

dr. Jure Ravnik, professor of power, process and environmental engineering

Recent results in modelling and simulation of particle laden flows

Laboratory for transport phenomena in solids and fluids

Acknowledgements:

- Matjaž Hriberšek
- Paul Steinmann
- Yan Cui
- Mitja Štrakl
- Jana Wedel
- František Lizal

Contact:

- jure.ravnik@um.si
- http://jure.ravnik.si
- @JureRavnik

Introduction

- Multiphase flows
 - Dispersed flows with particles
- Numerical approach
 - Euler-Lagrange framework
 - Euler: Carrier fluid phase
 - Lagrange: Particulate phase
 - Point-particle method

 $Re_n \ll 1$

culty of Mechanical Engineering

- Particle size << Kolmogorov length scale $d_p \ll \eta_K \quad St_p \ll 1$
- Flow around the particle \rightarrow viscous regime

 $Re_G \ll Re_p$

University of Maribor

Motivation

Oregon State University, CC BY-SA 2.0, via Wikimedia Commons

James Joel, 2006, National Escherichia, Shigella, Vibrio Reference Unit at CDC *2

Denisow, B. and Weryszko-Chmielewska, E. Photo: Irene Câmara Camacho., CC BY-SA 4.o, via Wikimedia Commons

Picture of James Gathany, Brian Judd, USCDCP from Pixino

Particles in fluids

WolfpackBME, CC BY-SA 4.0, via Wikimedia Commons

Liangtai Lin, CC BY 2.0, via Wikimedia Commons

Motivation

Research topics covered

- Spherical particles:
 - Application to tracking of aerosol in human respiratory tract
- Superellipsoidal particles:
 - Drag force and torque modelling
 - Collision modelling

Motivation - pathways of Covid-19 transmission

- dp $> 100 \ \mu m$: Fast deposition due to the domination of gravitational force
- Medium droplets between 5 μm and 100 μm

Faculty of Mechanical Engineering

• $dp < 5 \ \mu m$: Small droplet nuclei or aerosols - Responsible for airborne transmission

Giaimo C (1 April 2020). <u>"The Spiky Blob Seen</u> Around the World". The New York Times.

Realistic human lung replicas

• Resolved until 7-10th level of bifurcation (LoBF)

Methodology

Flow field equations

- The flow field is solved in an Eulerian framework with OpenFOAM® (uses FVM)
- The governing incompressible RANS equations are:

$$d_{t}(\rho_{f}\bar{\boldsymbol{u}}) + \operatorname{div}(\rho_{f}\bar{\boldsymbol{u}} \otimes \bar{\boldsymbol{u}} + \boldsymbol{\tau}^{\text{RANS}}) = -\operatorname{grad}\bar{p} + \operatorname{div}\bar{\boldsymbol{\tau}} + \bar{\boldsymbol{f}}_{D} \quad \text{and} \quad \operatorname{div}\bar{\boldsymbol{u}} = 0 \quad \text{Note that:} \, \boldsymbol{u} = \bar{\boldsymbol{u}} + \boldsymbol{u}'$$
$$\boldsymbol{\tau}^{\text{RANS}} := \rho_{f}\boldsymbol{u}_{i}' \otimes \boldsymbol{u}_{j}' \quad \bar{\boldsymbol{\tau}} := \mu \operatorname{grad}^{\text{SYM}} \bar{\boldsymbol{u}}'$$

Lagrangian particle formulation

• Maxey-Riley equation

$$\boldsymbol{a}^{*} = \frac{d\boldsymbol{v}^{*}}{dt^{*}} = \underbrace{\frac{A}{St}}_{f} \begin{bmatrix} \boldsymbol{v}_{s}^{*} + \frac{c}{3d_{eq}}\boldsymbol{K} \cdot [\boldsymbol{u}^{*} - \boldsymbol{v}^{*}] \end{bmatrix} + \frac{3}{2} \underbrace{\frac{\partial \boldsymbol{u}^{*}}{\partial t^{*}}}_{f} + \underbrace{\frac{\partial \boldsymbol{u}^{*}}{\partial t^{*}}}_{R} \begin{bmatrix} \left[\boldsymbol{u}^{*} + \frac{1}{2}\boldsymbol{v}^{*}\right] \cdot \nabla \end{bmatrix} \boldsymbol{u}^{*}$$

$$A = \underbrace{\frac{\rho_{p}}{\rho_{p} + 0.5\rho_{f}}}_{St = \frac{1}{18} \frac{\rho_{p}}{\rho_{f}} \frac{d_{eq}^{2}}{\nu} \underbrace{\frac{\rho_{p}}{\mu_{0}}}_{L_{0}} \begin{bmatrix} \frac{\rho_{p}}{\rho_{f}} - 1 \end{bmatrix} \boldsymbol{g}$$

$$R = \frac{\rho_{f}}{\rho_{p} + 0.5\rho_{f}}$$

$$R = \frac{\rho_{f}}{\rho_{p} + 0.5\rho_{f}}$$

$$St \ll 1$$

Particles

- 10⁵ spherical and rigid particles, ρ_p =1704kg/m3
- cough, sneeze and breath generated particles
- touch & stick wall interaction
- drag, gravity and buoyancy $(
 ho_p \gg
 ho_f, St \ll 1)$
- turbulent dispersion: Continuous random walk
- initial particle velocity is set to local flow-velocity

