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Fil Rouge

1. Computational approaches to multiphase flows: a short introduction 

2. The sharp interface approach: numerical modeling, boundary conditions, 
application (stratified air/water flow) 

3. The Phase Field Method: recap on numerical modeling, application (oil 
transport in pipelines/channels) 
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Multiphase flows

What is a multiphase flow? Just few examples…Industrial…

Burning Fuel Jet

Gas turbine combustor



2-4.09.2021, Gdansk, Poland
XIV Workshop & Summer School “Multiphase Flows”

Multiphase flows

Burning Fuel Jet
What is a multiphase flow? Just few examples…high seas…
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Multiphase flows

Burning Fuel Jet
But you might even have something smoother…

How to analyze such flows?
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Interface ….?

A. Pockels, On the spreading of oil upon water”, Nature (1894)

Multiphase flows
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The problem of computing interfaces:  
the grid resolution 

Interface:
Scale ≃ 10^-9 m

Turbulence:
Largest Scale ≃ 1m
Smallest Scale ≃ 10^-3 m
3  orders of magnitude.
NP=10^3 x10^3 x10^3≃10^9

*for a 3D Cube (Reλ=85)
Interface 𝒪(10−9) Kolmogorov scale 𝒪(10−3) Large scales 𝒪(100){Here? {Here?

Length scale
3-4 Orders of magnitude  
In largest HPC centers!
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• Solving Navier-Stokes Eqs. in the whole domain?
• Solving Navier-Stokes Eqs. in separate domains?

Phase Tracking?

• Advection of a “color” function?
• Marker some points of the interface?

Flow Solution?

Introduction
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Continuos approach Sharp approach

Solving NS equation in all the domain, 
interface is treated as the rest of the fluid 
domain.
• Easy to implement, one-fluid approach.
• Surface tension forces undergo a 

“smoothing” operation.
• Velocity, density, viscosity profile are 

always smeared out.

Treat the interface as a discontinuity.
• 1. Domain mapping.
• 2. Ghost Fluid Method (GFM), solving each 

phase in the whole domain (real and ghost) 
and accounts for interface jump conditions 
(velocity, pressure, density, viscosity). Not 
always a “real” sharp approach…
Note: Sometimes, only few nodes of the 
ghost fluid required.

Phase A Phase B

Interface Phase A Ghost A Ghost B Phase B

J. Brackbill et al, JCP, 1992 
R. Scardovelli and S. Zaleski, ARFM, 1999 
R. Fedwik, JSC, 1999 
B. Lalanne et al, JCP, 2015  

Flow Solution
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Phase 
Tracking

Interface 
Tracking

Interface 
capturing

S.O. Unverdi and G. Tryggvason, A Front-Tracking Method for Viscous, 
Incompressible, Multi-fluid Flows, JCP, 1991 
C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the 
dynamics of free boundaries, JCP, 1981 
M. Sussmann et al, A level set approach for computing solutions to 
incompressible 2 Phase flow, JCP, 1994 
D. Jaqmin, Calculation of Two-Phase Navier–Stokes Flows Using Phase-
Field Modeling, JCP, 1999

Volume of Fluid (VOF)

Front Tracking (FT)

Level Set (LS)

Phase Field Model (PFM)

Phase Solution



2-4.09.2021, Gdansk, Poland
XIV Workshop & Summer School “Multiphase Flows”

Multiphase 
System

Flow

Phases

Interface 
capturing

Interface 
tracking

Ghost Fluid Method (GFM)

Level-Set (LS)

Phase Field Model (PFM)

Continuos 
Approach

Sharp
Approach

Volume of Fluid (VOF)

Front Tracking (FT)

Continuos

Boundary Fitted Methods

Flow and Phase Solution (recap)
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S.O. Unverdi and G. Tryggvason, A Front-Tracking Method for Viscous, 
Incompressible, Multi-fluid Flows, JCP, 1991; G. Trygvasson et al, A Front-
Tracking Method for the Computations of Multiphase Flow, JCP 2001;  A. 
Prosperetti and G.Tryggvason, Computational Methods for Multiphase Flow, 
Cambridge, 2009 

Marker on the interface:
Tracking using a Lagrangian approach:

Front

Interface is formed by segments (2D) or 
Elements (3D)

Flow is solved on the Eulerian Grid.

• Number of Markers:
Need to increase or decrease the number of 
markers if the interface stretches or 
compresses.

• Surface tension force:

Smoothing operation:
“Diffuse” the surface tension on the 
neighbor nodes of the eulerian grid. 

Communications Markers-Eulerian Grid

• Velocity of the markers:
Interpolation from eulerian grid.

• Coalescence & Breakage of interface?
Interface reconnection needs some special 
model/treatment.

Front Tracking (FT)
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Definition of a Marker or Color function X:
• X=0 Phase A
• X=1 Phase B
Mean value on the cell volume

Advection of the phase

• C=0 Phase A 
• 0<C<1 Interface 
• C=1 Phase B

• Need of a specific advection scheme and to 
reconstruct  the interface from a mean cell-
value.

• Coalescence & Breakage of interface?

Original SLIC Hirt & Nichols PLIC

Automatically accounted

R. Scardovelli and S. Zaleski, Direct numerical simulation of free surface and 
interfacial flow, Ann. Rev. Fluid, 1999 
A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase 
Flow, Cambridge, 2009 
C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics 
of free boundaries, JCP, 1981 

• Grid:
Use of Eulerian Grid for fluid and phase.

Volume of Fluid (VOF)
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Phase A

Phase B

Defining a marker function ϕ

(d, distance from the interface)

Interface

Phase A 
ϕ < 0

Phase B 
ϕ > 0

Interface 
ϕ = 0

Level-set function is advected by the equation:

Difficult to preserve as a distance function, need to 
reinizialitaze.

• Coalescence & Breakage of interface?
Topological change are automatically accounted, 
no closure models needed.

