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Drag reduction by long-chain hydrocarbon polymer

Trans-Alaska Pipeline System (crude oil)

I Length: 800 miles

I Makes use of Toms effect (1948)

I Throughput without DR: 1.44 million barrels per day

I Throughput with DR: 2.13 million barrels per day

www.alyeska-pipe.com
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Known features of polymeric/fibrous drag-reduced
turbulent flows

I Increased spacing and coarsening of streamwise streaks

I Enhanced streamwise turbulence intensity

I Reduced spanwise and wall-normal turbulence intensities

I Reduced Reynolds shear stress

I Parallel shift of log-law in LDR, increase of its slope in HDR

I Damping of turbulence small scales

I Reduced streamwise vorticity fluctuations

Streaks at z+ = 7.5

Newtonian flow Drag-reduced flow
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Previous works on fiber-induced drag reduction (examples)

1. Rheological studies
I Jeffery (1922): ellipsoidal particle in creeping flow
I Batchelor (1970): stress in particle suspensions
I Brenner (1974): rheology of dilute Brownian fiber suspensions

2. Experimental study
I Paschkewitz et al. (2005): ZPG boundary layer

3. Numerical studies
I den Toonder et al. (1997): pipe flow, simplifies model
I Manhart (2003): channel flow, one-way coupled, Monte-Carlo
I Paschkewitz et al. (2004): channel flow, closure model
I Paschkewitz et al. (2005): ZPG boundary layer, closure model
I Gillissen et al. (2008): channel flow, closure model and F-P eq.

• Not yet been done: direct Lagrangian simulation at high Pe in a
big channel.
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Fiber geometry and assumptions

I Fiber geometry: prolate spheroid

I Orientation: unit axial vector n

I Aspect ratio: r = L/D (r →∞ for slender fibers)

I A1 L << η

I A2 ρp = ρf

I A3 Dilute suspension

n

z

y

x
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Carrier flow field

I Above assumptions ⇒ effect via non-Newtonian stress

I Incompressible non-Newtonian Navier-Stokes equations:

∇ ·U = 0

ρ
DU

Dt
= −∇p + ∇ ·

(
τ N + τ NN

)
τ N = 2µD Newtonian stress tensor

τ NN non-Newtonian stress tensor
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Non-Newtonian stress tensor

I Non-Newtonian stress depends on the orientation distribution
of fibers (Brenner, 1974):

τ NN = 2µ0D + µ11 (D : 〈nn〉) + µ2D : 〈nnnn〉

+ 2µ3 (〈nn〉 ·D + D · 〈nn〉) + 2µ4Dr (3 〈nn〉 − 1)

I Moments of the orientation distribution function:

〈· · · 〉 =
{

S

· · · Ψ (n) dS(n)

I µi = µi (µ, φ, r): material coefficients

I Dr : Brownian diffusivity
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Fiber orientation

I Fiber orientation distribution due to

1. Carrier flow field
2. Brownian motion

I Fokker-Planck equation:

DΨ

Dt
=
∂Ψ

∂t
+ U ·∇Ψ = −∇n · (Ψṅ) + ∆n (Dr Ψ) ,

ṅ = Ω · n + κ (D · n−D : nnn) · · · Jeffery eq.,

D = 1
2 (∇U + U∇) · · · strain-rate,

Ω = 1
2 (∇U−U∇) · · · rotation-rate.

I High-dimensional problem!
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Solution algorithm

DNS solver Eulerianaak

Coupling aaaaaaaaaa

Monte-Carlo solver Lagrangian

?
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D,Ω τ NN

Interpolation
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DNS solver (MGLET)

I 3D unsteady incompressible Navier-Stokes equations

I Based on the projection method

I Finite volume method for spatial discretization

I Third-order Runge-Kutta scheme for time integration

I SIP iterative solver for the Poisson equation

I Cartesian non-equidistant grid

I Staggered arrangement of variables
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Monte-Carlo solver

I Ensemble of Nf samples

I i-th sample is a stochastic process:

dni = A (ni , t) dt + B (ni , t) dWi

A (ni , t) = Ω · ni + κ (D · ni −D : ninini ) ,

B (ni , t) =
√

2Dr ,

dWi increment of a 3D Wiener process.

I Monte-Carlo integration using Nf samples:

〈nn〉 ≈ 1

Nf

Nf∑
i=1

nini , 〈nnnn〉 ≈ 1

Nf

Nf∑
i=1

nininini
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Coupling

I DNS solver → Monte-Carlo solver
I D and Ω in Eulerian frame computed using fourth-order

differentiation
I D and Ω transferred from Eulerian to Lagrangian frame using

third-order interpolation

I Monte-Carlo solver → DNS solver
I τ NN from Lagrangian to Eulerian frame by cell averaging

τ NN = 1
Nc

Nc∑
i=1

τ NN
i
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Solution algorithm

DNS solver Eulerianaak

Coupling aaaaaaaaaa

Monte-Carlo solver Lagrangian

?
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?

D,Ω τ NN

Interpolation
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Simulation parameters

I Turbulent channel flow at Reτ = 180

I Concentration parameter nL3 = 18

I Fiber aspect ratio r = 100

I Rotary Péclet number: Per = Ub/(hDr ) = 1000

I Number of Lagrangian paths: 6.4× 107

I Number of sampling fibers per Lagrangian path: 100

I Total number of fibers: 6.4× 109

I Number of processors: 128 on SGI-Altix

I About 24 CPU seconds per time step

I Computational domain and grid:

Lx Ly Lz Nx Ny Nz ∆x+ ∆y+ ∆z+
min

3πh 2πh 2h 128 128 128 13.25 8.84 0.675
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Mean velocity profile
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Turbulence intensities and Lumley anisotropy map
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Shear stress balance in wall-normal direction

µ
d 〈U〉
dz

− ρ 〈uw〉+
〈
τNN
xz

〉
= τw +

d 〈p〉
dx

z

DR = 16%, DRhyb = 18.5%, DRIBOF = 13.4%
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Summary

I Developing a two-way coupled algorithm for direct simulation
of turbulent drag reduction by rigid fibers

I Requires no closure model

I DNS of a drag-reduced turbulent channel flow at Reτ = 180

I Predicted DR = 16% lies between the predictions of hybrid
and IBOF closure models
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Thanks for your attention.
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