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Introduction

• Multiphase flows

– Dispersed flows with particles

• Numerical approach

– Euler-Lagrange framework

• Euler: Carrier fluid phase

• Lagrange: Particulate phase 

– Point-particle method

• Particle size << Kolmogorov length scale

• Flow around the particle → viscous regime
Particle-Fluid 

interaction is modeled 
𝑅𝑒𝑝 ≪ 1 𝑅𝑒𝐺 ≪ 𝑅𝑒𝑝

𝑆𝑡𝑝 ≪ 1𝑑𝑝 ≪ 𝜂𝐾

𝑢

𝑑𝑝
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Corona virus

Wildfire smoke

Wildfire smoke can persit in the air for
several days and even months

can carry smaller
particles such as
viruses

Visibility limits for the naked eye
≈ 10 − 40 𝜇𝑚

• we are constantly exposed to airborne pollutants 
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Superellipsoid formulation

Štrakl, M., Hriberšek, M., Wedel, J., Steinmann, P., Ravnik, J. (2022). A Model for Translation and 

Rotation Resistance Tensors for Superellipsoidal Particles in Stokes Flow. J. Mar. Sci. Eng. 
2022, 10, 369. doi:10.3390/jmse10030369

https://doi.org/10.3390/jmse10030369


Research topics covered

• Spherical particles: 

– Application to tracking of aerosol in human respiratory tract

• Superellipsoidal particles: 

– Drag force and torque modelling

– Collision modelling



Motivation - pathways of Covid-19 transmission

• dp > 100 𝜇𝑚: Fast deposition due to the domination of gravitational force
• Medium droplets between 5 𝜇𝑚 and 100 𝜇𝑚
• dp < 5 𝜇𝑚 : Small droplet nuclei or aerosols - Responsible for airborne 

transmission

70–90 nm 1

Giaimo C (1 April 2020). "The Spiky Blob Seen 

Around the World". The New York Times. 

Droplet-borne route: 
Transmission by Medium 
or large droplets

Fomite route: infection through 
contact with contaminated 
surfaces or objects

Long-range airborne route: 
Transmission by aerosols

we are constantly exposed to 
airborne pollutants 

https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html
https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html
https://en.wikipedia.org/wiki/The_New_York_Times


Realistic human lung replicas
• Resolved until 7-10th level of bifurcation (LoBF)

• Inhalation: ሶ𝑉𝑒 = 7.5, 15, 30
𝑙

𝑚𝑖𝑛

(b) Female lung (c) Male lung(a) Experimental lung
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Methodology

• The flow field is solved in an Eulerian framework  with OpenFOAM® (uses FVM)
• The governing incompressible RANS equations are:

and Note that:

Flow field equations

Lagrangian particle formulation

neglegible if:  
• 𝜌𝑝 ≫ 𝜌𝑓
• 𝑆𝑡 ≪ 1

• Maxey-Riley equation



Particles

breath generated droplets

cough generated droplets

sneeze generated droplets

• 𝟏𝟎𝟓 spherical and rigid particles, 𝜌𝑝 =1704kg/m3

• cough, sneeze and breath generated particles

• touch & stick wall interaction 

• drag, gravity and buoyancy (𝜌𝑝 ≫ 𝜌𝑓, 𝑆𝑡 ≪ 1)

• turbulent dispersion: Continuous random walk

• initial particle velocity is set to local flow-velocity 



Limitations

• dilute flow allowing for one-way coupling of particles and fluid,

• assumption of isotropic turbulence (turbulent dispersion model: StochasticDispersionRAS) and 

k-𝜔-SST / k-𝜔-SST DES RANS turbulence approach,

• sufficiently small aerosols: surface tension strong enough → small spherical rigid particles,

• we study aerosol deposition in selected lung regions rather than precise deposition locations,

• particle volume fractions is well below 10−6 (suggested limit for one-way coup. by Elghobashi (1994)),

• majority of 𝑑𝑝 (average sizes: 0.3 𝜇𝑚 (speaking), 1.5 𝜇𝑚 (cough), 6𝜇𝑚 (sneeze)) are smaller 

than 𝜂𝑘 = 𝑅𝑒
−3/4

𝐷𝑖𝑛𝑙𝑒𝑡 → their impact on the turbulence modulation is small (see Crowe 2000),

→ Combining these statements, we consider RANS with one-way coupling as appropriate in 

the scope of the present application.



