Rotation dynamics of ideal non-spherical particles and extension to field measurements

E. Variano¹, I. Tse¹, <u>G. Bellani²</u>, ¹UC Berkeley, CA ²KTH Mechanics, Sweden

Outline

Part 1 Measuring angular velocity of model particles in the lab

Part 2 Measuring trajectories of real particles in the field

Part1: rotation measurements -Objective-

-Simultaneously measure fluid velocity and rotation of rates of particles of various shapes (spherical and non-spherical) to test in H.I. turbulence tank.

Particles must be refractively matched to water, yet neutrally buoyant

Refractive index matched particles

 $d_p=8 mm$

Material:

Agarose-water solution (99.5%)

Manufacturing: Injection molding

Refractive index matched particles

 $d_p=8 mm$

Material: Agarose-water solution (99.5%)

Manufacturing: Injection molding

Properties: $ho_p = 1.05 \text{ kg/m}^3$

IoR = 1.337

Cal KTH

Measurement technique

Fluid phase In-plane particle slice

6

Stereo PIV

Example velocity field

Rotation measurement

From S-PIV we get velocity measurements within the particles in one plane :

IN THE ENVIRONMENT

10

Rotation measurement

$$\underline{U}_{m} - \underline{U}_{n} =] \times (\underline{X}_{m} - \underline{X}_{n})$$
$$\underline{U}_{m} - \underline{U}_{p} =] \times (\underline{X}_{m} - \underline{X}_{p})$$

3 measured vectors within the particle give:

- 1 measurement of $]_{x}$
- 1 measurement of \overline{r}_v
- 4 measurements of \uparrow_z

Preliminary results in Stationary H.I.T.

Preliminary results in H.I.T. *PDF of* $|\underline{\Omega}|$

Part 2: measuring trajectories of real particles in the field

 $\underline{VOPI} =$

<u>Vo</u>lumetric <u>Particle</u> <u>Imager</u>

LUID

Multi-iris camera

Borescope

Plankton sample

Borescope

Plankton sample

Light delivery

Image collection

3D positioning isachieved using2D image andmultiple-iris camera

Inspired by C.E.Willert and M. Gharib, Exp. Fluids,1992

Particle locations are determined in 3D: (x,y,z) = f(x', y', d)

Calibration is a *fixed property* of the device!

Lagrangian tracking

Cal KTH

A technique to measure large particle rotation and fluid velocity simultaneously has been developed

It can be applied to arbitrarily shaped particles

Preliminary results for particles in Stationary H.I.T. showed significant departure between spheres and ellipsoids

A borescope combined with a multi-iris camera is being developed for field experiments of multi-shape particles particles.

It allows lagrangian tracking that can be applied for nutrient and pollutant dispersion studies

