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OUTLINE 

•  Effect of fiber deformation and orientation distribution on 
suspension rheology	


•  Fiber suspension in turbulent channel flow	


•  Deformation characterization in shear flow: rheology	


•  Lagrangian turbulence with deformable particles (red blood cells)  
and particle migration…	
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Experiment Setup 
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Xu, H., and Aidun, C.K., “Characteristics of Fiber Suspension Flow in a Rectangular Channel” 
Int. J. Multiphase Flow, 3 1/3, pp. 318-336, 2005	


 



Two parameters:   (1) Location     (2) Velocity at the measuring point 

  

Flow direction

Basic Principle of PUDV 



Basic Principle of PUDV 

(1) Doppler effect:  

fd = ±
2V cos!

c
fe

fd : Frequency shift 

V:  Particle speed 

θ:   Angle between ultrasound and  
       particle direction 

fe:   Frequency of Ultrasound 

c:   Speed of ultrasound 

D:  Distance between particle and  
       transducer 

t:    Time between signal transmission   
        and reception 
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Internal architecture and measuring 
principle of PUDV 
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Sensitivity of PUDV measurement of fiber 
suspension 



Characterizations of fiber suspension flow 

Flow rate 
(Gal/minute) 

 Uavg 
(m/s) 

Re  Volume 
concentration  (%) 

    

   0.05 0.1 0.15 0.3 0.5 0.75 1.0 

2.2 0.157 2050   !  !  !  !  !    

3.3 0.231 3025  !  !  !  !  !  !  

6.5 0.454 5940  !  !  !  !  !  !  

13 0.908 11880 !  !  !  !  !  !  !  

40 2.90 36625 !  !  !  !  !  !  !  

65 4.56 59638 !  !  !  !  !  !  !  

80 5.60 73250 !  !  !  !  !  !  !  

100 7.0 91510 !  !  !  !  !  !  !  

 



Velocity profile of water measured by PUDV at different flow rate 
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Effect of  concentration on velocity profile 

Flow rate: 100 gpm
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Effect of  concentration on velocity profile 

Flow rate: 65 gpm
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Effect of  concentration velocity profile 
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Effect of  concentration on velocity profile 
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reduced velocity profile at nl3 =5.0.  	

Comparison of Experimental data 	

And predicted velocity profile.	


u+ = 1
0.41

ln(y+ )+ 4.69+ !
0.41

sin2( y
0.9b

!)

! = 0.98exp(0.14(nl3)"1.9*10"5 *Re)

Xu, and Aidun; Int. J. Multiphase Flow, 3 1/3, pp. 318-336, 2005	


Mean velocity profile for fiber suspension in channel flow	




When  Pe-1 = 0  and Re~0, then for rigid fibers the relative viscosity 

Rigid  Fibers 
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For deformable fibers, concept of Bending Ratio (BR) 

(Forgacs and Mason, J. Col. Sci., 1959)	


( ) ( )( )
42

5.12

p
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ln
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Critical shear-induced buckling stress, 

EY , Young’s Modulus	

L , fiber length	

D , fiber diameter	

rp = L/D 
re , effective aspect ratio	

       re=1.24rp/(lnrp)1/2	

	


	




For deformable fibers, concept of Bending Ratio (BR) 
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Lattice-Boltzmann Method 19 

Discrete Boltzmann equation: 

Macroscopic properties related to moments of  distribution: 

Density Momentum 

Pressure 

Symbols 

D3Q19  
LB Stencil 

Aidun & Clausen. Annual Rev. Fluid Mech., 42, 2010. 



Flexible fiber model 
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rin: position vector of nth hinge of fiber i 

pin: unit vector parallel to axis of rod in	


Wu and Aidun, Int. J. Multiphase Flow, 2009	




External Boundary Force (EBF) 

The no-slip boundary condition 
on the surface of the particle is 
satisfied by the requirement 
that the fluid velocity at the 
solid boundary node is equal to 
the solid velocity at that point. 
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l
ff
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 Wu and Aidun, Int. J. Num. Method Fluids, 2010 	


( ) ( ) ( ) eleel
f dDtt xxx,xu,xU         −= ∫



Fiber deformation in shear; BR=40 
22 



Fiber deformation in shear; BR=0.36 
23 



Fiber deformation in shear; BR=0.18 
24 



Symbols are the experimentall data of Forgacs and Mason (1959) for BR=0.5, 0.43 and 0.35.  Lines 
are the corresponding LB-EBF simulation results (Wu and Adiun, 2010).	


	


Loci of the end of a Nylon filament (rp=170) in simple shear flow 

BR=0.5	


0.43	


0.36	




Fiber diameter D = 0.12mm,  rp=16  µ = 13Pa s 

LB-EBF Simulation of deformable fibers 

BR >>1 BR = 0.3 



Fiber diameter D = 0.12mm   cvf = 0.0051~0.124  EY = 3GPa  µ = 13Pa s 

Relative viscosity	


Bibbo PhD thesis, MIT 1987	

Petrich et al., J. Non-Newtonian F. M., 2000	




Fiber diameter D = 0.12mm  rp=16  µ = 13Pa s 

Relative viscosity & orientation distribution 



fiber diameter D = 0.12mm  rp=16  µ = 13Pa s 

Primary Normal stress difference, N1 
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Batchelor’s relation: N1 

The stress in dilute suspension	


Batchelor, JFM, 1970 	
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Batchelor’s relation: N1 

The stress in dilute suspensions 

Batchelor, JFM, 1970 	
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Relative Viscosity vs Shear rate 

AR = 16	

cvf = 0.0529	


D = 0.12mm 	

 µ = 13 Pa-s	
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Shear rate (1/s)	


BR = 0.3	

	


RIGID (BR>>1)	

	


(Re~10-5) (Re~10-2) 
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Conclusions 

Relative viscosity increases as Bending Ratio decreases.  This is due to broader 
fiber distribution, that is more fibers orienting in the compression and extension 
axes, 
 
The primary normal stress difference seems to first  decrease from stiff to slightly 
deformable fibers, and then increase sharply for highly deformable fibers.   
Orientation distribution is dominant….fiber-fiber contact less significant,	


	


It appears that fiber deformation is the dominant factor in orientation distribution and 
relative viscosity as shear rate increases above 10, in the cases considered here;  	


	


Relative viscosity seems to be independent of shear rate for constant Bending Ratio	


Wu and  Aidun, J. Fluid Mech., 662, 122-33, 2010	

Mubashar et al., in preparation, ….	



