

EUROMECH COLLOQUIUM 513: Dynamics of non-spherical particles in fluid turbulence

Two-Phase Boundary Layer by A.I. Kartushinsky^{a)}, E.E. Michaelides^{b)}, Y.A. Rudi^{a)}, S.V. Tisler^{a)}, I.N. Shcheglov^{a)} and A. Shablinsky^{a),} a) Tallinn University of Technology, **Research Laboratory of Multiphase Media Physics** b) Texas University at San Antonio, Dept. Mechanical Engineering

Schematic of flow domain

Two-phase flow conditions

- horizontal flow

horizontal flat plate: 0.5 m length, 0.1 m width, 0.002 m thickness

flat-plate boundary layer

flow velocity U_{∞} =5 ms⁻¹

12, 23, 32- μ m corundum particles (ρ_p =3950 kgm⁻³)

flow mass loading æ=0.07 and 0.14 kg dust/kg air

Assumptions:

a) Boundary Layer Concept

b) Two-fluid/coexisted flows

Force factors i). Viscous drag force ii). Gravitation iii) Saffman force iv) Magnus force

Two-Phase Laminar Boundary Layer Eqs.

(1)

(2)

(3)

$$xu \frac{\partial u}{\partial x} + \left(V - \frac{u\eta}{2}\right) \frac{\partial u}{\partial \eta} = \frac{\partial^2 u}{\partial \eta^2} - x\alpha \left[C'_{\rm D} \frac{\left(u - u_{\rm s}\right)}{\tau} + C_{\rm M} \left(v - v_{\rm s}\right) \left(0.5 \sqrt{\frac{Re_{\infty}}{x}} \frac{\partial u}{\partial \eta} - \omega_{\rm s}\right)\right]$$

$$V \equiv v \sqrt{x \operatorname{Re}_{\infty}} = -u \int_{0}^{\Delta_{\infty}} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial u}{\partial \eta} \right) - x C_{D}' \alpha \frac{\left(u - u_{s} \right)}{\tau} \right] \frac{d\eta}{u^{2}}$$

$$xu_{s}\frac{\partial u_{s}}{\partial x} + \left[V_{s} - \left(\frac{\eta u_{s}}{2} + \frac{D_{s}}{\nu}\frac{\partial \ln \alpha}{\partial \eta}\right)\right]\frac{\partial u_{s}}{\partial \eta} = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{\left(u - u_{s}\right)}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau} + \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right)\right] = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial u_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{u_{s}}{\tau}\right]$$

$$C_{M}\left(v-v_{s}\right)\left(0.5\sqrt{\frac{Re_{\infty}}{x}}\frac{\partial u}{\partial \eta}-\omega_{s}\right)\right]$$

$$xu_{s}\frac{\partial v_{s}}{\partial x} + \left[V_{s}-\left(\frac{\eta u_{s}}{2}+\frac{D_{s}}{\nu}\frac{\partial \ln \alpha}{\partial \eta}\right)\right]\frac{\partial v_{s}}{\partial \eta} = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{v_{s}}{\nu}\frac{\partial v_{s}}{\partial \eta}\right) + x\left[C_{D}'\frac{\left(v-v_{s}\right)}{\tau}-\frac{\partial^{2} v_{s}}{\partial \eta}\right] + x\left[C_{D}'\frac{\left($$

$$+C_{F}(u-u_{s})\sqrt{\frac{Re_{\infty}}{x}\frac{\partial u}{\partial \eta}}-C_{M}(u-u_{s})\left(0.5\sqrt{\frac{Re_{\infty}}{x}}\frac{\partial u}{\partial \eta}-\omega_{s}\right)-g\left(1-\frac{\rho}{\rho_{p}}\right)\right]$$

$$xu_{s}\frac{\partial\omega_{s}}{\partial x} + \left[V_{s} - \left(\frac{\eta u_{s}}{2} + \frac{D_{s}}{\nu}\frac{\partial \ln \alpha}{\partial \eta}\right)\right]\frac{\partial\omega_{s}}{\partial \eta} = \frac{1}{\alpha}\frac{\partial}{\partial \eta}\left(\alpha\frac{\nu_{s}}{\nu}\frac{\partial\omega_{s}}{\partial \eta}\right) + xC_{\omega}'\frac{\left(0.5\sqrt{\frac{Re_{\omega}}{x}}\frac{\partial u}{\partial \eta} - \omega_{s}\right)}{\tau}$$
(5)

