E. De Angelis^a in collaboration with E.S.C. Ching^b, R. Benzi^c, I. Procaccia^d

^a Alma Mater Studiorum - Università di Bologna
 ^c Chinese University of Hong Kong
 ^c Università di Tor Vergata, Roma
 ^d Weizmann Institute, Rehovot

Euromech Colloquium 513 -Udine

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Introduction: drag reduction - I

(Virk, Sc.D. Thesis, MIT 1966)

- Friction factor: $f \propto \Delta p/Q^2$
- Bulk Reynolds number: ${
 m Re}_{
 m b} \propto {\it Q}$
- Wall friction: $\tau_{\rm w} = h\Delta p/L$
- Friction Reynolds number: ${
 m Re}_{
 m w}=h\sqrt{ au_{
 m w}/
 ho_0}/
 u_0$

・ロト ・聞ト ・ヨト ・ヨト

Introduction: drag reduction - II

(Warholic, Massah, Hanratty, Experiments in Fluids 27, 1999)

- Friction velocity $u_{\rm w} = \sqrt{\tau_{\rm w}/\rho_0}$
- Mean velocity (viscous units) $U^+ = \langle u \rangle / u_{
 m w}$
- Wall normal distance (viscous units) $y^+ = y u_{\rm w} / \nu_0$
- MDR: $U^+ = 11.7 \log y^+ - 17.$

(日)、

Prandtl-Karman plot

• Quantitatively drag reduction can be measured as the relative decrease of the friction factor

$$c_f = \frac{\tau_w}{\frac{1}{2}\rho \overline{U}^2} = 2f$$

Introducing the viscous velocity, the decrease of f is described as

$$rac{1}{\sqrt{f}} = rac{\overline{U}}{u_ au} = \overline{U}^+ = rac{1}{Re_ au}\int_0^{Re_ au}\overline{u}^+dy^+$$

• For a Newtonian flow, assuming the classical logarithmic law, provides in the limit of large Reynolds

$$rac{1}{\sqrt{f}} = \mathit{const.} + rac{1}{\kappa} \log \mathit{Re}_{ au}$$

• If the mean velocity profile changes also the P-K plot varies

- Drag reduction by rodlike polymers
 - Experiments and numerical simulations

Flexible and Rodlike Polymers: Experiments (Sasaki, Journal of the Physical society of Japan **60**, 1991).

• The addition of salt can help us to learn more about the different types of drag reduction

• - Polyelectrolicte at different concentrations plus salt

• - Polyelectrolicte

Drag reduction by rodlike polymers

Experiments and numerical simulations

DNS of drag reducing wall bounded flows

In principle, in such a problem much can be done via numerical simulations. The first computations have been done in a channel flow

- Flexible: Sureshkumar, Beris, Handler, Phys Fluids 9, 1997
- Rodlike: Manhart, Journal of Non-Newtonian Fluid Mechanics
 9, 2002

Computational domain

Mean profiles

Wall turbulence with rod-like polymers
Mathematical Formulation
Rodlike Polymers Model

Model for rodlike polymers

The rheological properties of rodlike polymers can be assimilated to that of neutrally buoyant axisymmetric Brownian particles

The equation for a single particle is

$$\dot{\mathbf{n}} = \Omega \cdot \mathbf{n} + \kappa \left[\mathbf{D} \cdot \mathbf{n} + - (\mathbf{n} \cdot \mathbf{D} \cdot \mathbf{n}) \mathbf{n} \right] + \Gamma(t)$$

where κ is a geometric factor $\kappa = (r_e^2 - 1)/(r_e^2 + 1).$

From the Fokker-Plank equation

$$\frac{\partial \Psi}{\partial t} + \frac{\partial}{\partial \mathbf{n}} (\dot{\mathbf{n}} \Psi) = \frac{\partial^2}{\partial \mathbf{n} \partial \mathbf{n}} D_r \Psi$$

Rodlike Polymers Model

Basic equations for rodlike polymers for $\kappa \to 1$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu_0 \nabla^2 \mathbf{u} + \nu_p \nabla \cdot \mathbf{T}_p$$

$$\frac{\partial \mathbf{R}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{R} = \mathbf{K}\mathbf{R} + \mathbf{R}\mathbf{K}^{\dagger} - \mathbf{E} : \mathbf{R}\mathbf{R} - 6\gamma_B \left(\mathbf{R} - \frac{\mathbf{I}}{3}\right)$$

$$(\mathbf{R}=<\mathbf{nn}>$$
, $\mathbf{E}=2\mathbf{D}=\mathbf{K}+\mathbf{K}^{\dagger})$

