Orientation, Distribution and Deposition

of Inertial Fibers

in Turbulent ChanneL FLow

C. Marchioli, M. Fantoni and A. Soldati

Dipartimento di Energetica e Macchine \&

Centro Interdipartimentale di Fluidodinamica e Idraulica, Università di Udine

1. Pulp and paper making Controlling the rheological behavior and the orientation distribution of fibers is crucial to optimize production operations

Aim of this Study

In all of these applications, fibers are dispersed in a turbulent flow field within confined geometries.

A thorough physical understanding_of fiber

 dispersion in internal flows is still missing (few studies available, lack of systematic investigations).Our study aims at providing quantitative results on fiber distribution, orientation, translation and rotation to fill up the physical picture of the problem.

The focus is on the influence of wall turbulence on the processes which govern fiber dispersion.

This influence is investigated for fibers with different elongation and inertia dispersed in channel flow.

Methodology - Carrier Ffuid

Pseudo-Spectral method: 128×128 Fourier modes in x and y, 129 Chebyshev modes in z.

- Examples: flow of air at $1.8 \mathrm{~m} / \mathrm{s}$ in a 4 cm high channel flow of water at $3.8 \mathrm{~m} / \mathrm{s}$ in a 0.5 cm high channel

Methodology - Fibers

Fibers are modelled as prolate ellipsoidal particles.

Lagrangian particle tracking.

Simplifying assumptions: dilute flow, one-way coupling, Stokes flow (Rep<1), pointwise particles (particle size is smaller than the smallest flow scale).

Periodicity in x ed y, elastic rebound at the wall and conservation of angular momentum.

200,000 fibers tracked, random initial position and orientation, linear and angular velocities equal to those of the fluid at fiber's location.

Methodology - Fiber Kinematics

Kinematics: described by (1) position of the fiber center of mass and (2) fiber orientation.

$\bigcirc \boldsymbol{X}_{\boldsymbol{G},} \boldsymbol{Y}_{\boldsymbol{G},} \boldsymbol{z}_{\boldsymbol{G}}$

- $\mathbf{3}$ frames of reference (to define orientation)
- Euler angles: $\boldsymbol{\varphi}, \boldsymbol{\Psi}, \boldsymbol{\theta}$ (singularity problems)
- Euler parameters: $e_{0}, e_{1}, e_{2}, e_{3}$

$$
e_{0}=\cos \left[\frac{1}{2}(\psi+\varphi)\right] \cos \left(\frac{\theta}{2}\right) \quad, \ldots
$$

- Rotation matrix: $\mathbf{x}^{\prime}=R_{E u l} \mathbf{x}^{\prime \prime}$

$$
R_{e u l}=\left[\begin{array}{ccc}
e_{0}^{2}+e_{1}^{2}-e_{2}^{2}-e_{3}^{2} & 2\left(e_{1} e_{2}+e_{0} e_{3}\right) & 2\left(e_{1} e_{3}-e_{0} e_{2}\right) \\
2\left(e_{1} e_{2}-e_{0} e_{3}\right) & e_{0}^{2}-e_{1}^{2}+e_{2}^{2}-e_{3}^{2} & 2\left(e_{2} e_{3}+e_{0} e_{1}\right) \\
2\left(e_{1} e_{3}+e_{0} e_{2}\right) & 2\left(e_{2} e_{3}-e_{0} e_{1}\right) & e_{0}^{2}-e_{1}^{2}-e_{2}^{2}+e_{3}^{2}
\end{array}\right]
$$

Methodology - Fiber Dynamics

Rotational dynamics: Euler equations with J effery moments.

