On the development of fibre orientation in jet-to-wire-impingement

Heidi Niskanen & Jari Hämäläinen EUROMECH COLLOQUIUM 513:

Dynamics of non-spherical particles in fluid turbulence

6-8 April, 2011, Udine, Italy

Outline

- Characters of fibre suspension flows in papermaking
 ✓ Fibre orientation
- Modelling approach and model set-up for jet-to-wire impingement
- Results
- Summary

Fibre suspension flows in papermaking (1)

- Papermaking process contains complex flow phenomena
 - ✓ Multi-phase flow with fibre-fluid and fibre-fibre interactions
 - ✓ Turbulence
 - Sudden changes in shear strain rate, velocity and acceleration

- Fluid dynamics in the wet-end and in the forming section determines largely the properties of the paper
 - ✓ Headbox
 - ✓ Wire-section

Fibre suspension flows in papermaking (2)

By courtesy of Metso Paper.

On the development of fibre orientation in jet-to-wire-impingement 7.4.2011 **4**

Fibre orientation

- Misalignment of the fibre relative to the mean flow (or machine) direction
- Important factor in papermaking process
 - ✓ Affects dimensional stability, strength properties,...
 - Preferred orientation distribution depends on the purpose of the use of the paper
- Can be controlled with headbox fluid dynamics

Modelling approach (1)

• Fibre orientation determined with vector \vec{p} using parametrisation

$$\vec{p} = \begin{pmatrix} \cos\theta\sin\phi\\ \sin\theta\sin\phi\\ \cos\phi \end{pmatrix} \quad \text{where}(\phi,\theta) \text{ polar and azimuthal angles} \\ \text{determining the orientation on a unit sphere} \\ \text{i.e.} \quad 0 < \theta < 2\pi \text{ and } 0 < \phi < \pi$$

Due to the singularity at the poles (φ = 0, φ = π) investigation of the orientation reduced in plane,
 i.e. φ = π/2

Modelling approach (2)

- Model based on assumption of probability distribution $\Psi(\mathbf{r,p,t})$
- Evolution of $\Psi(\mathbf{r},\mathbf{p},t)$ modelled with diffusion-convection equation

$$\frac{\partial \Psi}{\partial t} - D_t \Delta \Psi - D_r \Delta_{S^2} \Psi + \nabla \cdot (\vec{v} \Psi) + \nabla_{S^2} \cdot (\vec{w} \Psi) = 0,$$

where	D_t, D_r = diffusion coefficients		
	\vec{v} = fluid velocity		
	$\vec{w} = \omega \vec{p} + \lambda \varepsilon \vec{p} - \lambda < \vec{p},$	$\mathcal{E}\vec{p} > \vec{p}$	= rotational velocity of the fibre
with	1 _		
	$\varepsilon = \frac{1}{2} \left(\nabla \vec{v} + (\nabla \vec{v})^T \right)$	= she	ear strain rate
	$\omega = \frac{1}{2} (\nabla \vec{v} - (\nabla \vec{v})^T)$	= voi	ticity
	2		

Modelling approach (3)

Planar reduction and differential geometry —

$$\vec{w} = w_1 \partial_{\theta} + w_2 \partial_{\phi}$$
$$w_1 = -\sin(2\theta)\varepsilon_{11} + \cos(2\theta)\varepsilon_{12} - \omega_{12}$$
$$w_2 = 0$$

• FEM solver with velocity profiles imported from ANSYS CFX 12.1

Modelling approach (4)

- Fixed jet velocity ~28,7 m/s
 - ✓ 3 different J/W ratios
 - J/W=0.9 -> wire velocity ~31,9 m/s
 - J/W=1.0 -> wire velocity ~28,7 m/s
 - J/W=1.1 -> wire velocity 26,1 m/s
- Sink term at the wire to consider the water removal defined as

Results: Flow field (1)

Results: Flow field (2)

Results: Flow field (3)

Velocity perpendicular to the mean flow

Results: Flow field (4)

.011 **13**

Results: Fibre orientation distribution

14

Summary

- Fibre orientation probability at the forming section
 - ✓ Probability distribution approach with diffusion-convection equation and rotation of the fibre determined from the flow field
 - Planar reduction due to the singularity
- Jet-to-wire speed difference affect the orientation distribution
 - \checkmark Strongest orientation with biggest wire velocity

Thank you for your attention!