• Constitutive relations:

$$\mathbf{T}_{\mathrm{p}} = \mu_{\mathrm{p}} \left[\mathbf{E} : \mathbf{R}\mathbf{R} + 6\gamma_{B} \left(\mathbf{R} - \frac{\mathbf{I}}{3} \right) \right]$$

• In the limit where the Brownian diffusion can be neglected, i.e. $\gamma_B \rightarrow 0$, the control parameters are $\eta_p = \mu_p/\mu$ and $\text{Re} = hu_w/\nu$

э

・ロト ・ 雪 ト ・ ヨ ト ・

Wall turbulence with rod-like polymers
UNUMERICAL NUMERICAL POLYMERS
Wean fields

Rodlike particles simulations

▷ Numerical simulations for rodlike polymers flows show drag reduction for a simulation with $\eta_p = 25$ and $Re_\tau = 300$. $2\pi h \times 2h \times \pi h$ for $128 \times 93 \times 64$

Wall turbulence with rod-like polymers
UNUmerical results
Mean fields

Conformation tensor

The average values of the conformation tensor plotted as a function of the distance from the wall

The relevant component $R_{xx}, R_{yy}, R_{zz}, R_{xy}$ are plotted together with the order parameter

$$S^2 = \frac{3}{2}tr(\mathbf{S}\cdot\mathbf{S})$$

where $\boldsymbol{\mathsf{S}}$ is the orientation tensor defined as

$$S = R - \frac{1}{3}I$$

Wall turbulence with rod-like polymers
UNUmerical results
Orded parameter

Order parameter

 \triangleright Order parameter S^2 plotted on a plane at distance $y^+ = 6$ from the wall

Kinetic energy

TKE budgets

Single point statistics

- Production
- Newtonian dissipation
- Divergence of the flux

- Total particles contribution

(日) (四) (王) (日) (日) (日)

- Particles spatial flux
- Particles "dissipation"

A phenomenological model for DR - I (L'vov, Pomyalov, Procaccia, Tiberkevich, PRL **92**, 2004)

• Momentum equation close to the wall:

$$au_{
m R}(y) + au_{
m p}(y) \simeq h rac{\Delta p}{L} \qquad \Rightarrow au_{
m p}(y) \simeq h rac{\Delta p}{L}$$

• Model equation for dissipation of TKE:

$$u_{
m e}(y)rac{u_{
m rms}^2}{y^2} + rac{u_{
m rms}^3}{y} = au_{
m R}rac{dU}{dy} \qquad \qquad \Rightarrow
u_{
m e}(y)rac{u_{
m rms}^2}{y^2} \simeq au_{
m R}rac{dU}{dy}$$

• Closure assumptions:

$$au_{
m p} =
u_{
m e}(y) rac{dU}{dy} \qquad au_{
m R} \simeq C^2 u_{
m rms}^2$$

• $\nu_{\rm e} \propto y => dU/dy \propto 1/y$. Mixing length-like approach.

э

A phenomenological model for DR - II

(Benzi, Ching, De Angelis, Procaccia, PRE, 2008)

 An extension of the theory to rodlike polymers assumes that, as for the flexible ones, $\nu_{\rm e}$ depends only on the R_{vv} component of the conformation tensor, namely

$$u_{
m e}({\it y}) \propto \eta_{\it p} {\it R}_{\it yy}$$

The plot shows $< R_{vv} >$ (dashed line) and $< T_{xy} > / c\eta_p < dU/dy >$ (symbols). We find a linear behavior up the $y^+ = 80$

イロト 不得 トイヨト イヨト

э

Linear viscosity simulations

▷ A DNS of a Newtonian flow with $\mu_e(y)$ shows DR, the more the larger is the slope of the effective viscosity.

A parametric study

 Increasing Reynolds number and the fibre concentration (Gillissen, Boersma, Mortensen, Anderson, JFM, 602, 2008)

• For a given concentration a new log law appears independent on Reynolds number, the expected P-K plot is ladder-like

э

(日)、

Final remarks and perspectives

- Simulations of flows for rodlike polymers can be achieved through a simplified rheological model
- The flow shows features similar to that of flexible polymers
- The results confirm recent theories on the effective nature of the rodlike polymers-turbulent interaction

(Virk, Wagger, Koury, ASME FED 237, 1996).

э