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A simple experiment

:Rheoscopic fluid is a suspension of rod-like 
crystals, used for flow visualisation. This is a 
photograph of randomly-stirred fluid in a 
shallow dish:

There are singularities about which the colours are encountered in cyclic 
order. Are these vortices?  

No, because the colours 
would cycle twice:



  

Interpretation of the singularities
The rod-like crystals define a non-oriented vector field (reversing the 
vector has no significance). Another example is the ridge pattern of 
fingerprints. These do have point singularities: 

core                    delta

Poincare index      is defined for of a curve lying in a vector field. It is 
number of multiples of         by which vector rotates (clockwise) on 
traversing a closed curve (also clockwise). A curve with non-zero index 
encloses a singularity. Experiment indicates that there are singularities 
with Poincare index        . The core has index     , the delta has index       . 



  

Exact solution of the equation of motion

Equation of motion for rods depends upon velocity gradient of fluid:

Equation may be solved using a solution of a companion linear equation:

For general initial condition, we should compute the monodromy matrix:



  

Are singularities forbidden?

Monodromy matrix is non-singular:                       . This implies that the 
solution is non-singular.

However, if the initial orientation is random, we should average over 
the initial direction       , assumed uniformly distributed around a unit 
circle.

The unit circle is mapped by the matrix        to an ellipse with aspect 
ratio     , with long axis in direction      . This ellipse is:

General solution, in terms of the initial field,              :



  

Definition of an order parameter
The distribution of directions is:

Distribution of angles is characterised by an order parameter:

(perfect alignment when               ,  random orientations give              ). 

The order parameter can be related to the colour of scattered light:



  

Zeros of the order parameter
:Order parameter is zero when the distribution of directions is uniform. 
This happens when the monodromy matrix         is a rotation 
matrix           . General parametrisation: 

Zeros occur upon varying two parameters, so that              ,             . 

In vicinity of a zero at      , we can use coordinates              such that

Are these normal forms for zeros ‘fingerprint’ singularities? 



  

Structure of zeros of the order parameter
Normal form:

The matrix of the quadratic form describing the ellipse is:

The order parameter is:
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Comparing experiment and simulation
Simulation (using a random flow 
field): Experiment:



  

The case of steady flows

Particles follow the contours of the stream function. 
The monodromy matrix is a shear, and rod-like 
particles align with contours of the stream function:

Steady two-dimensional flows are described by a stream function,

Particles with finite aspect ratio tumble in a shear flow. 
The order parameter exhibits an increasingly tight spiral 
pattern:



  

The long-time limit

Local average       converges in long-time limit. After an involved 
argument, we find that the averaged order parameter is determined by 
the normal form of the transfer matrix:

In the elliptic bands the order parameter forms a tightening spiral:

Just replace       by     in earlier formulae for the order parameter. It follows 
that the singularities of         are cores and deltas.



  

Elliptic and Hyperbolic bands



  

Averaged order parameter in long-time limit
Note that       is not reflection symmetric, but its zeros are symmetric.



  

Summary and Open Question
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Experiment shows the existence of fingerprint-like singularities in 
alignment of rod-like objects. We have analysed their normal forms.

These topological singularities must influence and perhaps 
organise the rheological behaviour of fibre suspensions: how 
can this be investigated and quantified?  
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