Experiments on drag reduction by fibres in turbulent pipe flow

René Delfos, Johan Hoving, Bendiks-Jan Boersma

Lab. for Aero- and Hydrodynamics at JM Burgerscentrum for Fluid Mechanics Delft University of Technology, Faculty of Mechanical Engineering, the Netherlands

Udine, April 6-8, 2011
J.M. Burgerscentrum

Outline

Background
Theory
Experimental set-up
Results \& Interpretation
Conclusions \& Recommendations

Background

Polymers used as drag reducers in liquid pipe transport Can gas flow be improved using additives as well?
$>$ Classical polymers do not dissolve in gases -> fibres?
> Fibres should be cheap \& and safe \& easy to handle

Cooperation TUDelft - NTNU

(Nieuwstadt, Andersen, Boersma

Gillissen, Mortenson;
 various others)

$>$ How to scale from
'point particles' to 'finite size'?
> What would then a possible mechanism for DR be?

In Memoriam - Frans Nieuwstadt April 8, 1946 - May 182005

Theory: Velocity profile in pipe flow

$$
\begin{aligned}
& u_{*}=\sqrt{\tau_{W} / \rho} \\
& \text { 'friction velocity' }
\end{aligned}
$$

$>$ Drag reduction?
Shift of log-layer; thicker buffer-layer or 'Elastic layer'
> MDR / Virk?
Elastic layer fills
'complete pipe'

With fibres??? Difficult to assess in a real flow; local measurement required in obscured pipe...

Theory: Bulk velocity in pipe flow

Theory: Bulk velocity in pipe flow

Flow rate - Pressure drop relation
$\Delta P / \Delta L=\frac{1}{2} \rho U_{B}^{2} \cdot f / D$
$>$ Moody plot

$$
f\left(\operatorname{Re}_{B}, e / D\right)=f\left(U_{B} D / v\right)
$$

$$
f=0.316 * \mathrm{Re}_{B}^{-1 / 4} \text { Smooth pipe; }
$$ moderate Re

$\frac{1}{2} \rho U_{B}^{2} \cdot f / D=4 \rho u_{*}^{2} / D \rightarrow u_{*} / U_{B}=\sqrt{8 f}$

$$
U_{B} / u_{*}=U^{+}=g\left(\operatorname{Re}_{*}\right)=g\left(u_{*} D / v\right)
$$

equivalent to Flow rate - friction velocity relation
> Prandtl-Kármán plot

Theory: Parameters in particle-laden flow

Inertia-to-viscosity: Reynolds
Response-to-Kolmogorov time: Stokes $\quad S t=\tau_{P}(\Delta \rho / \rho) / \tau_{\text {Ко }}$ Inertia-to-gravity: (densimetric) Froude $F r=u_{*} / \sqrt{g D \Delta \rho / \rho}$ Fibre concentration by volume c, or number density, n Fibre aspect ratio $r=/ / d$

To simplify but keep essential, we use a density matched system of water and nylon.

Fibres: Suspension regimes

With increasing concentration c, or number density n :
(a) Dilute $n \cdot l^{3}=\left(n \cdot l d^{2}\right) \cdot(l / d)^{2}=c r^{2} \ll 1$

Distance between particles large where $\quad c=$ particle volume fraction
and $\quad r=$ particle aspect ratio $=l / d$
$>$ No drag reduction
(b) Semi-dilute $c r^{2}>1 ; \mathrm{cr} \ll 1$ distance between particles of order particle diameter $>$ Drag reduction
(c) Concentrated / Dense; cr>1
$>$ Clogging

Theory: Drag reduction definitions

Pressure drop decrease:

$$
D R \%=\frac{f_{N}-f_{F}}{f_{N}}=\frac{\Delta f}{f_{N}}
$$

with N condition without fibers at equal bulk velocity $\left(\mathrm{Re}_{B}\right)$

Flow rate increase:

$$
\Delta U^{+}=\frac{U_{N}^{+}-U_{F}^{+}}{u_{*}}=\frac{\Delta U^{+}}{u_{*}}
$$

Measured quantities	Range	Devices
Volume flux Q	$0.3-61 / \mathrm{s}$	Krohne Altometer IFS 4000
Pressure difference Δp	$15-3500 \mathrm{~Pa}$	Validyne DP15 \& DP45
Temperature T	$20-37^{\circ} \mathrm{C}$	Thermocouple
concentration of fibres \boldsymbol{C}	$0.3-10 \%$	Mass balance

System diameter (around) 50 mm throughout system

Vessel
(adding \& mixing)

TUD

Fibres

Nylon from Swiss Flock:

+ precision cut; size well known mono-disperse ($\sigma=10 \%$
+ low density; near neutral buoyancy inertia negligible
+ high resistance to abrasion; no visible degradation
+ low absorption of water
+ rigidity
no elongation
bending ???
+ round cylinders; of density $\rho=1090 \mathrm{~kg} / \mathrm{m}^{3}$

coating	$/(\mathrm{mm})$	$d(\mu \mathrm{~m})$	$D / /$	$r=/ / d$
black	0.5	10	100	49
no	1	10	50	98
no	2	10	25	195
no	4	10	12.5	390 ‘Spaghetti’
no	0.5	19.5	100	26
black	1	19.5	50	51
no	2	19.5	25	102

Microscope image,
$L=0.5 \mathrm{~mm}, d=19.5 \mu \mathrm{~m}$

Results: 'Moody' vs 'Prandtl-Kármán'

$\mathrm{l}=1 \mathrm{~mm}, \mathrm{r}=97.5$

A 'typical result'

