Triaxial ellipsoids in creeping shear at high rotational Stokes numbers

ROYAL INSTITUTE OF TECHNOLOGY

> Fredrik Lundell Linné FLOW Centre, KTH Mechanics

Royal Institute of Technology, S-100 44 Stockholm, Sweden

fredrik@mech.kth.se

Flow configuration

Rotation around fixed axis

Rotation period vs Stokes number

Rotation period vs Stokes number

Motion of prolate spheroids

Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape

Fredrik Lundell & Allan Carlsson

Supplementary digital material

Lundell & Carlsson 2010, PRE 81

Approach for increasing St

$$k_b = k_c = 0.1$$

Stability of rotation around shortest axis

Motion of triaxial ellipsoids

The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift towards chaos to a single periodic solution

Fredrik Lundell

Supplementary digital material

Relation between stability and orbits

Relation between stability and orbits

10

Stability for different widths

St_{crit}/St_{0.5}

Experimental conditions to reach *St*_{0.5}

log $St_{0.5}$ as a function k_b , k_c

log $St_{0.5}$ as a function k_b , k_c

Fluid vs particle inertia Orbit drift

Summary

• Paper is everywhere!

- Paper processing and product quality is strongly dependent on fluid mechanics
- Particle inertia induces drift towards rotation around vorticity axis
- Triaxial ellipsoide can be unstable when rotating in shear, stabilised by strong particle inertia

