

COMETE Training School on Direct numerical simulation of solid particles, droplets and bubbles in turbulence

Simulation approaches to HPC of multiphase turbulent flows

Cristian Marchioli University of Udine & CISM

Multiphase Flow

University of Udine

Laboratory

Wien 11-13 February 2020

Particle-laden flows are multi-scale

& require hierarchic approaches

What's common to (almost) all particle-laden turbulent flows?

Are we looking at a particle-laden flow or at the bottom of a swimming pool on a sunny summer day?

What's common to (almost) all particle-laden turbulent flows?

Particle number density in homogeneous isotropic turbulence (Re $_{\lambda}$ =51, St=1)

Particles concentrate preferentially in high-strain, low-vorticity regions due to their inertia

Near-wall particles-turbulence interactions

In wall-bounded flows inertial particles concentrate preferentially but also accumulate at the wall

Time evolution of particle distribution in a turbulent channel (Re_H =9000, d_p =100 µm)

Near-wall particles-turbulence

interactions

In bounded flows, inertial particles concentrate preferentially but also accumulate at the wall, segregating into low-speed fluid streaks

Streamwise direction, x

Near-wall particles-turbulence interactions

Instantaneous particle distribution in the viscous sublayer (ref. case: St=25 Particles in TCF at Re=150)

Particles tend to sample:

STA (Short Term Accumulation): regions where particles reach the near-wall layer

LTA (Long Term Accumulation): regions where particles remain trapped

Near-wall particles-turbulence

interactions

Deposition & re-entrainment rates also change depending on particle inertia

What's common to (almost) all particle-laden turbulent flows?

My answer is: particles tend to deviate from fluid streamlines!

Source of bias: particle inertia!

Deviations depend on the particle response time to the underlying flow field:

Particle Relaxation Time:

Flow Time Scale:

 au_f

 $\tau_p =$

Particle Stokes number:

 $\frac{\rho_p d_p^2}{18\mu}$

A numerical approach to study preferential concentration

The simplest dynamical model to study "inertia-driven" preferential concentration considers small **pointwise** spherical particles (only source of bias is inertia!)

 $d\mathbf{v}_p =$ d*t*

Force model: Drag

Phenomenology of preferential concentration of small particles

Physics learned from this simple model (in DNS):

Qualitative explanation of particle deposition/entrainment in DILUTE turbulent boundary layers

Phenomenology of preferential concentration of small particles

Physics learned from this simple model (in DNS):

Qualitative explanation of particle deposition/entrainment in DILUTE turbulent boundary layers

Phenomenology of preferential concentration of small particles

Physics learned from this simple model (in DNS):

Qualitative explanation of particle deposition/entrainment in DILUTE turbulent boundary layers

Interlude: Coherent structures in TBL

A (perhaps) naive question you might want to ask ("but were afraid to") is: what is a coherent structure?

Formal definition of CS: some spatio-temporally compact region of the flow over which some macroscopic quantity - such as velocity, vorticity or kinetic energy - is strongly correlated (see F. Waleffe, R.J. Adrian and co-workers).

Example of turbulent coherent vortices in channel flow

Interlude: Coherent structures in TBL

Observation: Structure of the fluid velocity fluctuations near the wall (ref. Case: turbulent Poiseuille channel flow)

Red: Low-speed Streaks (near-wall regions with negative streamwise velocity fluctuations)

COMETE

Interlude: Coherent structures in TBL

Red: Low-speed Streaks (near-wall regions with negative streamwise velocity fluctuations)

Wien 11-13 January 2020

Multiphase Flow

University of Udine

Laboratory

Interlude: Coherent structures in TBL

Turbulent transfer at the wall: Reynolds stresses

Interlude: Coherent structures in TBL

Turbulent transfer at the wall: Reynolds stresses

Interlude: Coherent structures in TBL

Turbulent transfer at the wall: Sweeps, ejections, low-speed streaks

Red: Low-speed Streak

Blue: Ejection

Green: Sweep

Interlude: Coherent structures in TBL

Turbulent wall transfer: Sweeps, ejections, streamwise vortices

Red: Clockwise Streamwise Vortex

?????: Counter Clockwise Streamwise Vortex

Green: Sweep

Blue: Ejection

Interlude: Coherent structures in TBL

Red: Low Speed Streak

Blue: Clockwise Streamwise Vortex

Green: Counter- Clockwise Streamwise Vortex

Turbulence regeneration cycle: Physical explanation of the Reynolds stresses

End of the interlude...

So far, we only considered inertial effects on preferential concentration... However, inertia is not the only source of bias!

Complexity arises from

Flexibility

Anisotropy of turbulence + Anisotropy of particles!

