



Determination of the drag coefficient of finite cylinder at moderate Reynolds number and its implementation for simulation of fibre behaviour

### Grzegorz Kondora, Dariusz Asendrych

Institute of Thermal Machinery Czestochowa University of Technology Poland





## **Plan of the presentation**



- 1. Introduction and motivation
  - Lagrangian fibre model
  - Drag models
- 2. CFD model
  - Setup
  - Verification
- 3. Results
  - Comparison with Stokes drag
  - Single segment, aligned with the flow
  - Single element, perpendicular with the flow
  - Fibre
- 4. Summary





# Introduction

## and

# motivation



## **Modelling methods of fibre suspension**





- useful only when pulp hydraulics is concerned
- experimental input needed

- valid for low consistencies (no fibre- fibre contact included)
- low computational power demand





- deterministic model based on the physical laws
- huge computer resources needed



### Lagrangian fibre model



- aim of my PhD thesis is to model fibre suspension flow in papermachine headbox
- in Lagrangian approach particles are treated as the **distinct entities** suspended in the fluid phase
- fibre model is made up of N<sub>seg</sub> rigid segments connected by ball and socket joints





### **Governing equations**



direct application of Newton's second law for a fibre ith segment leads to:

$$m_p \ddot{\boldsymbol{r}}_i = \boldsymbol{F}_i^h - \boldsymbol{X}_i + \boldsymbol{X}_{i+1}$$

conservation of angular momentum on i<sup>th</sup> segment leads to:

$$\frac{\partial}{\partial t}(\boldsymbol{I}_i \cdot \boldsymbol{\omega}_i) = \boldsymbol{T}_i^h + \left(-\frac{l}{2}\hat{\boldsymbol{z}}_i\right) \times (-\boldsymbol{X}_i) + \frac{l}{2}\hat{\boldsymbol{z}}_{i+1} \times \boldsymbol{X}_{i+1} - \boldsymbol{Y}_i + \boldsymbol{Y}_{i+1}$$

connectivity equation:

$$\mathbf{f}_i(\mathbf{r}_i, \mathbf{z}_i) = \mathbf{r}_i + \frac{l}{2}\mathbf{z}_i - \left(\mathbf{r}_{i+1} - \frac{l}{2}\mathbf{z}_{i+1}\right) = \mathbf{0}$$







### **Particle Reynolds number**



- typical fibre diameters:  $d = 20 \div 40 \ \mu m$
- typical fibre length:  $L = 300 \div 3000 \ \mu m$

$$\operatorname{Re}_{p} = \frac{\rho u_{r} D}{\mu} \qquad u_{r} = \left| u_{f} - u_{p} \right|$$

accroding to Vakil and Green [1]  $Re_p$  in papermaking is up to 60

according to Lindström [2] in headbox:

$$u_r \propto \frac{uL^2}{d^2}$$



assuming that fluid structure has the same size as the thickness of the jet (1 cm), then:

$$u_r \approx \frac{1}{10} u_f$$

in modern headboxes:  $u_f = 30 m/s$ , thus in the worst case (d = 30  $\mu$ m, L = 3000  $\mu$ m):

 $\text{Re}_p = 100$   $\text{Re} = 300\ 000$ 

Vakil A., Green S. I. - Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers, *Computers & Fluids*, 2009
 Lindström S., Modellig and simulation of paper structure development, doctoral thests, Mid Sweden University, 2008





Stokes drag (Re<sub>p</sub> << 1)

hydrodynamic force and torque:

where resistance tensors are given as:  $\mathbf{A}_{i}^{h} = 3\pi\mu d\mathbf{\delta}$ 

more often hydrodynamic force is given in the following form:

 $\mathbf{F}_{i}^{h} = \mathbf{A}_{i}^{h} \cdot \left( \mathbf{U}_{f}(\mathbf{r}_{i}) - \dot{\mathbf{r}}_{i} \right)$ 