- Euler Equations: $\quad\left\{\begin{array}{l}I_{x^{\prime} x^{\prime}} \dot{\omega}_{x^{\prime}}+\omega_{y^{\prime}} \omega_{z^{\prime}}\left(I_{z^{\prime} z^{\prime}}-I_{y^{\prime} y^{\prime}}\right)=M_{x^{\prime}}^{e s t} \\ I_{y^{\prime} y^{\prime}} \dot{\omega}_{y^{\prime}}+\omega_{x^{\prime}} \omega_{z^{\prime}}\left(I_{z^{\prime} z^{\prime}}-I_{x^{\prime} x^{\prime}}\right)=M_{y^{\prime}}^{e s t} \\ \text { (2nd cardinal law) } \\ I_{z^{\prime} z^{\prime}} \dot{\omega}_{z^{\prime}}+\omega_{x^{\prime}} \omega_{y^{\prime}}\left(I_{y^{\prime} y^{\prime}}-I_{x^{\prime} x^{\prime}}\right)=M_{z^{\prime}}^{\text {est }}\end{array} \quad\right.$ (in the particle
- Jeffery moments: $\quad M_{x^{\prime}}^{\text {Jeff }}=\frac{16 \pi \mu a^{3} \lambda}{3\left(\beta_{0}+\lambda^{2} \gamma_{0}\right)}\left[\left(1-\lambda^{2}\right) f^{\prime}+\left(1+\lambda^{2}\right)\left(\xi^{\prime}-\omega_{x^{\prime}}\right)\right]$
(Jeffery, 1922)

$$
\text { Aspect Ratio } \quad \lambda=\frac{b}{a}
$$

- Hence:

Euler equations

$$
\begin{aligned}
& \text { with Jeffery } \\
& \text { couples }
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \iint(\ldots) d t d t \Rightarrow \begin{array}{c}
\mathbf{e}_{\mathbf{o}}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{\mathbf{3}} \\
\text { (Euler parameters) }
\end{array} \\
R_{\text {eul }}=R_{\text {eul }}\left(e_{0}, e_{1}, e_{2}, e_{3}\right)
\end{gathered}
$$

Methodology - Fiber Dynamics

Translational Dynamics: hydrodynamic resistance (Brenner, 1963)

- First cardinal law: $\quad m_{P} \frac{d \mathbf{v}}{d t}=\sum_{i} \mathbf{F}_{i}=\mathbf{F}_{d r a g} \quad$ (inertia and drag only!!)
- Brenner's law: (form drag and skin drag)

$$
\mathbf{F}_{d r a g}^{\prime}=\left.\mu \pi a\right|_{\uparrow} ^{\overline{\overline{\mathbf{K}}^{\prime}}}\left(\mathbf{u}^{\prime}-\mathbf{v}^{\prime}\right) \quad \text { (in the fiber frame) }
$$

Resistance Tensor

- In the inertial (Eulerian) frame:

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{u}^{\prime}=R_{e u l} \mathbf{u} \\
\left.\begin{array}{|l}
\overline{\overline{\mathbf{K}}}_{(\varphi, \theta, \psi)}=R_{e u l}^{T} \overline{\overline{\mathbf{K}}}^{\prime} R_{e u l}
\end{array}\right\} \Rightarrow \mathbf{F}_{d r a g}=\mu \pi a \overline{\overline{\mathbf{K}}}_{(\varphi, \theta, \psi)}(\mathbf{u}-\mathbf{v})
\end{array} \\
& \left\{\begin{array}{l}
m_{P} \frac{d \mathbf{v}}{d t}=\mu \pi a \overline{\overline{\mathbf{K}}}_{(\varphi, \theta, \psi)}(\mathbf{u}-\mathbf{v}) \\
\frac{d \mathbf{x}_{(G)}}{d}=\mathbf{v}
\end{array} \Rightarrow \mathbf{v}(t) \quad \mathbf{x}_{G}(t)\right. \\
& \text { (via numerical } \\
& \text { integration) } \\
& \text { Once fiber orientation is known, fiber } \\
& \text { translational motion can be computed! }
\end{aligned}
$$

Relevant Parameters and Summary of the Simulations

The physics of turbulent fiber dispersdion is determined by a small set of parameters

- Aspect ratio: $\lambda=\frac{b}{a} \quad$ (chosen values: $\lambda=1.001,3,10,50$)
- Stokes number: $\tau^{+}=\frac{\tau_{P}}{\tau_{F}}$ (chosen values: $\tau^{+}=1,5,30,100$)

