from first principles

Norwegian University of Science and Technology

Lagrangian approach - Characteristic parameters

- Prolate ellipsoidal particles
- a: radius in minor-axis
- b: radius in major-axis

$$
\lambda=\frac{b}{a}
$$

- Lagrangian approach
- Traking the location of each individulal particle
- Finite number of particles

- ~10
- Inertial
- Particle response time
- Smaller than Kolmogorov length
- Point force assumption
- Particle Reynolds number

$$
\operatorname{Re}_{p}=\frac{\left|u_{i}-v_{i}\right| a}{v}<1
$$

Lagrangian approach - Kinematics

Three different coordinate systems:

1. Laboratory system: $[x, y, z]$
2. Co-moving frame: $\left[x ", y^{\prime \prime}, z^{\prime \prime}\right]$
3. Particle frame: $\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$

Norwegian University of Science and Technology

Particle response time

- Ellipsoidal particle response time (by Shapiro and Goldenberg):
- the time required by the particles to respond to changes in the flow field.

$$
\tau_{p}^{+}=\frac{2 \lambda S a^{+^{2}}}{9 \operatorname{Re}_{\tau}} \frac{\ln \left(\lambda+\sqrt{\lambda^{2}-1}\right)}{\sqrt{\lambda^{2}-1}}
$$

- Density ratio: $S=\frac{\rho_{p}}{\rho_{f}}$

Norwegian University of Science and Technology

Hydrodynamic torque - Rotational motions

- The rotational motion in the particle frame is governed by

$$
\begin{aligned}
& I_{x x}^{\prime} \frac{d \omega_{x}^{\prime}}{d t}-\omega_{y}^{\prime} \omega_{z}^{\prime}\left(I_{y y}^{\prime}-I_{z z}^{\prime}\right)=N_{x}^{\prime} \\
& I_{y y}^{\prime} \frac{d \omega_{y}^{\prime}}{d t}-\omega_{z}^{\prime} \omega_{x}^{\prime}\left(I_{z z}^{\prime}-I_{x x}^{\prime}\right)=N_{y}^{\prime} \\
& I_{z z}^{\prime} \frac{d \omega_{z}^{\prime}}{d t}-\omega_{x}^{\prime} \omega_{y}^{\prime}\left(I_{x x}^{\prime}-I_{y y}^{\prime}\right)=N_{z}^{\prime} \\
& I_{x x}^{\prime}=I_{y y}^{\prime}=\frac{\left(1+\lambda^{2}\right) m a^{2}}{5}, \quad I_{z z}^{\prime}=\frac{2 m a^{2}}{5}
\end{aligned}
$$

$$
N_{x}^{\prime}=\frac{16 \pi \mu a^{3} \lambda}{3\left(\beta_{0}+\lambda^{2} \gamma_{0}\right)}\left[\left(1-\lambda^{2}\right) f^{\prime}+\left(1+\lambda^{2}\right)\left(\xi^{\prime}-\omega_{x}^{\prime}\right)\right]
$$

$$
N_{y}^{\prime}=\frac{16 \pi \mu a^{3} \lambda}{3\left(\lambda^{2} \gamma_{0}+\alpha_{0}\right)}\left[\left(\lambda^{2}-1\right) g^{\prime}+\left(\lambda^{2}+1\right)\left(\eta^{\prime}-\omega_{y}^{\prime}\right)\right]
$$

$$
N_{z}^{\prime}=\frac{32 \pi \mu a^{3} \lambda}{3\left(\alpha_{0}+\beta_{0}\right)}\left(\chi^{\prime}-\omega_{z}^{\prime}\right)
$$

where f^{\prime} and g^{\prime} are the fluid rates of strain coefficients $\xi^{\prime}, \eta^{\prime}$, and χ^{\prime} are the fluid rotation rate coefficients

Euler equations
Torque components for an ellipsoid subjected to linear shear under creeping flow by Jeffery 1922

