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The Basset-Boussinesq force

The force on a steadily-moving sphere was obtained by
Stokes (1851). Non-steady motion was treated by
Boussinesq (1885) and Basset (1888). A term dependlng
upon the history of the motion has a slow (¢ 1/2 ) decay of
the response kernel:
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Diffusion of vorticity

The form of the Boussinesqg-Basset force suggests that it
IS related to a diffusion process. At low Reynolds numbers
the vorticity satisfies a diffusion equation.
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Solution may be obtained by integrating over a propagator
e.g. in one dimension
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Force on a plate

To understand the origin of the history force, consider a
simpler problem: the shear stress on an infinite plate
moving tangentially. This is found to be
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To interpret this result: note that
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and use the one-dimensional diffusive propagator.



What is different about a sphere?

Motion of the sphere creates vorticity, which diffuses away
from its surface. At short times this is similar to the moving
plate problem. At longer times. satisfying
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the three-dimensional spherically symmetric diffusion
propagator is expected to be relevant:
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The kernel of the history force has two asymptotes:

- —l I'H‘}
Short time: T /-
..‘J I,."-."}

Long time: {7/~



Vorticity diffusion from a sphere

Assume vorticity distribution is dipolar:
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Close to the sphere, the distribution of vorticity resembles
a uniformly moving sphere: the Stokes solution gives
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For unsteady flow there is a time-dependent source of
vorticity, proportional to the applied force
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Relating vorticity and velocity
Diffusion propagator for dipolar source:
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Kinematic relation between velocity and vorticity:
wyr(r,0,t) = cosQup(r, t)
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Long-time propagator
Relate particle velocity to vorticity field
X(t)=— lim v.(r,t)
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Combine these to obtain
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The result

The velocity is expressed as a history integral over the
force:
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The kernel Is
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Response to a steady force
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Conclusion

The kernel in the Basset-Boussinesq expression for
the history force is incorrect at long times. The correct
long-time asymptote has been determined for the
velocity expressed in terms of the force:
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There are difficulties in observing the Basset-Boussinesq
force experimentally. I\/Ie__i_}and Adrian proposed a semi-
empirical kernel with 7~ decay:
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