○ $\tau^{+} \gg 1$: large inertia ("stones")
○ $\boldsymbol{\tau}^{+} \ll 1$: small inertia (tracers)
○ $\quad \boldsymbol{\tau}^{+} \boldsymbol{\sim}$: preferential (selective) response to flow structures

- Specific density: $S=\frac{\rho_{P}}{\rho_{F}}$

"Cartoon" of fiber 's elongation

$\lambda=1.001$ (spherical particle)

$$
\lambda=3
$$

Results - INon-Homogeneity of Fiber PreferentialDistribution

Front view: fibers accumulate in the near-wall region due to turbophoresis

Sample animation for $\tau^{+}=30, \lambda=50$ fibers (cross-section)

Results - Fiber Accumulation in the Near-Wall Region

I nstantaneous wall-normal fiber number density distribution

$\tau^{+}=30, \mathrm{t}^{+}=1056$

The near-wall behavior of particle concentration is strongly influenced by $\boldsymbol{\lambda}$.

The influence of λ is not monotonic and depends on the Stokes number.

Results - $\mathcal{N o n - H o m o g e n e i t y ~ o f ~}$ Fiber PreferentialDistribution

Top view: fibers segregate in streaks which superpose to fluid low-speed streaks

Results - Once in the \mathcal{N} ear-Wall Region...

- Fibers segregate into streaks which superpose to the fluid low-speed velocity streaks
- The degree of segregation does not depend on λ

Results - Quantification of Local Fiber Segregation

- Turbulence segregates fibers
- Higher-inertia fibers appear more segregated
- How to quantify segregation? As deviation from a random distribution *

* Ref. Fessler, Phys. Fluids (1994)

Results - Quantification of Local Fiber Segregation

The degree of segregation in the near-wall region depends also on λ (not only on τ^{+})

The influence of λ on segregation changes sensibly for different τ^{+}(different inertia)

Results - Fiber Deposition Rate

- Longer fibers tend to segregate less (not always true, though...)
- From Eulerian-Lagrangian studies of spherical particle dispersion in TBL, we know that segregation controls deposition
- Let's look at fiber deposition (quantified by $\mathbf{K}_{\mathbf{d}}$)

$$
K_{d}=\frac{J \quad\left[\mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}\right]}{C\left[\mathrm{~kg} / \mathrm{m}^{3}\right]}
$$

Side view: fibers in the near-wall region rotate preferentially in the longitudinal plane

Results - Fiber Orientation

- Fiber orientation with respect to the co-moving frame (given by the mean value of the direction cosines).

- Orientation strongly depends on $\boldsymbol{\lambda}$ and on the Stokes number as well.
- Fibers preferentially align in the streamwise (mean flow) direction.
- Fiber orientation becomes isotropic in the center of the channel.
\bigcirc Results in agreement with Literature (e.g. Mortensen, Phys. Fluids, 2008).

Results - Fiber Orientation Alignment Frequency

How long do fibers in the near-wall region remain aligned with the mean flow?
Is this alignment a "stable condition"?
Calculate Alignment Frequency:

- Divide the interval [0,1] into 10 orientation classes
- At each time step:
> Compute $\left|\cos \left(\theta_{\mathbf{i}}\right)\right|$ for each fiber
> Identify the orientation class sampled
> I ncrement the time step counter for that class
- Compute percent values

Results - Fiber Orientation Alignment Frequency

Fibers are aligned with the mean flow for just 50\% of the time in the most favourable case ($\tau^{+}=5, \lambda=50$). Much less in the other cases.

Results - Fiber Orientation Alignment Frequency

Alignment frequency statistics do not change if computed accounting only for fibers segregated into near-wall streaks

Conclusions and Future Developments

The coupling between rotation and translation is non negligible: it affects accumulation rates at the wall, concentration and segregation.

This influence quantitatively depends on both fiber inertia and elongation.

Fiber alignment with the mean flow is highly unstable.

REF: C. Marchioli, M. Fantoni \& A. Soldati Phys. Fluids, Vol. 22, 033301 (2010)

Include more values of $S t, \lambda$ and $R e$ in the DNS +LPT database.

Collision models for particle-particle interactions (non-dilute flows).