Boundary Conditions

$$\eta = 0: \quad u = v = v_{s} = 0, \quad \gamma \sqrt{\frac{Re_{\infty}}{x}} \frac{\partial u_{s}}{\partial \eta} = -u_{s}, \quad \gamma \sqrt{\frac{Re_{\infty}}{x}} \frac{\partial \omega_{s}}{\partial \eta} = \omega_{s}, \quad \frac{\partial \alpha}{\partial \eta} = 0, \quad (6)$$

$$\gamma = \delta \left(\sqrt[3]{\frac{\pi \rho}{6\rho_{p} \alpha}} - 1 \right) \text{ interparticle distance}$$

$$\eta = \Delta_{\infty} \sqrt{\frac{Re_{\infty}}{x}}: \quad u = u_{s} = \alpha = 1, \quad \frac{\partial v}{\partial \eta} = \frac{\partial v_{s}}{\partial \eta} = \frac{\partial \omega_{s}}{\partial \eta} = 0,$$

$$x = 0$$
: $u = u_s = \alpha = 1$, $v = v_s = \omega_s = 0$,

x = 1:
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial u_s}{\partial x} = \frac{\partial v_s}{\partial x} = \frac{\partial w_s}{\partial x} = \frac{\partial \omega_s}{\partial x} = 0$$

(7)

(8)

(9)

Results

Profiles of non-dimensional axial velocities of gas and solid phases (self-similar coordinates) across the boundary layer

Profiles of non-dimensional axial velocities of gas and solid phases across the boundary layer

Profiles of particle mass concentration across the boundary layer in two locations *x*

Profiles of particle mass concentration across the boundary layer

Profiles of particle mass concentration across the boundary layer; δ =12 µm, æ=0.07

Profiles of particle mass concentration across the boundary layer; δ =23 µm, æ=0.07

Profiles of particle mass concentration across the boundary layer; δ =32 µm, æ=0.07

Profiles of transversal velocity of particles across the boundary layer in two locations x/L=0.4 & x/L=0.75

Profiles of transversal velocity of particles across the boundary layer; δ =12 µm, æ=0.07

Effect of the particles shape factor on axial velocity of gas

Effect of the particles shape factor on transversal velocity of gas

Effect of the particles shape factor on axial velocity of particles

Effect of the particles shape factor on transversal velocity of particles

Profiles of axial slip velocity normalized to friction velocity; δ =12 µm, æ=0.07

Profiles of axial slip velocity normalized to friction velocity; δ =12 µm, æ=0.14

Profiles of axial slip velocity normalized to friction velocity; æ=0.07, x=0.4

Profiles of transversal slip velocity normalized to friction velocity; δ =12 µm, æ=0.07

Profiles of transversal slip velocity normalized to friction velocity; δ =12 µm, æ=0.14

Profiles of transversal slip velocity normalized to friction velocity; æ=0.07, x=0.4

Profiles of axial velocities of gas and solid phases across the boundary layer; æ=0.07, x=0.4

Profiles of particle mass concentration across the boundary layer; æ=0.07, x=0.4

Profiles of transversal velocity of particles across the boundary layer; δ =12 µm, æ=0.07, x=0.99

Dimensionless deposition velocity along the flat plate; U_{∞} =5.1 ms⁻¹

Dimensionless deposition velocity vs dimensionless relaxation time

Particle deposition from fully developed turbulent pipe flow: a summary of experimental data (Young & Leeming, *J.Fluid Mech.*, 1997)

Conclusions

Two-phase gas-solid particles laminar boundary layer generated near horizontal flat plate was studied for a range of solids loadings and particle sizes. The study shows:

•growth of the particle mass concentration in surface area which increases

downward layer; this trend is more pronounced for larger particles.

•particles have velocity lag in x- and y- directions due to gravity which increased with particle sizes.

•the coupling should be taken into account, and its contribution increases with mass loading.

•the shape factor may have a noticeable impact onto the flow conditions.