• Surface tension force?
Very accurate computation of curvature, force is 
“diffused” in 3 or more cells typically.

• Grid:
Use of Eulerian Grid for fluid and phase.

M. Sussmann et al, A level set approach for computing solutions to 
incompressible two-phase flow, JCP, 1994 
S. Osher and A. Sethian, F. propagating with curvature-dependent 
speed: Algorithms based on Hamilton-Jacobi formulations, JCP, 1988 
S. Osher and R. Fedwik, Level Set Methods and Dynamic Implicit 
Surfaces, Springer, 2003 
J.A. Sethian, Level Set Methods and fast marching methods, 
Cambridge, 1996

Level-set (LS)
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Phase A

Phase B

Interface

� = +1

� = �1
Cahn-Hilliard equation (diffusion)

, with   [  mobility]
∂ϕ
∂t

= − ∇ ⋅ Jϕ Jϕ = − ℳ∇μϕ ℳ

J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform 
system I, Interfacial free energy, JCP, 1958  

Phase Field Method (PFM)

Define a concentration  :ϕ

To find , Ginzburg-Landau energy functional (immiscible fluids):μϕ
Double-well potential + controlled mixing (interface)

F [ϕ, ∇ϕ] = ∫Ω
(f0 + fint) dΩ

f0 =
1
4 (ϕ − 1)2 (ϕ + 1)2

fint =
Ch2

2
|∇ϕ|2

−0.2

−0.1

0

0.1

0.2

−1 0 1

j

φ

Double-well potential

Therefore: μϕ =
δF (ϕ, ∇ϕ)

δϕ
= ϕ3 − ϕ − Ch2 ∇2ϕ

Phase A

Phase B

(Ch = we will see it later...)

(  is chemical potential)μϕ
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D. Jaqmin,Calculation of Two-Phase Navier–Stokes Flows Using Phase-
Field Modeling, JCP, 1999 

Recalling the expression of the chemical potential: μϕ = ϕ3 − ϕ − Ch2 ∇2ϕ

System at rest: μϕ = 0 → ϕ = tanh ( x

2Ch )

−1

−0.5

0

0.5

1

−0.5 0 0.5 1 1.5

φ

x

For a real multiphase system, Cahn 
and Peclet are of the order of:

Impossible to perform simulations, we 
enlarge the interface so that 
simulations are possible:

Ch = O(10�9) Pe = O(109)

Phase Field Method (PFM)

Ch = Dimensionless thickness of interface
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Interface 
Advection

When convection is also present:

Advection from the flow field u

@�

@t
+ u ·r� =

1

Pe
r2µ

Controlled 
Mixing

Restoring the interfacial equilibrium profile.

Note:  
Level Set, advection modify the profile, profile must 
be reinitialise. 
Phase Field Method, Chemical potential is able to 
restore and keep the profile during the computation.

D. Jaqmin,Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling, JCP, 1999

Phase Field Method (PFM)
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Multiphase 
System

Flow

Phases

Interface 
capturing

Interface 
tracking

Ghost Fluid Method (GFM)

Level-Set (LS)

Phase Field Model (PFM)

Continuos 
Approach

Sharp
Approach

Volume of Fluid (VOF)

Front Tracking (FT)

Continuos

Boundary Fitted Methods

Focus of present lectures
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Fil Rouge

1. Computational approaches to multiphase flows: a short introduction 

2. The sharp interface approach: numerical modeling, boundary conditions, 
application (stratified air/water flow) 

3. The Phase Field Method: recap on numerical modeling, application (oil 
transport in pipelines/channels) 
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Air

Water

1x
2x

3x

Boundary fitted Method:
Physical configuration
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Governing equations-Physical domain

∇ ⋅ u = 0
∂u
∂t

+ u ⋅ ∇u = − ∇p +
1

Re
∇2u

Algebraic mapping

ψ1 = x , ψ2 = y , ψ3 =
z

h + η(x, y, t)
, τ = t

Boundary fitted Method:
Equations and numerical modeling

Interface “deformation”
Reference height of the domain
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Governing equations-Physical domain

∂x = J ⋅ ∂ψ

∂X = (∂/∂x, ∂/∂y, ∂/∂z)T

J =
∂ψ
∂X

∂ψ = (∂/∂ψ1, ∂/∂ψ2, ∂/∂ψ3)T

Boundary fitted Method:
Equations and numerical modeling
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Fractional step technique

ũ − un

Δt
+

M−1

∑
q=0

αq∇ ⋅ (uu)n−q −
1

2Reτ
∇2(ũ + un) = 0,

Provisional time step

Convec_ve terms AB explicit:M = 2,α0 = 3/2,α1 = − 1/2;

Correction to obtain a divergence-free field

un+1 − ũ
Δt

+ ∇pn+1 = 0,

Taking divergence and assuming div-free field (@n+1)

Momentum equation (no pressure)

∇2pn+1 =
∇ ⋅ ũ
Δt

Obtain un+1, then pn+1

Diffusive terms CN implicit

Boundary fitted Method:
Equations and numerical modeling
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Numerical Implementation:
Spectral & pseudo-spectral methods

Methods to discretize differential operators 

• Idea: approximate a function (unknown, which satisfy PDE+BC), using a linear combination of test 
functions  

• This tests functions are global 

This brings some advantages for the representation of the derivatives 

Common to Finite difference/Finite 
elements methods 

For spectral methods: global 
functions are defined  
in each node and are not zero

u(x) ≃ ũ(x) =
N

∑
k=0

ckϕk(x)
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Discrete geometry
x(i) = (i − 1)

Lx

Nx − 1
→ i = 1,...Nx

y( j) = ( j − 1)
Ly

Ny − 1
→ j = 1,...Ny

z(k) = cos ( k − 1
Nz − 1

π) → k = 1,...Nz

Spatial discretization of the solution (Fourier+Chebyshev) 
Remember: approximate a function as the linear combination of  
test functions (which in this case are global)

f (x1, x2, x3) = ∑
n1

∑
n2

∑
n3

̂f (k1, k2, n3) Tn3
ei(k1x1 + k2x2)

k1 =
2πn1

Lx
; k2 =

2πn2

Ly
k2 = k2

1 + k2
2

Tn3
(x3) = cos [n3 cos−1 (x3/h)]

Numerical Implementation:
Spectral & pseudo-spectral methods
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Why pseudo-spectral? 