Multiphase Flow

University of Udine

Laboratory

Motility

Source of bias other than inertia require additional modelling

 $x(t), v(x(t),t), \omega(x(t),t)$

 $\mathbf{x}(t,\lambda), \mathbf{v}(\mathbf{x}(t,\lambda),t,\lambda), \boldsymbol{\omega}(\mathbf{x}(t,\lambda),t,\lambda)$

Additional particle functionalities must be modelled!

 $\mathbf{x}(t,\lambda), \mathbf{v}(\mathbf{x}(t,\lambda),t,\lambda), \boldsymbol{\omega}(\mathbf{x}(t,\lambda),t,\lambda), \mathbf{o}(\mathbf{x}(t,\lambda),t,\lambda)$

 $\mathbf{x}(t,\lambda), \mathbf{v}(\mathbf{x}(t,\lambda),t,\lambda), \omega(\mathbf{x}(t,\lambda),t,\lambda), \mathbf{o}(\mathbf{x}(t,\lambda),t,\lambda), \psi(\mathbf{x}(t,\lambda),t,\lambda)$

6

(I) Modelling shape effects: Deviations from sphericity

Colloidal suspension in continuous stirred tank

MACRO

Pictures: M. Soos, D. Marchisio, J. Sefcik, AIChE J. (2013) Soos, et al., J. Colloid Interface Sci. (2008)

Multiphase Flow Laboratory University of Udine

Particles in the colloidal and micro-meter size range stick together and form aggregates.

Fluid turbulence can produce shear-induced breakup of the aggregates.

(I) Modelling shape effects: Deviations from sphericity

Pictures: M. Soos, D. Marchisio, J. Sefcik, AIChE J. (2013) Soos, et al., J. Colloid Interface Sci. (2008) Polystyrene aggregate in homogeneous and isotropic turbulent flow (resolved by PTV).

 $Re_{\lambda} \approx 70$ $\eta = 0.33 \,\mathrm{mm}$ $\tau_{\eta} = 0.1 \,\mathrm{s}$ $\langle \varepsilon \rangle \approx 0.9 \,\mathrm{cm}^2 \,\mathrm{s}^{-3}$ $L/\eta = 120$ $G = 10 \,\mathrm{s}^{-1}$

The aggregate is subject to **fluctuating hydrodynamic stresses** that act along its trajectory...

Interlude: Energy dissipation rate

(From: S.B. Pope, Turbulent Flows)

Reynolds decomposition

Multiphase Flow

University of Udine

Laboratory

From

$$\frac{\mathbf{D}k}{\mathbf{\bar{D}}t} + \nabla \cdot \mathbf{T}' = \mathcal{P} - \varepsilon, \quad \text{with} \quad T'_i \equiv \frac{1}{2} \langle u_i u_j u_j \rangle + \langle u_i p' \rangle / \rho - 2\nu \langle u_j s_{ij} \rangle.$$

$$\varepsilon \equiv 2\nu \langle s_{ij} s_{ij} \rangle$$

with
$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
 Fluctuating rate of strain

or simply dissipation. The fluctuating velocity gradients $(\partial u_i/\partial x_j)$ working against the fluctuating deviatoric stresses $(2vs_{ij})$ transform kinetic energy into internal energy. (As illustrated in Exercise 5.22, the resulting rise in

Interlude: Energy dissipation rate

It can be shown that:

 $\varepsilon \equiv v \left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right\rangle + v \frac{\partial^2 \langle u_i u_j \rangle}{\partial x_i \partial x_j}$

Pseudo-dissipation

Interlude: Energy dissipation rate

It can be shown that:

 $\varepsilon \equiv v \left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right\rangle + v \frac{\partial^2 \langle u_i \rangle}{\partial x_i}$ $u_i u_j$

Pseudo-dissipation

Typically small...

Interlude: Energy dissipation rate

It can be shown that:

This comes from:

$$\varepsilon \equiv v \left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right\rangle + v$$

Pseudo-dissipation

 $\epsilon =$

Typically small...

$$v\left\langle \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right\rangle = \frac{15}{2} v\beta = 15 v \left\langle \left(\frac{\partial u_1}{\partial x_1} \right)^2 \right\rangle$$

1D surrogate

Multiphase Flow

University of Udine

Laboratory

Wien 11-13 January 2020

In homogeneous isotropic turbulence:

Interlude: Energy dissipation rate

Observations:

- Dissipation of kinetic energy by viscosity in fully-developed turbulence occurs primarily at the smallest flow scales
- Dissipation is highly intermittent: Local values of ε can be orders of magnitude larger than the mean
- This because of (1) large velocity gradients AND/OR (2) tiny shear layers across which velocity varies significantly

- Dissipation can be connected to a locally varying scale, η(x,t), associated with the fluctuations in the velocity gradients field
- Dissipation occurs over a range of fluctuating scales η

Interlude: Energy dissipation rate

(From: Babler et al., JFM, vol. 766, 2012)

Mean energy dissipation along the wall-normal direction in turbulent channel flow (Babler et al., JFM, 2015)

Note: \mathcal{E}_o = volume-averaged mean dissipation

PDF of mean energy dissipation for different instances of turbulent flow (Babler et al., JFM, 2015)

End of the interlude...