Flow simulation results

∗2 High k region(∗1) High velocity regions
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*Note the different Reynolds numbers due to different inlet diameter of experimental lung (𝑅𝑒,𝑒𝑥𝑝 = 1/2 𝑅𝑒)

• Velocity distribution in central plane
F

e
m

a
le

L
u

n
g

M
a

le
 L

u
n

g
E

x
p

. 
 L

u
n

g
*

• Turbulent kinetic energy distribution in central plane



Deposition

*jana.wedel@fau.de

Female Lung Male Lung Exp. Lung

• steady state inhalation
• study volumetric deposition efficiency (DE)
• particles produced by breathing,               

coughing, or sneezing
• 105 inhaled particles

3

1

2

1

2

3

4

4

Female Lung:

breath particles

cough particles

sneeze particles

subject-specific
trend



Deposition, at 15 l/min steady state

• Particles are colored according to particle 
size and scaled with diameter

breath generated
particles

sneeze generated
particles

cough generated
particles



Deposition, 15 l/min, realistic inhalation

15 𝑙/𝑚𝑖𝑛
*Reduced
lung model

• Female lung
• ሶ𝑽𝒆 = 𝟏𝟓 𝒍/𝒎𝒊𝒏
• sneeze generated 

particles

full respiratory cycle



Room size and activity



Deposition in different lung sizes



Deposition in 
different lung 
sizes



Tracking superellipsoid particles in flows



Particle-Fluid interaction models

• Drag & Torque acting on a particle

• Methods:

– Analytical: direct integration from Stokes equations

𝑑𝑝

𝑢
𝑑𝑝

𝜔𝑝

𝑢

Spherical particle:

Ԧ𝐹 = න
Γ

Ԧ𝜎 ⋅ 𝑛 𝑑Γ

Drag:

𝑇 = න
Γ

Ԧ𝑟 × Ԧ𝜎 ⋅ 𝑛 𝑑Γ

Torque:

𝑇 = 8𝜋𝜇𝑑𝑝
3 ⋅ 𝜔𝑓 − 𝜔𝑝

Ԧ𝐹 = 6𝜋𝜇𝑑𝑝 ⋅ 𝑢

𝛻 ⋅ 𝜎 + 𝜌𝑓 Ԧ𝑔 = 0

Stokes flow form: Cauchy stress tensor:

𝜎 = −𝑃𝐼 + 𝜏



Particle-Fluid interaction models

Prolate ellipsoid: 𝑇 = 𝜋 𝜇𝑐3 Π ⋅
𝑓
𝑔
ℎ

+ Ω
𝜉 − 𝜔𝑥

𝜂 − 𝜔𝑦

𝜒 − 𝜔𝑧

Ԧ𝐹 = 𝜋 𝜇𝑐𝐾 ⋅ 𝑢

𝑢 𝑎 𝑏
𝑐

𝑢

𝑎 𝑏
𝑐

𝑢

𝑎 𝑏
𝑐

Drag: Shear: Spin:

𝐾𝑥𝑥 =
8 𝜆1

2 − 1 Τ3 2

2𝜆1
2 − 1 ln 𝜆1 + 𝜆1

2 − 1 − 𝜆1 𝜆1
2 − 1

𝐾𝑦𝑦 = Kzz =
16 𝜆1

2 − 1 Τ3 2

2𝜆1
2 − 3 ln 𝜆1 + 𝜆1

2 − 1 − 𝜆1 𝜆1
2 − 1

Translation resistance: 𝐾

Ω𝑥𝑥 =
16𝜆1
3

1

𝛼0

Ω𝑦𝑦 = Ω𝑧𝑧 =
16𝜆1
3

1 + 𝜆1
2

𝛼0 + 𝜆1
2𝛾0

Rotation resistance: Ω

Π𝑥𝑥 = 0

Π𝑧𝑧 = −Πyy =
16𝜆1
3

1 − 𝜆1
2

𝛼0 + 𝜆1
2𝛾0

Deformation resistance: Π



• Methods:

– Experimental

• Sedimentation velocity in viscous fluids

• Predominantely drag models

• Lack of rotation prediction

– Generalized shape description parameters:

Particle-Fluid interaction models

𝐴𝑅 =
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥

Aspect ratio:

Ψ =
𝐴𝑠
𝐴𝑝

=
𝜋
1
3 6𝑉𝑝

Τ2 3

𝐴𝑝

Sphericity:

Ψ⊥ =
𝜎𝑠
𝐴𝑝⊥

=

1
4𝜋

1
3 6𝑉𝑝

Τ2 3

𝐴𝑝⊥

Crosswise - sphericity:

Φ∥ =
𝜎𝑠

1
2𝐴𝑝 − 𝐴𝑝∥

=

1
4
𝜋
1
3 6𝑉𝑝

Τ2 3

1
2𝐴𝑝 − 𝐴𝑝∥

Lengthwise - sphericity:



Superellipsoid particle

• Parametric surface equation:

• Superellipsoid volume:

• Axial ratios

𝑆 𝑥, 𝑦, 𝑧 =
𝑥

𝑎

2/e2
+

𝑦

𝑏

2/𝑒2
𝑒2/𝑒1

+
𝑧

𝑐

2/𝑒1

𝑉𝑝 = 2𝑎𝑏𝑐𝑒1𝑒2𝐵
𝑒1
2
+ 1, 𝑒1 𝐵

𝑒2
2
,
𝑒2
2

𝑎 𝑏
𝑐𝜆1 = 𝑎/𝑐

𝜆2 = 𝑏/𝑐

𝜆1, 𝜆2, 𝑒1, 𝑒2Reduced parameters:

𝑑𝑝 = 1
𝑉𝑝 =

𝜋

6

Normalized volume:
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12𝜆1𝜆2𝑒1𝑒2𝐵
𝑒1
2
+ 1, 𝑒1 𝐵(

𝑒2
2
,
𝑒2
2
)
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Design of numerical experiments

• Numerical approach

– Parameter range: → ~5400 Particles 

– Superposition of simple flow fields

• Investigated separately

𝜆1 = 1,11 𝜆2 ≥ 𝜆1

𝑒1 = [0.2,1.8] 𝑒2 = 0.2,1.8

Ԧ𝐹 = 𝜋 𝜇𝑐𝐾 ⋅ 𝑢
𝑇 = 𝜋 𝜇𝑐3 Π ⋅

𝑓
𝑔
ℎ

+ Ω
𝜉 − 𝜔𝑥

𝜂 − 𝜔𝑦

𝜒 − 𝜔𝑧

Translation Shear Rotation



Numerical framework

• Boundary element method

– Spherical domain boundary

• Constant velocity field

– Domain size >> 𝑑𝑝
• Momentum transport by diffusion

– Particle in the domain centre

• No slip condition

– Particle force and torque

Convergent mesh

Ԧ𝐹 = න
Γ

Ԧ𝜎 ⋅ 𝑛 𝑑Γ 𝑇 = න
Γ

Ԧ𝑟 × Ԧ𝜎 ⋅ 𝑛 𝑑Γ



• Computed on 5400 intervals of 𝜆1, 𝜆2, 𝑒1, 𝑒2
– 9 simulations per particle (3 flows × 3 directions)

• Data representation

– 4-dimensional space

– Model derivation

• For each individual tensor component via polynomial 
approximation

𝑒1, 𝑒2 = 1

Numerical results

𝜆1, 𝜆2 = 5,3



Force and torque model

Translation resistance tensor: (drag) Rotation resistance tensor: (spin)

Deformation resistance tensor: (shear)



Force and torque model

• Reallistic pollen particle

– Reconstruct 3D geometry

– Find best fitting superellipsoid

• Optimization problem:

Particle image 3D reconstruction Fitted superellipsoid

min
𝜆1,𝜆2,𝑒1,𝑒2



𝑖=1

𝑛

𝑆 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 − 1 2

𝑆 𝑥, 𝑦, 𝑧 =
𝑥

𝜆1𝑐

2/𝑒2

+
𝑦

𝜆2𝑐

2/𝑒2
Τ𝑒2 𝑒1

+
𝑧

𝑐

2/𝑒1

Superellipsoid surface:

𝜆1 = 1.96, 𝜆2= 1.83,

𝑒1 = 0.564, 𝑒2= 0.472;

3D surface points



A Model for Translation and Rotation Resistance
Tensors for Superellipsoidal Particles

A model was developed that 

• for a chosen superellipsoid with known velocity and angular velocity
at a location in the flow where
• the flow velocity and flow velocity gradient tensor are known
gives
• the force and torque on the particle

The model is available at Github:

https://github.com/transport-phenomena/superellipsoid-force-torque-model

https://github.com/transport-phenomena/superellipsoid-force-torque-model


Model used for a pollen particle



A pollen 
particle in 
laminar 
pipe flow



Superellipsoid
collision 
modelling

novel superellipsoid 
collision model



Detect contact point
• A point on the surface of one 

superellipsoid is inside of the second 
superellipsoid.

• We solve an optimization problem that 
seeks the point on the second 
superellipsoid that is deepest inside of 
the first.



Collision model

• We assume the particles are rigid with elastic contact (coef. of 
restitution normal direction < 1)

• Friction is modelled by tangential coef. of restitution (-1,1)
• Conservation of linear and angular momentum are considered.
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