• Performing products in modal space,   

• Transform into physical, multiply, back to modal,  
• Aliasing error (2/3 rule) 

                             Aliasing of sin(-2x) by sin(6x) wave  

                             Aliasing of sin(-2x) by sin(10x) wave 

Pros & cons: Accuracy/Convergence; Good performances (FFTW) 
                     Not easy to code; Less flexible

𝒪 (N2)
𝒪 (N log2 N)

[Canuto et al. (1988)]

Numerical Implementation:
Spectral & pseudo-spectral methods

∂u
∂t

+ u ⋅ ∇u = − ∇p +
1

Re
∇2u
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Boundary conditions

∂η
∂t

+ ux
∂η
∂x

+ uy
∂η
∂y

= uz

Kinematic B.C.

1
Reτ ((τL − τG) ⋅ n) ⋅ n + pG − pL +

1
We

∇ ⋅ n −
1

Fr
η = 0

Interface

((τL − τG) ⋅ n) ⋅ ti = 0 , i = x, y

uG =
1
ℛ

uL; ℛ = ρL /ρG

Dynamic B.C. (B.C on stress and velocity)

Outer boundaries (Free-slip B.C.)

@z = 0

∂ux,y

∂z
=

∂p
∂z

= uz = 0

@z = ± h

Boundary fitted Method:
Equations and numerical modeling



2-4.09.2021, Gdansk, Poland
XIV Workshop & Summer School “Multiphase Flows”

A note on the Boundary Conditions

Boundary fitted Method:
Equations and numerical modeling
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Boundary fitted Method:
Equations and numerical modeling

The stress balance at the free surface is

τijnj = σ
∂nj

∂xj
ni − P0ni

τij = − Pδij + μ ( ∂ui

∂xj
+

∂uj

∂xi )
The interface can be described (implicit description) by:

F (x1, x2, x3) = x3 + 1 + ϵϕ (x1, x2)

For a Newtonian  fluid:

The surface unit normal  is:ni

ni =
∇F

|∇F|

Note: in the following  
can be used instead of 

(x1, x2, x3)
(x, y, z)
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Boundary fitted Method:
Equations and numerical modeling

Therefore, we get — using Taylor series exp. for :1 + x2 ≃ 1 +
x
2

−
x2

8
+

x3

16
− …

n1 =
∂F
∂x1

(|∇F|)−1 = ϵ
∂ϕ
∂x1

+ o (ϵ3)

The curvature can be computed as:

∇ ⋅ n = ϵ ( ∂2ϕ
∂x2

1
+

∂2ϕ
∂x2

2 )

n2 =
∂F
∂x2

(|∇F|)−1 = ϵ
∂ϕ
∂x2

+ o (ϵ3)

n3 =
∂F
∂x3

(|∇F|)−1 = 1 + o (ϵ2)
{
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Boundary fitted Method:
Equations and numerical modeling

Hence, the 3 components of the stress balance equations can be written as : 

μ[2
∂u1

∂x1
n1 + (∂u1

∂x2
+

∂u2

∂x1 ) n2 + (∂u1

∂x3
+

∂u3

∂x1 ) n3] − (P − P0) n1 = σ
∂nj

∂xj
n1

μ[2
∂u2

∂x2
n2 + (∂u1

∂x2
+

∂u2

∂x1 ) n1 + (∂u2

∂x3
+

∂u3

∂x2 ) n3] − (P − P0) n2 = σ
∂nj

∂xj
n2

μ[2
∂u3

∂x3
n3 + (∂u1

∂x3
+

∂u3

∂x1 ) n1 + (∂u2

∂x3
+

∂u3

∂x2 ) n2] − (P − P0) n3 = σ
∂nj

∂xj
n3

Previous equations, with  and  evaluated at the surface location , 

are exact equations.

ui P xS
3

xS
3 = − 1 − ϵϕ(x1, x2)
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Boundary fitted Method:
Equations and numerical modeling

Now we consider the free, wavy, surface as a perturbed surface about the mean position 
. To do this, we approximate any fluctuation  at the surface by a first order 

Taylor series expansion at 
x3 = − 1 y

x3 = − 1

y (xS
3) = y(−1) + ( xS

3⏟
Δx3=xS

3 −(−1)

+ 1)
∂y
∂x3

(−1) + ⋯ = y(−1) − ϵϕ
∂y
∂x3

(−1) + o(ϵ2)

Therefore we have:

P(xS
3 ) ≃ P(−1) − ϵϕ

∂P
∂x3

(−1)
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Boundary fitted Method:
Equations and numerical modeling

And recalling that: n1 = ϵ
∂ϕ
∂x1

; n2 = ϵ
∂ϕ
∂x2

; n3 = 1

∂nj

∂xj
= ϵ( ∂2ϕ

∂x2
1

+
∂2ϕ
∂x2

2 ){
P(xS

3 ) ≃ P0 + p(−1) − ϵϕ [ρg cos θ +
∂P
∂x3

(−1)];

…and that**(next slide):
∂ui

∂xj
(xS

3 ) ≃
∂ui

∂xj
(−1) − ϵϕ

∂
∂x3 [ ∂ui

∂xj
(−1)]