(I) Modelling shape effects: Deviations from sphericity

Non-spherical particles: translation and rotation are coupled!

Irregular (e.g. aggregates, agglomerates)

No mathematical model available!

Regular (e.g. ellipsoids, rods or disks)

Equations of motion can be derived! (e.g. slender body theory)

(I) Modelling shape effects: Deviations from sphericity

Duroplastic particles

Quartz particles

Challenges for non-spherical particles with irregular shape:

- Model all relevant forces acting on particles:
 - Correlations for aerodynamic coefficients currently based on statistical distributions
 - No measure available for shearinduced and rotation-induced lift
- Model wall-collision:
 - need to 'convert' particles into equivalent spheres
 - Need to obtain statistical measures of restitution and friction coefficients

(II) Modelling size effects: Pointwise vs Fully-resolved

Point particles:

- Size << (DNS) grid spacing
- Flow around the particle not resolved
- Particles moved around by drag, lift, ...
- Up to O(10⁸) particles

Fully-resolved particles:

- Size > grid spacing
- Hydrodynamics and hydrodynamic forces resolved
- Direct coupling between particle motion and fluid flow
- Up to O(10⁴) particles

(II) Modelling size effects: Pointwise vs Fully-resolved

What can we learn from fully-resolved particle simulations?

In the context of the Eulerian-Lagrangian approach:

(II) Modelling size effects: Pointwise vs Fully-resolved

What can we learn from fully-resolved particle simulations?

In the context of the Eulerian-Lagrangian approach:

Rotation rate of rods/ellipsoids

Calculation of rotation rates provides access to statistics of the fluid velocity gradients

Сомете

(II) Modelling size effects: Pointwise vs Fully-resolved

What can we learn from fully-resolved particle simulations?

In the context of the Eulerian-Lagrangian approach:

Rotation rate of rods/ellipsoids

<u>C</u>

(II) Modelling size effects: Pointwise vs Fully-resolved

What can we learn from fully-resolved particle simulations?

In the context of the Eulerian-Lagrangian approach:

Rotation rate of rods/ellipsoids

Dispersion of rigid fibers in turbulent channel flow (Marchioli et al., 2010)

Isolated flexible fiber in unbounded shear flow (Lindstrom & Uesaka, Phys. Fluids, 2007)

Flexible fibers (with different bending stiffness) in linear shear flow (Switzer, PhD thesis, 2002) Multiphase Flow Laboratory, Dept. Engineering & Architecture University of Udine (Italy)

(III) Modelling deformability: Rigid vs Flexible particles

...or "complex" flexible fibers in "simple" shear flow

Elastic fiber in viscous cellular flow (Quennouz et al, JFM 2015)

Multiphase Flow

University of Udine

Laboratory

Flexible fiber motion in the flow field of a cylinder (Vakil & Green, IJMF, 2011)

Wien 11-13 January 2020

Further modeling issues: Particle-fluid coupling (2-way coupling)

<u>One-way coupling</u> (VF<10⁻⁶; IS >100):

- Particles do not influence significantly the flow field
- → Allows to investigate the effect of flow on particle motion/dispersion/distribution
- \rightarrow Suffices to solve for particle momentum balance (cheap)

<u>Two-way coupling</u> (10⁻⁶ <VF<10⁻⁴; 10<IS<100)

Particles influence the flow field dynamics

- → allows investigation of flow modulation by particles
- → Need to solve for particle AND fluid momentum balance (fair)

More complex coupling (10⁻³ <VF<1; 1< IS<10)

Particles influence the flow field dynamics

- → allows investigation of flow modulation by particles
- → Need to solve for particle AND fluid momentum & mass balance (expensive!)

2-way coupling: The fluid *feels*

particle momentum exchange

TWO-WAY EFFECT (point-force approximation)

Further modeling issues: Particleparticle collisions (4-way coupling)

Physics learned from our simple model (in DNS):

Depending on relative velocity between colliding particles:

Wall

Buffer layer Viscous sublayer

Wall

Multiphase Flow

Laboratory

University of Udine

Further modeling issues: Particleparticle collisions (4-way coupling)

PDF of the relative velocity between two colliding particles for St=10.7

Сомете

Further modeling issues: Particleparticle collisions (4-way coupling)

Modelling all relevant sources of bias allows us to tackle important questions:

How do particles-turbulence interactions give rise to large-scale macroscopic patterns and dynamics?

What is the underlying physics behind this macroscopic behaviour?

