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Modelling methods of fibre suspension

)( f

Lagrangian (particle-level)Eulerian (statistical)rheology model
(data from experiment)

• useful only when pulp hydraulics is 
concerned

• experimental input needed

• deterministic model based 
on the physical laws

• huge computer resources 
needed

• valid for low consistencies 
(no fibre- fibre contact 
included)

• low computational power 
demand
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Lagrangian fibre model

• aim of my PhD thesis is to model fibre suspension flow in papermachine headbox
• in Lagrangian approach particles are treated as the distinct entities suspended in the fluid phase
• fibre model is made up of Nseg rigid segments connected by ball and socket joints

real cellulose fibres

Lagrangian fibre model

geometrical objects which may be used to
represent fibre segment

adequate modelling of the hydrodynamic

torque 
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Governing equations

direct application of Newton’s second law for a fibre ith segment leads to:

conservation of angular momentum on ith segment leads to:

connectivity equation:
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Particle Reynolds number

• typical fibre diameters: d = 20 ÷ 40 μm

• typical fibre length: L = 300 ÷ 3000 μm

[1] Vakil A., Green S. I. - Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers, Computers & Fluids, 2009
[2] Lindström S., Modellig and simulation of paper structure development, doctoral thests, Mid Sweden University, 2008
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Drag models - sphere

sphere-based fibre model
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non-linear drag (Rep > 1) – Morsi and Alexander [3] empirical drag law
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Drag models – prolate spheroid

prolate spheroid fibre 
model a
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extension of Stokesian drag for prolate spheroid 
oriented with vector z with respect to the flow 
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[4]Kim S., Karrila S. J., Microhydrodynamics: Principles and selected applications. Butterworth-Heineman, 1991
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no data for higher Re – use of cylinders instead of 
spheroids seems to be more natural choice – easier 
collision implementation
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CFD simulation of flow 
around finite cylinder
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CFD model

L10

L15

L12

rotating box (hexcore mesh)

L3

slip wall
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Calculation procedure

Perl script
…

…

for (Re = Re_start; Re <= Re_end; Re += Re_delta)

{

for (theta = theta_start; theta <= theta_end; theta += Re_delta)

{

for (phi = phi_start; phi <= (90 – theta); phi += phi_delta)

{

run_gambit;

run_fluent;

postprocess;

}

}

}

…

…

GAMBIT

• automatic mesh generation for given 
orientation with the use of journal files

• hexahedral in great part of the domain

• boundary layer applied near cylinder 
walls

• hexcore mesh used in rotating box

• typical mesh size – 2.3 million of cells

FLUENT

• performing simulation for given Re using mesh generated 
by GAMBIT

• second order discretization

• script for monitoring CD convergence (ε = 0.0001)

• typical calculation for one case - 2 h (8 cores Intel Xeon …)

• total time (46 * 12 * 2 = 1104 h = 46 days)
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Verification

[1] Vakil A., Green S. I. - Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers, Computers & Fluids, 2009

mesh sensitivity tests performed on the sphere due to 
lack of experimental data needed to verify simulation:

• Re = 100 (steady axisymmetric regime 20 < Re < 210)

• variable denisty of boundary layer and mesh near the sphere

• after tests same boundary layer scheme applied on cylinder

092.1DCFLUENT:

literature: 096.1087.1 DC
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Results
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Results
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Results

0.1Re  0.10Re 

aligned with the flow perpendicular to the flow
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Flow field

[4] Olson J.A. S. A., Analytic estimate of the fibre orientation distribution in a headbox flow, Nordic Pulp and Paper Research, 2002

x

y

0yye 
hy ey

a

eh
L

x
yyyy 








 00

constyxu h 2)(

a

L

x

R

u
xu




















1

11

)0(
)(

simplified headbox flow – one-dimensional flow esspecialy at the centre line y=0 [4]

Why such a velocity field has been chosen for a test case???

fibre aligned with the flow – no net hydrodynamic torque on 
every segment – its influence eliminated:
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single element, aligned with the flow

• small difference is seen between drag models for d = 
30 µm – very low particle inertia – small Re due to 
small velocity difference

• when the size is inreased to 100 µm particle inertia is 
not negligible (Stokes number increased )

md 30 md 100mL 150 mL 500
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single element, perpendicular

md 30 md 100

• same differences as for element aligned with the 
flow for smaller element diameter

• due to higher drag force cylinder with d = 100 
µm moves almost wih the fluid velocity wheras 
Stokes law underestimate hydrodynamic 
resistance

mL 150 mL 500
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md 30

• relative error in velocity at the outlet for d = 30 µ
between Stokes drag and predicted cylinder CD is 
around 3.5 %

• for higher diamater and the same length inertial effect 
are more pronounced, every segment contributes to 
the total momentum balance

mL 3000

fibre, aligned with the flow

20segN md 100 mL 3000 6segN
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Summary

• CFD modelling technique was used to simulate flow around finite cylinder in order to determine hydrodynamic 
resistance in term of orientation angle, aspect ratio and Reynolds number

• simulation results compared to the drag function of prolate spheroid derived from Stokes flow by Kim and 
Karrila showed very good agreement for Re = 0.1 (upper limit of Stokes flow)

• for higher Re drag deviates from Stokes law (e.g. for Re = 10 relative error exceeds 55 %)

• in real flow situations:
 velocity gradient field is three dimensional
 there is a mechanical system of multiple interacting fibres
 fibres are in contact with flow boundaries
 turbulent fluctuations have to be taken into account

thus Re may reach significantly higher values leading to more pronounced difference between Stokes and 
actually experienced drag
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contact
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turbulent 
fluctuaction

= 1Re p ???

more relevant fibre suspension model…