μ[2
∂u1

∂x1
n1 + (∂u1

∂x2
+

∂u2

∂x1 ) n2 + (∂u1

∂x3
+

∂u3

∂x1 ) n3] − (P − P0) n1 = σ
∂nj

∂xj
n1

Starting from the exact equations (evaluated at ):xs
3

μ[2
∂u2

∂x2
n2 + (∂u1

∂x2
+

∂u2

∂x1 ) n1 + (∂u2

∂x3
+

∂u3

∂x2 ) n3] − (P − P0) n2 = σ
∂nj

∂xj
n2

μ[2
∂u3

∂x3
n3 + (∂u1

∂x3
+

∂u3

∂x1 ) n1 + (∂u2

∂x3
+

∂u3

∂x2 ) n2] − (P − P0) n3 = σ
∂nj

∂xj
n3
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Boundary fitted Method:
Equations and numerical modeling

Note that in general:

This gives:

P(x3) = P0 + ρg cos θ (1 + x3) + p(x3) → therefore  P(−1) = P0 + p(−1);
∂p
∂x3

(−1) = ρg cos θ +
∂p
∂x3

(−1)

P(xs
3) ≃ P(−1) − ϵϕ

∂p
∂x3

(−1) ≃ P0 + p(−1) − ϵϕ [ρg cos θ +
∂p
∂x3

(−1)]
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Boundary fitted Method:
Equations and numerical modeling

We get:

μ[2 ϵ
∂ϕ
∂x1

∂u1

∂x1
+ ϵ

∂ϕ
∂x2 ( ∂u1

∂x2
+

∂u2

∂x1 ) +
∂u1

∂x3
+

∂u3

∂x1
− ϵϕ

∂
∂x3 ( ∂u1

∂x3
+

∂u3

∂x1 )] − ϵp
∂ϕ
∂x1

= 0

μ[2 ϵ
∂ϕ
∂x2

∂u2

∂x2
+ ϵ

∂ϕ
∂x1 ( ∂u1

∂x2
+

∂u2

∂x1 ) +
∂u2

∂x3
+

∂u3

∂x2
− ϵϕ

∂
∂x3 ( ∂u2

∂x3
−

∂u3

∂x2 )] − ϵp
∂ϕ
∂x2

= 0

μ[2( ∂u3

∂x3
− ϵϕ

∂
∂x3

∂u3

∂x3 ) + ϵ
∂ϕ
∂x1 ( ∂u1

∂x3
+

∂u3

∂x1 ) + ϵ
∂ϕ
∂x2 ( ∂u2

∂x3
+

∂u3

∂x2 )]
−p + ϵϕρg cos θ + ϵϕ

∂p
∂x3

= σϵ( ∂2ϕ
∂x2

1
+

∂2ϕ
∂x2

2 )
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Boundary fitted Method:
Equations and numerical modeling

Together with the dynamic BC, we also have the kinematic BC:

∂F
∂t

+ u ⋅ ∇F = 0

F(x1, x2, x3) = 1 + x3 + ϵϕ(x1, x2)

This gives:

ϵ
∂ϕ
∂t

+ u1
∂F
∂x1

+ u2
∂F
∂x2

+ u3
∂F
∂x3

= 0

ϵ
∂ϕ
∂t

+ u1ϵ
∂ϕ
∂x1

+ u2ϵ
∂ϕ
∂x2

+ u3 = 0

Therefore, ; we also expect ;  It can be also shown that u3 ∼ o (ϵ) p ∼ o (ϵ) u2 ∼ o(ϵ)

{
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Boundary fitted Method:
Equations and numerical modeling

From continuity, 
∂u1

∂x1
∼ o(ϵ)

It can be also shown that, in the neighborhood of the interface 
∂u1

∂x3
∼ o(ϵ);

∂u1

∂x2
∼ o(ϵ)

Such approach tells us that, at first order — order  —  all terms in which  is multiplied 

by  or  will vanish

ϵ ϵ
∂u1

∂xj
p
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Boundary fitted Method:
Equations and numerical modeling

Hence we have (1st order approximation of BC at the wavy surface, )x3 = − 1
∂u1

∂x3
+

∂u3

∂x1
= 0

∂u2

∂x3
+

∂u3

∂x2
= 0

2μ
∂u3

∂x3
− p + ϵϕρg cos θ = σϵ( ∂2ϕ

∂x2
1

+
∂2ϕ
∂x2

2 )
{

To write them in dimensionless form:

 with f surface fluctuation wrt u → uτ; x → h; f →
ϵϕ
h

x3 = − 1

After some algebra, and upon introduction of the following parameters:

Reτ =
ρuτh

μ
; Fr =

u2
τ

gh cos θ
; We =

ρu2
τ h

σ
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Boundary fitted Method:
Equations and numerical modeling

We get
2

Reτ

∂u3

∂x3
− p +

1
Fr

f =
1

We ( ∂2f
∂x2

1
+

∂2f
∂x2

2 )
We recall that  is the dimensionless deviation of the surface from  , 
which is computed from the kinematic condition:

f x3 = − 1

ϵ
∂ϕ
∂t

+ u3 + ϵ
∂ϕ
∂x1

u1 + ϵ
∂ϕ
∂x2

u2 = 0

In dimensionless form:
∂f
∂t

+ u3 +
∂f
∂x1

u1 +
∂f

∂x2
u2 = 0

Works fine for small wave steepness, ak < 0.01
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Boundary fitted Method:
Equations and numerical modeling

Assume now that the interface deformation is negligible, . 

Hence we have (0th order approximation of BC at the free surface, )

ϵ = 0, f = 0
x3 = − 1

{u3 = 0 (from kinema_c cond.)
∂u1

∂x3
= 0

∂u2

∂x3
= 0
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Boundary conditions

∂η
∂t

+ ux
∂η
∂x

+ uy
∂η
∂y

= uz

Kinematic B.C.