Nylor $\mathrm{V} / \mathrm{L}=50, \mathrm{r}=97.5 \mathrm{in}$ water

$D R=g\left(\mathrm{Re}_{*}\right)$; maximum at intermediate $\mathrm{Re}_{*}=\mathrm{Re}_{*}$, max for low c
MDR at $\mathrm{Re}_{*_{\text {MDR }}}$ for $c=c_{\text {MDR }}$
$\mathrm{Re}_{\text {*MDR }}$ increases for $c>c_{\text {MDR }}$
Drag increase (settling fibres)

The other $10 \mu \mathrm{~m}$ fibres: Increasing fibre length:

- less effective
- but at much lower c
and at much lower Re_{*}

Nylon D $/ \mathrm{L}=25, \mathrm{r}=101.9$ in water
The $20 \mu \mathrm{~m}$ fibres:
They behave similar...

- less effective than 10
- with even stronger tendency for clogging

All compiled into numbers...

L $\mu \mathrm{m}$	$\begin{gathered} d \\ \mu \mathrm{~m} \end{gathered}$	D / L	r	$\begin{aligned} & c_{\text {max }} \\ & \% \end{aligned}$	$c_{\text {DRmax }}$	$\begin{gathered} D R_{\max } \\ \% \end{gathered}$	$R e_{\text {min }}^{*}$	$\boldsymbol{R} \boldsymbol{e}^{*}{ }_{\text {DRmax }}$	$\Delta U_{b \max }^{+}$	$[D R / c]_{\max }$
500	10.2	100	49.0	4.96	≥ 4.82	≥ 57	7000	≥ 5090	≥ 12.8	12
1000	10.2	50	97.5	2.52	1.69	41	2800	2880	7.1	24
2000	10.2	25	195.1	1.00	0.57	31	2200	2810	4.5	84
4000	10.2	12.5	390.1	0.72	0.22	27	1050	2455	3.7	250
500	19.5	100	25.6	11.70	≥ 10.97	≥ 49	6500	≥ 6574	≥ 10.0	4
1000	19.5	50	51.2	6.12	4.94	49	3500	± 3900	9.8	± 12
2000	19.5	25	101.9	2.00	1.15	33	2100	1950	4.8	28

TUDelft

Analysis: low concentrations

Drag reduction DR varies with Re_{*}
At $\mathrm{Re}_{*}=\mathrm{Re}_{*, \text { max }}, \mathrm{DR} \%$ increases with $c . D R / D R_{\text {max }} \approx 0.8 \cdot\left(c / c_{M D R}\right)^{2}$
(indeed, dilute there is no effect!)

Analysis: low concentrations

Drag reduction varies with Re_{*} $\mathrm{Re}_{* \text {, max }}$ varies with fibre length:

$$
\begin{aligned}
& \operatorname{Re}_{*}=u_{*} D / v=75 D / L \\
& \quad \rightarrow L u_{*} / v=\underline{L^{+}=75}
\end{aligned}
$$

(much) larger than 'Kolmogorov scale’

Correlating with wall units;
 $L^{+}=75$ is more like (spanwise) separation of vortices in buffer layer 'Direct interaction' essentially different from that with polymers!

Analysis: high concentrations

Comparing: Maximum velocity increase

Fairly constant with concentration beyond $\mathrm{C}_{\text {MDR }}$ much variation among different fibres

Analysis: high concentrations

Alternative for $c r^{2}$ (Ph.D.-thesis Gillissen, 2008); takes into account for aspect ratio

$$
\alpha=c r^{2} /(\ln r-0.8)>40
$$

coating	$/(\mathrm{mm})$	$\mathrm{d}(\mu \mathrm{m})$	D / I	$\mathrm{r}=\mathrm{I} / \mathrm{d}$	$\mathrm{C}_{\text {MDR }}$	cr^{2}	α
black	0.5	10	100	49	4.8	115	$\mathbf{3 7}$
no	1	10	50	98	1.7	163	$\mathbf{4 3}$
no	2	10	25	195	0.57	217	$\mathbf{4 8}$
no	4	10	12.5	390	0.12	183	$\mathbf{3 5}$
no	0.5	19.5	100	26	11	74	$\mathbf{3 0}$
black	1	19.5	50	51	4.9	127	$\mathbf{4 1}$
no	2	19.5	25	102	1.15	120	$\mathbf{3 1}$
						143 ± 45	$\mathbf{3 8} \pm \mathbf{6}$

Reynolds number and concentration

Visualisation

Sliding camera; moving with the mean flow
Fibres $4 \mathrm{~mm} \times 10 \mu \mathrm{~m}$
'turbulent flow' vs. 'plug flow'

Conclusions

$>$ Drag reduction with fibres comparable in magnitude to that with polymers, but only for a narrow range in Re_{B}
$>$ Drag reduction increases quadratic in fibre concentration
$>$ Fibres are most effective at $L^{+}=75$
$>$ Efficiency increases with Re, as long as fibers are short!
$>$ At $\alpha=\mathrm{cr}^{2} /(\ln (\mathrm{r})-0.8)=40$ we get a 'solidified plug', surrounded by probably turbulent 'lubrication film'

Future experiments

- Measure inside tube
$>$ We built a fully index-matched pipe (including pipe wall)
$>$ Fibre orientation and velocities; simultaneous with liquid velocities?
> Measure in lubrication film between plug and wall
- Experiments with gas!
- Thinner fibres or larger pipe diameter Higher Reynolds numbers?
Vertical pipe?

And modelling and simulation, of course...