11

$$\mathbf{F}_{i}^{h} = \frac{1}{2} \rho A C_{D} \cdot \left( \mathbf{U}_{f}(\mathbf{r}_{i}) - \dot{\mathbf{r}}_{i} \right) \mathbf{U}_{f}(\mathbf{r}_{i}) - \dot{\mathbf{r}}_{i}$$

100

: 1000 < 5000< 10000

 $\mathbf{M}_{i}^{h} = \mathbf{C}_{i}^{h} \cdot \left( \mathbf{\Omega}_{f}(\mathbf{r}_{i}) - \mathbf{\Omega}_{i} \right)$ 

 $C_i^h = 4\pi\mu d^3\delta$ 

 $C_{D} = \frac{\mathbf{F}_{i}^{n}}{\frac{1}{2}\rho(\mathbf{U}_{i}^{r})^{2}A} = \frac{24}{\operatorname{Re}_{p,i}}$ 

<u>non-linear drag</u> ( $Re_p > 1$ ) – Morsi and Alexander [3] empirical drag law

 $a_3$ 

$$C_D = a_1 + \frac{a_2}{\text{Re}} + \frac{a_3}{\text{Re}^2}$$
  $a_1, a_2,$ 

|     | 0, 24, 0                 | 0 < Re < 0            |
|-----|--------------------------|-----------------------|
|     | 3.690, 22.73, 0.0903     | $0.1 < { m Re} <$     |
|     | 1.222, 29.1667, -3.8889  | 1 < Re < 1            |
|     | 0.6167, 46.50, -116.67   | $10 < \mathrm{Re} <$  |
| - 1 | 0.3644, 98.33, -2778     | 100 < Re <            |
|     | 0.357, 148.62, -47500    | $1000 < {\rm Re}$     |
|     | 0.46, -490.546, 578700   | $5000 < \mathrm{Re}$  |
|     | 0.5191, -1662.5, 5416700 | $\text{Re} \ge 10000$ |
|     | •                        |                       |



[3] Morsi S. A. and Alexander A. J., An Investigation of Particle Trajectories in Two-Phase Flow Systems, Journal of Fluid Mechanics, 1972

## **Drag models – prolate spheroid**

### prolate spheroid fibre model

extension of Stokesian drag for prolate spheroid oriented with vector z with respect to the flow direction:



$$\mathbf{F}_{i}^{h} = \mathbf{A}_{i}^{h} \cdot \left(\mathbf{U}_{f}(\mathbf{r}_{i}) - \dot{\mathbf{r}}_{i}\right)$$
$$\mathbf{M}_{i}^{h} = \mathbf{C}_{i}^{h} \cdot \left(\mathbf{\Omega}_{f}(\mathbf{r}_{i}) - \mathbf{\Omega}_{i}\right) + \widetilde{\mathbf{H}}_{i}^{h} : \mathbf{E}_{f}(\mathbf{r}_{i})$$

no data for higher Re – use of cylinders instead of spheroids seems to be more natural choice – easier collision implementation

$$\begin{split} \mathbf{A}_{i}^{h} & 3\pi\mu a \Big[ X^{A} \mathbf{z}_{i} \mathbf{z}_{i} + Y^{A} (\mathbf{\delta} - \mathbf{z}_{i} \mathbf{z}_{i}) \Big] \\ X^{A} &= \frac{8}{3} e^{3} \Big[ -2e + (1 + e^{2}) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \\ Y^{A} &= \frac{16}{3} e^{3} \Big[ 2e + (3e^{2} - 1) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \\ \mathbf{M}_{i}^{A} &= \frac{16}{3} e^{3} \Big[ 2e + (3e^{2} - 1) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \\ \pi\mu a^{3} \Big[ X^{C} \mathbf{z}_{i} \mathbf{z}_{i} + Y^{C} (\mathbf{\delta} - \mathbf{z}_{i} \mathbf{z}_{i}) \Big] \\ \mathbf{M}_{i}^{C} &= \frac{4}{3} e^{3} \Big( 1 - e^{2} \Big[ 2e - (1 - e^{2}) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \\ Y^{A} &= \frac{4}{3} e^{3} \Big( 2 - e^{2} \Big[ -2e + (1 + e^{2}) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \\ \mathbf{H}_{i}^{h} &= -\pi\mu a^{3} Y^{H} \mathbf{\varepsilon} \cdot \mathbf{z}_{i} \mathbf{z}_{i} \\ Y^{H} &= \frac{4}{3} e^{5} \Big[ -2e + (1 + e^{2}) \ln \Big( \frac{1 + e}{1 - e} \Big) \Big]^{-1} \end{split}$$