1
Reτ ((τL − τG) ⋅ n) ⋅ n + pG − pL +

1
We

∇ ⋅ n −
1

Fr
η = 0

Interface

((τL − τG) ⋅ n) ⋅ ti = 0 , i = x, y

uG =
1
ℛ

uL; ℛ = ρL /ρG

Dynamic B.C. (B.C on stress and velocity)

Outer boundaries (Free-slip B.C.)

@z = 0

∂ux,y

∂z
=

∂p
∂z

= uz = 0

@z = ± h

Physical configuration (recall)
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Physical problem

We =
ρLhu2

τ,L

γ
, Fr =

ρLu2
τ,L

gh(ρL − ρG)
, Reτ =

uτ,G2h
νG

=
uτ,L2h

νL

Liquid (l) : Water

Gas (g) : Air

Smaller (Surf. Tension dominates)

Larger (Gravity important) gh

lh

hp4
hp2

Simulation h[m] We Fr
S1 4.5E-02 170 8.5E-4 2.9E-6 2.03
S2 5E-02 170 7.6E-4 2.2E-6 1.93
S3 6E-02 170 6.3E-4 1.3E-6 1.4

Reτ Fr1/2 /We

Fr1/2 /We

Simulations &  Plan of experiments
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Wave amplitude

How to explain this behavior?

Fr1/2 /We

Fr1/2 /We

Transient growth of waves
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We express the variation of the interface 
area as (Hoepffner et al., PRL 2011):  

wl

pg
pl

dA
dt

∝ hwl

Consider the origin of a wave…
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We express the variation of the interface 
area as (Hoepffner et al., PRL 2011):  

wl

pg
pl

dA
dt

∝ hwl

Δp ∝ ρw2
l

Δp ∝
γ
r

wl ∝ r−1/2{

Consider the origin of a wave…
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We express the variation of the interface 
area as (Hoepffner et al., PRL 2011):  

dA
dt

∝ hwl

Δp ∝ ρw2
l

wl ∝ r−1/2{
A∝η2

r∝η
wl

pg
pl

Consider the origin of a wave…

Δp ∝
γ
r
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We express the variation of the interface 
area as (Hoepffner et al., PRL 2011):  

dA
dt

∝ hwl

Δp ∝ ρw2
l

wl ∝ r−1/2{
After some algebra: 

dη2

dt
∝

1
η1/2 η ∝ t2/5

A∝η2

r∝η
wl

pg
pl

Consider the origin of a wave…

Δp ∝
γ
r
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S1

S2

S3

η2
1/2

η ∝ t2/5

The proposed scaling is quite robust within 
the range of parameters investigated here

Whatever the value of the physical 
parameters, capillarity dominates at the 
beginning (Zonta et al. JFM 2015) 

t[s]

S1

S2

S3

η2
1/2

gravity +

capillary +

Transient growth of waves:
DNS vs simplified model
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Fr1/2 /We ↑

For non-negligible gravity, i.e. 

after the initial scaling we observe

t[s]

S1

S2

S3

η2
1/2

gravity +

capillary + η ∝ exp(t)

(resonance mechanism between waves 
and induced pressure/stress)

Lin et al. JFM 2008 

Janssen, Cambridge press 2008

Transient growth of waves:
DNS vs simplified model
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Gravity ↑ Capillarity ↑

Quasy-sinusoidal wavy interface Surface roughness

Wavenumber spectrum ̂η(kx) = ∫ ̂η(kx, ky)dky
cfr wave turbulence theory
Pushkarev & Zakharov, PRL 1996; Falcon et al., PRL 2007

Structure of the interface deformation
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Fr1/2 /We

Structure of the interface deformation
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 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  10  20  30  40  50  60

P D
/o

in
t

t[s]

As waves develop, we observe a drag 
increase (pressure drag+skin friction)

Structure of the interface deformation
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Fil Rouge

1. Computational approaches to multiphase flows: a short introduction 

2. The sharp interface approach: numerical modeling, boundary conditions, 
application (stratified air/water flow) 

3. The Phase Field Method: recap on numerical modeling, application (oil 
transport in pipelines/channels) 
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Inspiration:
Core Annular Flow (D.D. Joseph) 

Capillary force term

Method and apparatus for measuring characteristics of core-annular flow 
US PATENT 20050033545 A1 
Abstract 
An apparatus and method are disclosed […] core-annular flow (CAF) in a 
pipe […] the CAF may be developed from a lubricating fluid, such as 
water, and a fluid to be transported, such as oil, where the fluid to be 
transported forms the core region and the lubricating fluid forms the 
annular region.

“There is a strong tendency for two fluids to arrange 
themselves so that the low-viscosity constituent is in 
the region of high shear.  
This gives rise to a kind of a gift of nature in which the 
lubricated flows are stable, and it opens up very 
interesting possibilities for technological applications 
in which one fluid is used to lubricate another “

Credit: ALFA Research Group 
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Hypothesis: 
-Matched density and incompressible flow. 
-Different viscosity of the two phases.

Jacqmin,Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling, JCP (1999)   
Badalassi et al. ,Computation of multiphase systems with phase field models, JCP (2003)   
Yue et al, A diffuse-interface method for simulating two-phase flows of complex fluids, JFM (2004)  
Kim, A continuous surface tension force formulation for diffuse-interface models, JCP (2005)

Phase Field Method (PFM)

Flow driven by a constant 
mean pressure gradient

Viscosity Contrast

Capillary forces

Surface tension forces

Exchange of momentum between the phases

Numerical Implementation

{ {
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∇ ⋅ u = 0

∂u
∂t

+ u ⋅ ∇u = − ∇P +
1

Reτ
∇2u +

3

8

1
WeCh

μ∇ϕ

∂ϕ
∂t

+ u ⋅ ∇ϕ = +
1

Pe
∇2μ

μ = ϕ3 − ϕ − Ch2 ∇2ϕ

Vorticity-Velocity formulation  
(curl+twice curl of NS+Vectorial identity)