Norwegian University of Science and Technology

Description of rotational motion

- Time evolution of Euler parameters

$$
\left(\begin{array}{c}
\dot{e}_{0} \\
\dot{e}_{1} \\
\dot{e}_{2} \\
\dot{e}_{3}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
e_{0} & -e_{1} & -e_{2} & -e_{3} \\
e_{1} & e_{0} & -e_{3} & e_{2} \\
e_{2} & e_{3} & e_{0} & -e_{1} \\
e_{3} & -e_{2} & e_{1} & e_{0}
\end{array}\right)\left(\begin{array}{c}
0 \\
\omega_{x}^{\prime} \\
\omega_{y}^{\prime} \\
\omega_{z}^{\prime}
\end{array}\right)
$$

- Constraint

$$
e_{0}^{2}+e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=1
$$

Hydrodynamic drag force (Brenner)- Translational motion

- The translational motion in the laboratory frame is governed by

$$
m \frac{d v_{i}}{d t}=f_{i}\left(x_{p}\right)
$$

- The drag force in creeping flow conditions is given by:

$$
f_{i}\left(x_{p}\right)=\mu A^{-1} K_{i j}^{\prime} A\left(u_{j}-v_{j}\right) \quad K_{i j}^{\prime}=\left(\begin{array}{ccc}
K_{x x}^{\prime} & 0 & 0 \\
0 & K_{y y}^{\prime} & 0 \\
0 & 0 & K_{z z}^{\prime}
\end{array}\right)
$$

- Resistance tensor K' is an intrinsic property of the particle. Particle orientation is absorbed in the resistance tensor.
- A is the orthogonal transformation matrix comprised the direction cosines
- NTNU

Norwegian University of Science and Technology

Two-way coupled method (Force-coupling)

- Drag force is the point-force on the particle.

$$
f_{i}\left(x_{p}\right)=\mu A^{-1} K_{i j}^{\prime} A\left(u_{j}-v_{j}\right)
$$

- Volume force \vec{F}_{p} in the momentum equation of fluid:

$$
\rho\left[\frac{\partial u}{\partial t}+(u \cdot \nabla) u\right]=-\nabla p+\mu \nabla^{2} u+F_{p}
$$

Staggered grid system

Computation conditions

- $\mathrm{Re}_{\tau}=360$
- Channel model
- $6 h^{*} 3 h^{*} h\left(x^{*} y^{*} z\right)$
- Particle number 4 million
- Radius a =0.001
- Aspect ratio 3
- Density ratio=557.1
- Translational response time 30

Instantaneous contours

Streamwise velocity contour in YZ plane (With fiber)

Streamwise velocity contour in YZ plane (Without fiber)

Instantaneous contours

Streamwise velocity contour in YZ plane

Streamwise velocity contour in YZ plane (Without fiber)

Norwegian University of Science and Technology

Instantaneous contours

Streamwise drag force (on the particle) contour in YZ plane

Instantaneous contours

Streamwise drag force (on the particle) contour in YZ plane

Norwegian University of Science and Technology

Statistical results

Fig. Comparison of mean streamwise velocity between fiber suspension flow and the flow without particles

Norwegian University of Science and Technology

Statistical results

(b)

Fig. Comparison of streamwise, spanwise and wall-normal fluctuation velocities and Reynolds stresses between fiber suspension flow and the flow without particles

Summary

- The force-coupling scheme was tested with a low aspect ratio case
- We found out the modulations on the turbulence in the channel flow by ellipsoids:
- Drag reduction
- Enhancement in the streamwise turbulence intensity
- Damping effect on the spanwise, wall-normal directions turbulence intensities and also Reynolds stresses

Norwegian University of Science and Technology

Some further directions

Improved physical realism by:

- Two-way coupling: torques *
- Implement additional force terms
- Improved wall-interaction modelling
(* Fri. 09:00-09:20 M. Barri 'New scheme for torque coupling')
■ NTNU
Norwegian University of Science and Technology

Thank you!