[4]Kim S., Karrila S. J., Microhydrodynamics: Principles and selected applications. Butterworth-Heineman, 1991

b

a





# CFD simulation of flow around finite cylinder



## **CFD model**







### **Calculation procedure**



Perl script
...
for (Re = Re\_start; Re <= Re\_end; Re += Re\_delta)
{
for (theta = theta\_start; theta <= theta\_end; theta += Re\_delta)
{
for (phi = phi\_start; phi <= (90 - theta); phi += phi\_delta)
{
run\_gambit;
run\_fluent;
postprocess;
}
}
...
...
...</pre>



### GAMBIT

- automatic mesh generation for given orientation with the use of journal files
- hexahedral in great part of the domain
- boundary layer applied near cylinder walls
- hexcore mesh used in rotating box
- typical mesh size 2.3 million of cells

### FLUENT

- performing simulation for given Re using mesh generated by GAMBIT
- second order discretization
- script for monitoring C<sub>D</sub> convergence (ε = 0.0001)
- typical calculation for one case 2 h (8 cores Intel Xeon ...)
- total time (46 \* 12 \* 2 = 1104 h = 46 days)



### Verification





[1] Vakil A., Green S. I. - Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers, Computers & Fluids, 2009





# Results





### **Results**







### **Flow field**



simplified headbox flow – one-dimensional flow esspecialy at the centre line y=0 [4]



$$y_h = y_e + y_0 - y_0 \left(\frac{x}{L}\right)^a$$

 $u(x)2y_h = const$ 



Why such a velocity field has been chosen for a test case???

fibre aligned with the flow – no net hydrodynamic torque on every segment – its influence eliminated:

$$\mathbf{F}_{i}^{h} = \mathbf{A}_{i}^{h} \cdot \left(\mathbf{U}_{f}(\mathbf{r}_{i}) - \dot{\mathbf{r}}_{i}\right)$$
$$\mathbf{M}_{i}^{h} = \mathbf{C}_{i}^{h} \cdot \left(\mathbf{\Omega}_{f}(\mathbf{r}_{i}) - \mathbf{\Omega}_{i}\right) + \widetilde{\mathbf{H}}_{i}^{h} : \mathbf{E}_{f}(\mathbf{r}_{i})$$

0



[4] Olson J.A. S. A., Analytic estimate of the fibre orientation distribution in a headbox flow, Nordic Pulp and Paper Research, 2002









### Summary



- CFD modelling technique was used to simulate flow around finite cylinder in order to determine hydrodynamic resistance in term of orientation angle, aspect ratio and Reynolds number
- simulation results compared to the drag function of prolate spheroid derived from Stokes flow by Kim and Karrila showed very good agreement for Re = 0.1 (upper limit of Stokes flow)
- for higher Re drag deviates from Stokes law (e.g. for Re = 10 relative error exceeds 55 %)
- in real flow situations:
  - ✓ velocity gradient field is three dimensional
  - $\checkmark$  there is a mechanical system of multiple interacting fibres
  - ✓ fibres are in contact with flow boundaries
  - ✓ turbulent fluctuations have to be taken into account

thus Re may reach significantly higher values leading to more pronounced difference between Stokes and actually experienced drag