∂ω
∂t

= − ∇ × S +
1

Reτ
∇2ω

∇ × (∇ × u) = ∇(∇ ⋅ u) − ∇2u

∂ (∇2u)
∂t

= ∇2S − ∇(∇ ⋅ S) +
1

Reτ
∇4u (S = − u ⋅ ∇u − δ1, j +

3

8

1
WeCh

μ∇ϕ)

Numerical Implementation:
Spectral & pseudo-spectral methods
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∂ω3

∂t
=

∂S2

∂x1
−

∂S1

∂x2
+

1
Reτ

∇2ω3

∂ (∇2u3)
∂t

= ∇2S3 −
∂

∂x3

∂Sj

∂xj
+

1
Reτ

∇4u

This leads to the following system

∂u1

∂x1
+

∂u2

∂x2
= −

∂u3

∂x3

∂u2

∂x1
−

∂u1

∂x2
= ω3

∂ϕ
∂t

= Sϕ +
s

Pe
∇2ϕ −

Ch2

Pe
∇4ϕ

(S = − u ⋅ ∇u − δ1, j +
3

8

1
WeCh

μ∇ϕ)

Sϕ = − u ⋅ ∇ϕ +
1

Pe
∇2ϕ3 −

1 + s
Pe

∇2ϕ; s =
4PeCh2

Δt

Numerical Implementation:
Spectral & pseudo-spectral methods
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Numerical Implementation:
Spectral & pseudo-spectral methods

Recall: Methods to discretize differential operators 

• Idea: approximate a function (unknown, which satisfy PDE+BC), using a linear combination of test 
functions  

• This tests functions are global 

This brings some advantages for the representation of the derivatives 

Common to Finite difference/Finite 
elements methods 

For spectral methods: global 
functions are defined  
in each node and are not zero

u(x) ≃ ũ(x) =
N

∑
k=0

ckϕk(x)
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Discrete geometry
x(i) = (i − 1)

Lx

Nx − 1
→ i = 1,...Nx

y( j) = ( j − 1)
Ly

Ny − 1
→ j = 1,...Ny

z(k) = cos ( k − 1
Nz − 1

π) → k = 1,...Nz

Spatial discretization of the solution (Fourier+Chebyshev) 
Idea: approximate a function as the linear combination of  
test functions (which in this case are global)

f (x1, x2, x3) = ∑
n1

∑
n2

∑
n3

̂f (k1, k2, n3) Tn3
ei(k1x1 + k2x2)

k1 =
2πn1

Lx
; k2 =

2πn2

Ly
k2 = k2

1 + k2
2

Tn3
(x3) = cos [n3 cos−1 (x3/h)]

Numerical Implementation:
Spectral & pseudo-spectral methods
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ik1 ̂u1 + ik2 ̂u2 +
∂

∂x3
̂u3 = 0

∂ ̂ω3

∂t
= ik1

̂S2 − ik2
̂S1 +

1
Reτ ( ∂2

∂x2
3

− k2) ̂ω3

∂
∂t ( ∂2 ̂u3

∂x2
3

− k2 ̂u3) = − k2 ̂S3 − ik1
∂ ̂S1

∂x3
− ik2

∂ ̂S2

∂x3
+

1
Reτ (k4 ̂u3 +

∂4 ̂u3

∂x4
3

− 2k2 ∂2 ̂u3

∂x2
3 )

∂ ̂ϕ
∂t

= ̂Sϕ + ( ∂2

∂z2
− k2) s

Pe
−

Ch2

Pe ( ∂2

∂z2
− k2) ̂ϕ

Numerical Implementation:
Spectral & pseudo-spectral methods

ω̂3 = ik1 ̂u2 − ik2 ̂u1
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ik1 ̂u1 + ik2 ̂u2 +
∂ ̂u3

∂x3
= 0

ω̂3 = ik1 ̂u2 − ik2 ̂u1

( ∂2

∂x2
3

− β2) ( ∂2

∂x2
3

− k2) ̂u3
n+1 =

Ĥn

γ

Numerical Implementation:
Spectral & pseudo-spectral methods

Introducing the ‘’historical’’ terms H (lump together known functions); 
Time splitting: viscous/diffusive term, Crank-Nicolson; convective term: Adams-Bashfort

( ∂2

∂x2
3

− β2) ̂ω3
n+1 = −

ik1Hn
2 − ik2Hn

1

γ
γ =

Δt
2Reτ

; β2 =
1 + γk2

γ

( ∂2

∂x2
3

− k2 −
s

2Ch ) ( ∂2

∂x2
3

− k2 −
s

2Ch ) ̂ϕn+1 =
̂Hϕ

n

γ

Helmholtz equations, solved by a 
Chebyshev-Tau method; 
Influence matrix method to solve 
the 4 order equations
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x

z
y

#0

#1

. . .

#N

nz,CPU

n y ,
CP

U

x

z
y

#0

#1

. . .

#N nz,CPU

1D domain decomposition 
“Slab”

2D domain decomposition 
“Pencil”

Numerical Implementation:
Spectral & pseudo-spectral methods
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Direct Numerical Solution (DNS) of NS and CH equations, no other model.

Computational Domain

Space Discretization: 
• X Periodic direction (Fourier) 
• Y Periodic direction (Fourier) 
• Z Wall-normal (Chebychev-Tau)

Time Discretization: 
• N-S: Crank-Nicolson/Adams-Bashforth scheme 
• C-H: Crank-Nicolson/Euler scheme

C.Canuto and A. Quarteroni, Spectral and pseudo-spectral methods for parabolic  
problems with non periodic boundary condition. 

Method:

Numerical method (Recap)

Solver NS (Vorticity-Velocity Formulation):
Curl of NS (Vorticity)

CH:

Twice Curl of NS 
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• Solve for the 3rd component of vorticity  
• 2nd order PDE 
• Single Helmholtz solver

• Solve for the 3rd component of velocity 
• 4th order PDE 
• Double Helmholtz solver, Influence Matrix Method

• Solve for phi 
• 4th order PDE 
• Double Helmholtz solver

• MPI Paradigm, 2D Domain decomposition

Physical domain

MPI

Spectral domain

With no-flux BC 𝝓 is conserved.

