

Euromech Colloquium and 3rd SIG43 Workshop: Dynamics of non-spherical particles in fluid turbulence, Udine, Italy, April 6th - 8th, 2011

Characteristics of Fibre Suspensions in a Turbulent Pipe Flow

Stella Dearing*, Cristian Marchioli, Alfredo Soldati

Dipartimento di Energetica e Macchine, Università di Udine, Italy

Inertial fibres suspended in turbulent flows are commonly encountered industry

•Pulp and paper processing

•Controlling rheological behaviour and fibre orientation distribution crucial to optimise operations

Furniture Industry

•Pneumatic transport of fibres

Nappy Fabrication

•Fluff , cellulose fibres, make up 60% of nappy material. Uniform distribution is highly desirable for increased absorption

•Fibres as an alternative to polymers as a DRA?

•Examples include the TAPs, medical application, firehouse •Fibres provide more modest reductions but improved shear degradation and filterability

Experimental data is required to validate simulation assumptions. Provide industry with practical correlations for sizing of industry equipment (*aim not to oversize*)

Fibre suspensions have complicated rheological properties that are quite different than carrier fluid even at low mass fractions The physical properties depend on particle spatial distribution and orientation

- Fibres rotate/align when subject to velocity gradient –hydrodynamic drag of fibres is f(rotational motion) → controls translational motion
- 2. Strong turbulence tends to randomise orientation (BERNSTEIN & SHAPIRO)
- 3. BUT coherent structures → interact with fibres causing segregation and accumulation (MARCHIOLI et al. PHYS. FLUIDS. 2010)
- 4. Where **flocculation** occurs (network) an momentum adding/momentum reduce effect can occur

→Size(s) of fibre relative to turbulent structures

Set-up: Pipe Circuit measurements

Experimental Parameters

Additive	Length	Diameter	Density
Wood	~1mm-0.01mm	20µm	0.763
Nylon	~.3mm	24µm	1.14
XG	~1000nm	2.6nm	0.9
Fibre type	Mass fraction, φ, %	nL ³	
Nylon	0.01	0.018	
	0.02	0.035	
	0.05	0.089	
	0.1	0.177	
	0.5	0.890	
	1	1.78	
Wood	0.01	0.073	
	0.05	0.363	
	0.1	0.725	
	0.5	3.633	
	1	7.298	
Xanthan Gum	0.05	0.002	
	0.1	0.004	
	0.15	0.007	

Pressure drop results: wood

Pressure drop results: Nylon

Set-up: Pipe Circuit measurements

Software development: Phase Discrimination

- 1. Preprocessing
- 2. Object Identification
- Discriminate objects based on length and aspect ratio
- 4. Ellipse fitting

$$F(x,z) = ax^{2} + bxz + cz^{2} + dx + ez + f = 0$$

Software development: Artificial Image

Artificial images

$$I_o(z) = q \, exp\left[-\frac{z^2}{\frac{1}{8}\Delta z_o^2}\right] \qquad I(x') = I_o exp\left[\frac{-(x'-x'_o)^2}{\frac{1}{8}d_\tau^2}\right]$$

□Extension of intensity distribution of a spherical particle

Intensity is gaussian along width of fibre
 Does not change along length until focal points

$$I(x',y') = I_o exp\left[\frac{-(x'-x'_f)^2 - (y'-y'_f)^2}{\frac{1}{8}d_{\tau}^2}\right]$$

Recreate experimental conditions

Create image larger than actual image
Crop to size
Includes partially captured fibres as expected a laser sheet

Software development: Statistics calculation and validation

Test Cases:

- 1. Aspect ratio 20, no s/w orientation and no intersecting fibres: 2 % underprediction
- Aspect ratio 20 with no s/w orientation but intersecting fibres : 5 % underprediction (requires higher number of images for convergance)
- Aspect ratio 20 with s/w orientation and intersecting fibres 25 % overprediction for random distribution; 15% for aligned distribution

Mean orientations $< cos(\theta_x) >= \frac{1}{N_{p,i}} \Sigma_{k=1}^{N_{p,i}} cos(\theta_x)$

Normalised number density

Projected fibre onto plane
→ over prediction
compared to 3D case by
20%

Results: Normalised mean number density

Results: Mean orientations

Results → mean orientation

Green triangles \rightarrow DNS data (Marchioli et al., 2010) at Re = 9000, Red squares \rightarrow experimental data Re = 8043

Projected fibre onto plane \rightarrow random distribution tends to 0.64 vs 0.5

- No drag reduction for macroscopic fibre additives (pressure drop & PIV results)
 - For more detailed information on decomposed flow field we are in the process of doing error analysis of phase discrimination PIV algorithm using a DNS flow field
- Dimensional arguments back this up
- Mean orientation and number density data qualitatively agrees with DNS data → promising.
 - Results for smaller Re_{τ}
 - Analysis of DNS results
- How to convert number densities to concentrations. This is a an important issue when using PIV for non spherical particle