## Droplets dynamics

 and breakup in turbulence
## Federico Toschi

Euromech colloquium 513
Dynamics of non-spherical particles in fluid turbulence
Udine, Italy (anno 2011)
Where innovation starts

## Aim \& TOC

- Motivations to study particles in turbulence
- Tracers and particles with inertia
- Finite size (non deformable) particles
- Finite size (deformable) droplets
- Rodlike particles (and why?)


## Rain Drops, Cloud Droplets, and CCN

Raind drop size
2 mm


Aerosol particles: Imicron - 0.1 mm

## Tracers

Particles small "enough" can be described as "neutral" tracers.

No modeling needed !!

Equation of motion of tracer is:

$$
\begin{aligned}
& \frac{d \boldsymbol{x}}{d t}\left(t \mid \boldsymbol{x}_{0}, t_{0}\right) \equiv \boldsymbol{u}_{L}\left(t \mid \boldsymbol{x}_{0}, t_{0}\right) \\
& \boldsymbol{u}_{L}\left(t \mid \boldsymbol{x}_{0}, t_{0}\right) \equiv \boldsymbol{u}_{E}\left(\boldsymbol{x}\left(t \mid x_{0}, t_{0}\right), t\right)
\end{aligned}
$$



## Particles with inertia



Light


Neutral


Heavy

$$
\frac{d \boldsymbol{v}(t)}{d t}=-\frac{1}{\tau}(\boldsymbol{v}(t)-\boldsymbol{u}(\boldsymbol{x}(t) ; t))+\beta \frac{D \boldsymbol{u}}{D t}
$$

## All effects of inertia, in a slide...

Preferential concentration
Filtering of tyrbulent flyctuations


Toschi and Bodenschatz. Lagrangian properties of particles in Turbulence.Ann. Rev. Fluid Mech. (2009) vol. 41 pp. 375-404


## iCFDdatabase2



## http://mp0806.cineca.it/icfd.php

## Finite size (non deformable)

- Particles that are large with respect to turbulent scales do have an effective inertia even when neutrally buoyant (e.g. plankton aggregates)
- What is the relations between size-induced and density-induced inertia?
- How to model these effect computationally? $\rho_{f}, v$
- How to validate the computational model ?



## Minimal bibliography

- Maxey MR, Riley JJ. Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 1983;26(4):883-889.
- Gatignol R.The faxén formulae for a rigid particle in an unsteady non- uniform stokes flow. J Mecanique Theorique et Appliqué e 1983; I (2): I43- I60.
- Auton T, Hunt J, Prud'homme M.The force exerted on a body in inviscid unsteady non-uniform rotational flow.J Fluid Mech 1988; I97:24I-257.
- Lovalenti PM, Brady JF.The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small reynolds number.J Fluid Mech 1993;545:56I-605.


## Equation of motion

$$
\begin{aligned}
\frac{d \mathbf{v}}{d t} & =\beta\left[\frac{D \mathbf{u}}{D t}\right]_{V}+\frac{3 \nu \beta}{r_{p}{ }^{2}}\left([\mathbf{u}]_{S}-\mathbf{v}\right) \\
& +\frac{3 \beta}{r_{p}} \int_{t-t_{h}}^{t}\left(\frac{\nu}{\pi(t-\tau)}\right)^{\frac{1}{2}} \frac{d}{d \tau}\left([\mathbf{u}]_{S}-\mathbf{v}\right) d \tau \\
& +c_{R e_{p}} \frac{3 \nu \beta}{r_{p}{ }^{2}}\left([\mathbf{u}]_{S}-\mathbf{v}\right)+\left(1-\frac{3 \rho_{f}}{\rho_{f}+2 \rho_{p}}\right) \mathbf{g}
\end{aligned}
$$

Particle radius $\quad r_{p}$
Particle diameter $d_{p}=2 r_{p}$

$$
R e_{p} \equiv\left|[\mathbf{u}]_{S}-\mathbf{v}\right| d_{p} / \nu \quad \beta \equiv \frac{3 \rho_{f}}{\left(\rho_{f}+2 \rho_{p}\right)}
$$

## PP vs. FC models

 $(\circ)$ and light $(\Delta)$ particles. (b) Same as above for the acceleration flatness $F(a)=a^{4} /\left(a^{2}\right)^{2}$.
Horizontal lines shows the flatness of the fluid acceleration $F\left(a_{f}\right)$ and the flatness value for Gaussian distribution $F(a)=3$. Data from simulations at $R e_{\lambda}=75$.

Calzavarini et al.Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces.J Fluid Mech (2009) vol. 630 pp. 179

## Large "pointwise" particles: flatness of acceleration



## Finite size deformable droplets

- Physics of finite size particles plus surface tension
- Transfer of energy from fluid to elastic modes (and viceversa)
- How is turbulence affected by the presence of droplets?
- How do properties of (deformable) droplets differ from rigid droplets ?