Numerical method (Recap)

C.Canuto and A. Quarteroni, Spectral and pseudo-spectral methods for parabolic  
problems with non periodic boundary condition. 
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Weber Number (We): Viscosity Ratio (λ):

Low We 

High We High λ  
(Water+Oil)

Low λ 
(Water+Hexane) 

� =
⌘d
⌘c

=
Drop Viscosity

Continuos Viscosity
We =

⇢u2
⌧h

�
=

Inertial Forces

Surface Tension Forces

Physical parameters
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NO SLIP AT THE WALLS 90° CONTACT ANGLE 

Boundary Conditions:

FLOW FIELD PHASE FIELD

PERIODICITY ALONG X and Y

• Phase Field 
• Flat Interface 
• Layer Thickness 45 w.u. 
•  Total height 600 w.u.

Initial Conditions:

• Flow Field 
• Single Phase Flow .Reτ = 300

ui(±h) = 0
@�

@z
(±h) =

@3�

@z3
(±h) = 0

S. Ahmadi et al, Turbulent Drag Reduction by a Near Wall Surface Tension Active 
Interface, FTAC (2018) 
S. Ahmadi et al, Turbulent drag reduction in channel flow with viscosity stratified 
fluids, CEF (2016)

Simulations Setup
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• Weber Number, inertia over interfacial tension, 
considering oil/water:

We =
⇢u2

⌧h

�
= 0.5

• Reference shear Reynolds number (oil):

Re⌧ =
⇢u⌧h

⌘o
= 300

• Peclet number (interface relaxation time): 

We consider 3 different viscosity ratio λ : 
(ratio between the viscosity of the two phases)

� =
⌘w
⌘o

=
Water Viscosity

Oil Viscosity

• Cahn number (interfacial layer thickness):

Phase field parameters:

Flow parameters:

Pe = 150

Ch = 0.02
F. Magaletti et al, The sharp-interface limit of the Cahn–Hilliard/Navier–
Stokes model for binary fluids, JFM (2015) 
S. Ahmadi et al, Turbulent Drag Reduction by a Near Wall Surface Tension 
Active Interface, FTAC (2018) 
S. Ahmadi et al, Turbulent drag reduction in channel flow with viscosity 
stratified fluids, CEF (2016)

Simulations Setup

# λ Grid (Nx x Ny x Nz)

SP - 512 x 256 x 257

S1 1,000 512 x 256 x 257

S3 0,500 512 x 256 x 513

S4 0,250 1024 x 512 x 513
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XIV Workshop & Summer School “Multiphase Flows”S. Ahmadi et al, Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface, FTAC (2018) 

S. Ahmadi et al, Turbulent drag reduction in channel flow with viscosity stratified fluids, CEF (2016)

Visualization
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λ=0.250

λ=1.000

Single Phase

Visualization
Ux0 30
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λ=0.250

Single Phase

λ=1.000

Visualization
Ux0 30

DR driven by σ

Relocal ∝
h
μ

↓

Roccon, Zonta, Soldati, J. Fluid Mech., 70, 040801 (2019)

DR driven by λ

Relocal ∝
h
μ

↑
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Top WallBottom Wall

Even for λ=1 Drag Reduction

Constant Mean Pressure Gradient

0

5

10

15

20

25

0 100 200 300 400 500 600

〈ux〉

z+

Single Phase
λ = 1.00

λ = 0.50

λ = 0.25
Interface

Mean Velocity Profile
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Considering a single phase-flow, from literature:

A. Wietrzak et al., Wall shear stress and velocity in a turbulent axisymmetric boundary layer, JFM (1994) 
K.J. Colella et al., Measurements and scaling of wall shear stress fluctuations, EF (2003) 
P. Leanars et al, Rare back-flow and extreme wall-normal velocity fluctuations in near-wall turbulence, PoF (2012)

Positive 
Shear stress

Negative 
 Shear stress

Wall

Mean Flow

An important character: Wall-shear stress

Re=180,590,1000
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10−4

10−3

10−2

10−1

100

−2 −1 0 1 2 3 4

PDF

τw−〈τw〉
〈τw〉

Single Phase
Top Wall

Bottom Wall

Top: Increase of the fluctuations..  
Bottom: Slight increase of the fluctuations.

λ=0.250

10−4

10−3

10−2

10−1

100

−2 −1 0 1 2 3 4

PDF

τw−〈τw〉
〈τw〉

Single Phase
Top Wall

Bottom Wall

⌧ 0w =
⌧w � h⌧wi

h⌧wi

P. Leaners et al, Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence, PoF (2017)  
S. Ahmadi et al, Turbulent drag reduction in channel flow with viscosity stratified fluids, C&F (2017)                                                         
S. Ahmadi et al, Turbulent drag reduction by a near wall surface tension active interface, FT&C (2018).                                                   

Consider the viscosity-stratified case and the wall shear stress fluctuations      :

⌧ 0w =
⌧w � h⌧wi

h⌧wi
Top Wall

Bottom Wall

⌧ 0w < �1 Back-Flow Event

Top: Shape is modified, fluctuations reduced.  
Bottom: Slight increase of the fluctuations.

λ=1.000

Wall-shear stress:stratified case
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-1

0

1

-60 -30 0 30

τw−〈τw〉
〈τw〉

η
+

-1

0

1

-60 -30 0 30
10−3

10−2

10−1

100

λ=1.000

Top Wall

Joint-PDF between the wall shear stress and the interface elevation (Top Wall):  
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+
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x
+

Interface Elevation

Wall Shear Stress

Interface-wall interaction
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-1

0

1

-60 -30 0 30

τw−〈τw〉
〈τw〉

η
+

-1

0

1

-60 -30 0 30

10−3

10−2

10−1

100

-1

0

1

-60 -30 0 30

τw−〈τw〉
〈τw〉

η
+

-1

0

1

-60 -30 0 30

λ=1.000 λ=0.250

λ=1.000 
Correlation between Wall Shear Stress  

And Interface Elevation

λ=0.250 
Smaller Structures, interaction is weaker.

