Transport Effects in Cellulose Fiber Beds Using Magnetic Resonance Imaging

R L Powell

David M. Lavenson, E.J. Tozzi, M.J. McCarthy

University of California, Davis

Outline

- Biomass Processing
- MRI
- Diffusion & Adsorption
- Fluid Mechanics & Rheology
- Conclusions

Some Issues

• High cellulose content implies poor mixing of enzyme and cellulose during hydrolysis

Goals

- Use diffusing molecules with similar adsorption behavior and molecular weight as enzymes
- Measure diffusion in various cellulosic fiber beds

1T Aspect permanent magnet shown above; cartoon of sample holder and magnet below.

- Measure yield stress
- Use <u>magnetic resonance</u> <u>imaging (MRI)</u>

MRI

Food Science & Technology

EUROMECH 2011

Fiber type	Length (LW)	Length (NW)	Width (LW)
a) Solka-Floc 200EZ	0.207 mm	0.183 mm	26.4 µm
b) Solka-Floc C100	0.349 mm	0.273 mm	31.7 µm
c) NREL PCS	-	-	-

short ----

medium 🗕

Average length of fibers used (LW = Length Weighted)

1 mm Chemical Engineering & Materials Science EUROMECH 2011

Images and Analysis

- Images taken at various time points
- <u>Concentrations determined from calibration relationship</u>
- Crank-Nicolson finite difference numerical solution used to match experimental and numerical profiles

Concentration Profiles

Diffusion Model Summary

Fiber	C100		200EZ		PCS		Bulk, D_0
	Exp.	Model	Exp.	Model	Exp.	Model	
$D_{MnCl_2}, m^2 s^{-1}$	$4.39 \mathrm{x} 10^{-12}$	2.79×10^{-12}	$4.37 \mathrm{x} 10^{-11}$	2.56×10^{-11}	-	-	1.26×10^{-9}
$D_{BSA}, m^2 s^{-1}$	7.07×10^{-11}	6.10×10^{-11}	5.98×10^{-11}	5.81×10^{-11}	5.05×10^{-11}	5.18×10^{-11}	7.00×10^{-11}

Rheology

- Recent biomass literature
 - Non-Newtonian behavior
 - Shear-thinning and a yield stress
 - Understand rheology of suspensions during biomass digestion (enzymatic hydrolysis)
- MRI Flow Imaging
 - Effective in-line rheometer for rheological measurements

Velocity Measurements via MRI

- 1T Aspect permanent magnet based spectrometer
 - 30 G/cm peak gradient strength
 - 38x36 mm cylindrical coil
 - 2.08 m long, 19mm diameter pipe
- Pulsed gradient spin echo sequence with velocity encoding

Chemical Engineering & Materials Science Food Science & Technology EUROMECH 2011

- Resolve settling, asymmetry, and plug
 - solids su
- Simultar pressure

e e pipe

0.5% Hardwood Pulp Suspension

Viscosity Measurement

Yield Stress

Chemical Engineering & Materials Science Food Science & Technology EUROMECH 2011

r/R

0

Summary of Results

Summary of Results

Fiber Type	Length	σ_0 Range	C _m	а	b	Reference
	Dist.	(Pa)	Range			
	(mm)		(%)			
Semi-	1.94–2.51	0.3 –	0.004 -	99.7	2.45	(Bennington et al.
bleached pulp		2.0×10^4	0.4			1990)
Aspen &	0.94–1.43	70 - 500	2 - 6	2.8	2.93	(Dalpke &
Birch pulp						Kerekes 2005)
PCS	0.001-2.0	1.0 –	5 - 30	1.4×10^{-4}	5.27	(Stickel et al. 2009)
		5.0×10^4				
PCS	0.001-3.0	0.1 -	5-30	3.1×10^{-4}	5.37	(Knutsen &
		1.0×10^4				Liberatore 2009)
TiO ₂	$2x10^{-4}$	10-100	50 - 70	1.0×10^{-10}	6.55	(Nguyen et al.
("spherical")						2006)
PCS (MRI)	0.349	1.0 - 20	7 – 15	1.9×10^{-3}	4.00	
C100 (MRI)	0.001-2.0	8.0 - 60	5 - 10	5.0×10^{-4}	4.81	

Conclusions

- Simple diffusion-adsorption model agrees well with experimental results
- Adsorption significantly hinders diffusion
 - Strong dependence on adsorption (MnCl₂)
- No measured adsorption of BSA on cellulose fibers
- Yield stress measured for PCS