Simulation procedure

1. Initial positions and orientations (Euler angles) of ellipsoids and initial velocity conditions for particle velocities and angular velocities are specified.
2. Euler parameters are evaluated.
3. Obtain transformation matrix A.
4. Calculate resistance tensor.
5. Solve equations for translational and rotational motion for calculating the new particle positions and Euler's parameters.
6. Return to step 3 and continue procedure until desired time period is reached.

$$
\begin{equation*}
\mathbf{F}=\mu \mathbf{A}^{t} \mathbf{K}^{\prime} \mathbf{A}(\mathbf{u}-\mathbf{v}) \tag{6}
\end{equation*}
$$

where $\mu=\rho \nu$ is the dynamic viscosity of the fluid. For an ellipse of revolution about the z^{\prime}-axis, the resistance tensor \mathbf{K}^{\prime} is

$$
\mathbf{K}^{\prime}=\left(\begin{array}{ccc}
k_{x x}^{\prime} & 0 & 0 \tag{7}\\
0 & k_{y y}^{\prime} & 0 \\
0 & 0 & k_{z z}^{\prime}
\end{array}\right)
$$

where $k_{x x}^{\prime}, k_{y y}^{\prime}$, and $k_{z z}^{\prime}$ are the components along the x^{\prime}, y^{\prime}, and z^{\prime} axes (principal directions), respectively, and are given as ${ }^{31}$
$k_{x x}^{\prime}=k_{y y}^{\prime}=\frac{16 \pi a\left(\lambda^{2}-1\right)^{3 / 2}}{(2 \lambda-3) \ln \left[\lambda+\left(\lambda^{2}-1\right)^{1 / 2}\right]+\lambda\left(\lambda^{2}-1\right)^{1 / 2}}$,
$k_{z z}^{\prime}=\frac{8 \pi a\left(\lambda^{2}-1\right)^{3 / 2}}{(2 \lambda-1) \ln \left[\lambda+\left(\lambda^{2}-1\right)^{1 / 2}\right]+\lambda\left(\lambda^{2}-1\right)^{1 / 2}}$.

Norwegian University of Science and Technology

Rotation description of fibre

- Relation between Euler angles and Euler parameters

$$
\begin{aligned}
& e_{0}=\cos \frac{\phi+\mu}{2} \cos \frac{\theta}{2} \\
& e_{1}=\cos \frac{\phi-\mu}{2} \sin \frac{\theta}{2} \\
& e_{2}=\sin \frac{\phi-\psi}{2} \sin \frac{\theta}{2} \\
& e_{3}=\sin \frac{\phi+\psi}{2} \cos \frac{\theta}{2}
\end{aligned}
$$

- Constraint

$$
e_{0}^{2}+e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=1
$$

$$
\begin{array}{ll}
x^{\prime}=A x^{\prime \prime} & A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
A_{31} & a_{32} & a_{33}
\end{array}\right) \\
A^{-1} x^{\prime}=A^{-1} A x^{\prime \prime} & \ddots \\
x^{\prime \prime}=A^{-1} x^{\prime} & a_{11}=e_{0}^{2}+e_{1}^{2}-e_{2}^{2}-e_{3}^{2}, \quad a_{12}=2\left(e_{1} e_{2}+e_{0} e_{3}\right), \\
A^{T}=A^{-1} & a_{13}=2\left(e_{1} e_{3}-e_{0} e_{2}\right), \quad a_{21}=2\left(e_{1} e_{2}-e_{0} e_{3}\right), \\
x^{\prime \prime}=A^{T} x^{\prime} & a_{22}=e_{0}^{2}-e_{1}^{2}+e_{2}^{2}-e_{3}^{2}, \quad a_{23}=2\left(e_{2} e_{3}+e_{0} e_{1}\right), \\
& a_{31}=2\left(e_{1} e_{3}+e_{0} e_{2}\right), \quad a_{32}=2\left(e_{2} e_{3}-e_{0} e_{1}\right), \\
& a_{33}=e_{0}^{2}-e_{1}^{2}-e_{2}^{2}+e_{3}^{2} .
\end{array}
$$

- A is the orthogonal transformation matrix comprised the direction cosines

Norwegian University of Science and Technology

- NTNU

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Norwegian University of Science and Technology

- NTNU

Norwegian University of Science and Technology

- NTNU

Norwegian University of Science and Technology

Norwegian University of Science and Technology