Interface-wall interaction
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Simulations of turbulent channel flow 
Common used approaches: 
• Constant Flow Rate (CFR)  
• Constant Pressure Gradient (CPG) 

Study of DR with CFR and CPG might lead to 
some problems and influence the results: 
• Different power injected 
• Comparison is difficult. 

Third possible approach:  
• Constant power input (CPI) 
Power injected is kept constant adapting the 
mean pressure gradient to the flow-rate:

Constant Power Input (CPI) Simulations

Roccon et al., Energy balance in lubricated drag-reduced turbulent 
channel flow JFM (2021)  
Roccon et al., Turbulent drag reduction by compliant lubricating layer, 
JFM-R (2019) 
Ahmadi et al., Turbulent drag reduction in channel flow with viscosity 
stratified fluids, C&F (2018) 
Ahmadi et al., Turbulent drag reduction by a near wall surface tension 
active interface, FT&C (2018)

0.8

0.9

1.0

1.1

1.2

0.8 0.9 1.0 1.1 1.2

CFR

C
P

G

C
P
I

[Qt]

[px]

SP

Drag 
Reduction

Drag 
Increase

Single-phase

Mean pressure gradient Bulk velocity (Flow-rate)
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We consider 5 different viscosity ratios λ : 
(ratio between the viscosity of the thin 
lubricating layer over the main layer)

# λ
SP -
S1 0,25
S2 0,50
S3 1,00
S4 2,00
S5 4,00

Characteristic velocity  based on the 
power injected in the system:

CPI Simulations
Simulation setup

Grid resolution: 
512 x 256 x 257 (Single-phase) 
1024 x 512 x513 (Stratified cases)

Re⇧ =
⇢u⇧h

µ2
= 12220

<latexit sha1_base64="boVNL5FApVxLqRTU40kMC42hS3w="></lat exit>

Phase field parameters:

Roccon et al., Energy balance in lubricated drag-reduced turbulent channel flow, JFM (2021)  
Roccon et al., Turbulent drag reduction by compliant lubricating layer, JFM-R (2019) 
Ahmadi et al., Turbulent drag reduction in channel flow with viscosity stratified fluids, C&F (2018) 
Ahmadi et al., Turbulent drag reduction by a near wall surface tension active interface, FT&C (2018)

� =
µ1

µ2
=

Thin Layer

Main layer
<latexit sha1_base64="CUr5Z3dJOpYIZyaME4cJxZqtic8="></latexit>

Flow parameters: 
Reynolds number (inertia/viscous)

Weber number (inertia/interfacial)

*Roughly corresponding 
to a shear Re=300 (SP).
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Results
Visualizations

Roccon et al., Energy balance in 
lubricated drag-reduced turbulent 
channel flow JFM (2021) 

Interface: thin white line

Turbulence in the lubricating 
layer for λ < 1

Relaminarization in the 
lubricating layer for λ > 1
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Results
Visualizations

Flow structures, focus on the lubricating layer (horizontal 
plane close to the top wall, )z /h = 0.97

Laminar patches and 
turbulence,  λ < 1

Relaminarization,  (only 
 is shown)

λ > 1
λ = 1

Roccon et al., Energy balance in 
lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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Mean velocity profiles:

Flow-rates and pressure gradient:

Drag reduction (CPI approach): 
Flow-rate increases and at the same time 

the mean pressure gradient decreases.
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Increasing steepness  
for decreasing λ 

Different flow structure  
(see previous slides)

Roccon et al., Energy balance in 
lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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Results
The energy box concept

Mean and Turbulent Kinetic energy budgets (single 
phase flow) MKE =

1
2

⟨ui⟩⟨ui⟩; TKE =
1
2

u′ iu′ i

Where: 
 

 
 

 
 

 
 

 

Πm = Power injected by mean pressure gradient
Pk = Produc_on of TKE
Tm = Work done by Reynolds stresses
Dm = Viscous diffusion of MKE
ϵm = Mean flow viscous dissipa_on
Πk = Pressure diffusion
Tk = Turbulent diffusion
Dk = Viscous diffusion of TKE
ϵk = Turbulent viscous dissipa_on

Integrating over the domain: 
 Pk + Πm + ϵm = 0; − Pk + ϵk = 0; Roccon et al., Energy balance in 

lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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Results
The energy box concept

Energy Box representation 

Integrating over the domain: 
 Pk + Πm + ϵm = 0; − Pk + ϵk = 0; Roccon et al., Energy balance in 

lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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Results
The energy box concept

For the lubricated channel, we introduce the phase-averaged energy box (this grants us access to 
the exchange of energy between the two phases). 
For example, take a “virtually-lubricated” channel (single phase channel, assuming a virtual 
separation interface —located where the real interface of the lubricate channel is ) 

We introduce an energy transfer efficiency:  

ℋsp =
ϵm,2

ϵm,2 + ϵk,2
= 0.456

i.e. energy dissipated by mean flow, compared 
to the maximum theoretical energy contained in 
the primary layer

Roccon et al., Energy balance in 
lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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Results
The energy box concept

Note: DR when  
increases and  
decreases

ϵm
ϵk

 λ = 1 :
ℋ/ℋsp = 1.11

 λ = 0.25 :
ℋ/ℋsp = 1.06

 λ = 4 :
ℋ/ℋsp = 0.99

Roccon et al., Energy balance in 
lubricated drag-reduced turbulent 
channel flow JFM (2021) 
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