## Dimensionless numbers

- Turbulence
- Inertial force
- Surface tension force
- Weber number

$$
\begin{aligned}
& R e=\frac{u^{\prime} L}{\nu} \\
& R e_{d}=\frac{u_{d} d}{\nu}
\end{aligned}
$$

$$
C a=\frac{\mu u_{d}}{\sigma}
$$

$$
W e=\frac{\rho u_{d}^{2} d}{\sigma}
$$

J.O. Hinze,A.I.Ch.E, (I955)

## Hinze 1955

$$
W e=\frac{\rho u_{d}^{2} d}{\sigma}
$$

K4I

$$
u_{d}^{2} \sim d^{2 / 3} \varepsilon^{2 / 3}
$$



Fig. 6. Maximum drop size as a function of the energy input according to experimental data by Clay.

$$
d_{\max }=0.75\left(\frac{\rho}{\sigma}\right)^{-3 / 5} \varepsilon^{-2 / 5}
$$

$\mathrm{d}>\mathrm{d}_{\text {max }}$ : Droplet breaks $\mathrm{d}<\mathrm{d}_{\text {max }}$ : Droplet does not break
J.O. Hinze,A.I.Ch.E, (I955)

Numerical approach

## Lattice Boltzmann Method (LBM)

We use D3Q19 BGK LB model

$$
f_{\alpha}\left(x+e_{\alpha}, t+1\right)=f_{\alpha}(x, t)-\frac{f_{\alpha}(x, t)-f_{\alpha}^{(e q)}(x, t)}{\tau}
$$

with multicomponent Shan-Chen


Technique inspired to the continuum Boltzmann equation

$$
f \equiv f(x, v, t)
$$

$$
\partial_{t} f+(v \cdot \nabla) f=\Omega-(F \cdot \nabla) f
$$

## LBM: multicomponent SC

$$
\begin{aligned}
& f_{\alpha}^{\beta}\left(\mathbf{x}+\mathbf{c}_{\alpha}, t+1\right)=f_{\alpha}^{\beta}(\mathbf{x}, t)-\frac{1}{\tau_{\beta}}\left[f_{\alpha}^{\beta}(\mathbf{x}, t)-f_{\alpha}^{e q, \beta}(\mathbf{x}, t)\right] \\
& \mathbf{u}^{\beta}(\mathbf{x}, t)=\mathbf{u}^{\beta}(\mathbf{x}, t)+\frac{\tau \mathbf{F}(\mathbf{x}, t)}{\rho^{\beta}} \quad \begin{array}{l}
\alpha=\{0, \ldots, 18\} \\
c_{s}^{2}=1 / 3
\end{array} \\
& \mathbf{F}^{\alpha \beta}=-G \rho^{\alpha}(\mathbf{x}) \cdot \sum_{\gamma} \rho^{\beta}\left(\mathbf{x}+\mathbf{e}_{\gamma}\right)
\end{aligned}
$$

$$
\rho=\sum_{\beta} \rho^{\beta} \quad \rho u=\sum_{\beta} \rho^{\beta} u^{\beta}
$$

Shan and Chen. Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components. Phys. Rev. E 47, I8I5 (1993).

## Convincing LBM to go turbulent



$$
\begin{aligned}
f_{x} & =\sum_{k \leq \sqrt{2}} f_{0}\left[\sin \left(k_{y} y+\phi_{k}^{2}\right)+\sin \left(k_{z} z+\phi_{k}^{3}\right)\right] \\
f_{y} & =\sum_{k \leq \sqrt{2}} f_{0}\left[\sin \left(k_{x} x+\phi_{k}^{1}\right)+\sin \left(k_{z} z+\phi_{k}^{3}\right)\right] \\
f_{z} & =\sum_{k \leq \sqrt{2}} f_{0}\left[\sin \left(k_{x} x+\phi_{k}^{1}\right)+\sin \left(k_{y} y+\phi_{k}^{2}\right)\right]
\end{aligned}
$$

Forcing: Large scale forcing in first two Fourier modes

$$
\begin{aligned}
N & =512^{3} \\
\nu & =5 \times 10^{-3} \\
\lambda & \approx 13.89 l u \\
\eta & \approx 6 l u \\
\sigma & \approx 0.028 \\
R e_{\lambda} & \approx 29.13
\end{aligned}
$$

Random phases generated from
Ornstein-Uhlenbeck process

## LBM: Energy and enstrophy



Results

Droplet breakup in turbulence

## Towards a stationary state...



## Droplet radius vs. time



## Droplet deformation



Volume V


$$
S / S_{0}
$$

$$
\begin{aligned}
& S=4 \pi R^{2} \\
& V=\frac{4}{3} \pi R^{3}
\end{aligned}
$$

## Deformation, dissipation and breakups

Time series of dississipation and $\mathrm{s} / \mathrm{s}_{0}$


## Rodlike particles (why?)



## Rodlike particles

$$
\begin{aligned}
\mathcal{A}_{i j} & =\partial_{i} v_{j} \\
\Omega_{i j} & =\frac{1}{2}\left(\partial_{i} v_{j}-\partial_{j} v_{i}\right) \\
\mathcal{S}_{i j} & =\frac{1}{2}\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)
\end{aligned}
$$



$$
\dot{\boldsymbol{p}}=\boldsymbol{\Omega} \cdot \boldsymbol{p}+\frac{r^{2}-1}{r^{2}+1}[\boldsymbol{S} \cdot \boldsymbol{p}-\boldsymbol{p} \boldsymbol{p} \cdot \boldsymbol{S} \cdot \boldsymbol{p}]
$$

A priori rod evolution


## Pdf rotation rate



## The end.