Limitations

- dilute flow allowing for one-way coupling of particles and fluid,
- assumption of isotropic turbulence (turbulent dispersion model: *StochasticDispersionRAS*) and k-ω-SST / k-ω-SST DES RANS turbulence approach,
- sufficiently small aerosols: surface tension strong enough \rightarrow small spherical rigid particles,
- we study aerosol deposition in selected lung regions rather than precise deposition locations,
- particle volume fractions is well below 10^{-6} (suggested limit for one-way coup. by Elghobashi (1994)),
- majority of d_p (average sizes: 0.3 μm (speaking), 1.5 μm (cough), $6\mu m$ (sneeze)) are smaller than $\eta_k = R_e^{-3/4} D_{inlet} \rightarrow$ their impact on the turbulence modulation is small (see Crowe 2000),
- \rightarrow Combining these statements, we consider RANS with one-way coupling as appropriate in the scope of the present application.

FS Faculty of Mechanical Engineering

Flow simulation results

Faculty of Mechanical Engineering

*Note the different Reynolds numbers due to different inlet diameter of experimental lung ($R_{e,exp} = 1/2 R_e$)

breath generated aerosols. (a: LoBF = 1 - 7, b: Summation of deposited particles up to LoBF = 7)

Faculty of Mechanical Engineering

Deposition, at 15 l/min steady state

University of Marib

Deposition, 15 l/min, realistic inhalation

Room size and activity

30 min

Fig. 10 Inhaled droplet/aerosol volume after a specified time

Deposition in different lung sizes

Fig. 7 Aerosol deposition for different lung sizes; \diamond Child (Age 1), + Child (Age 3), × Child (Age 5), \triangleleft Child (Age 7), \triangle Child (Age 9), \Box Child (Age 13), \bigcirc Adult (Male). (Color figure online)

Fig. 11 Aerosol deposition after 15 min-inhalation for different lung sizes; ◇ Child (Age 1), + Child (Age 3), × Child (Age 5),
< Child (Age 7), △ Child (Age 9), □ Child (Age 13), ○ Adult (Male). (Color figure online)

Deposition in different lung sizes

(c) Tracheobronchial tree

(d) Particles that reach deep into the lung

Tracking superellipsoid particles in flows

Particle-Fluid interaction models

- Drag & Torque acting on a particle
- Methods:

Stokes flow form:
$$\nabla \cdot \underline{\sigma} + \rho_f \vec{g} = 0$$

Cauchy stress tensor: $\underline{\sigma} = -P\underline{I} + \underline{\tau}$

– Analytical: direct integration from Stokes equations

Particle-Fluid interaction models

Faculty of Mechanical Engineering

University of Maribor

Particle-Fluid interaction models

- Methods:
 - Experimental
 - Sedimentation velocity in viscous fluids
 - Predominantely drag models
 - Lack of rotation prediction

culty of Mechanical Engineering

- Generalized shape description parameters:

Lengthwise - sphericity:

$$\Phi_{\parallel} = \frac{\sigma_{s}}{\frac{1}{2}A_{p} - A_{p_{\parallel}}} = \frac{\frac{1}{4}\pi^{\frac{1}{3}}(6V_{p})^{2/3}}{\frac{1}{2}A_{p} - A_{p_{\parallel}}}$$

Superellipsoid particle

- Parametric surface equation: $S(x, y, z) = \left(\left|\frac{x}{a}\right|^{2/e_2} + \left|\frac{y}{b}\right|^{2/e_2}\right)^{e_2/e_1} + \left|\frac{z}{c}\right|^{2/e_1}$
- Superellipsoid volume:

$$V_p = 2abce_1e_2B\left(\frac{e_1}{2} + 1, e_1\right)B\left(\frac{e_2}{2}, \frac{e_2}{2}\right)$$

• Axial ratios

$$c = \left[\frac{\pi}{\left[12\lambda_1\lambda_2e_1e_2B\left(\frac{e_1}{2}+1,e_1\right)B(\frac{e_2}{2},\frac{e_2}{2})\right]}\right]^{1/3}$$

Reduced parameters: $\lambda_1, \lambda_2, e_1, e_2$

Design of numerical experiments

Numerical approach

$$\lambda_1 = [1,11]$$
 $\lambda_2 \ge \lambda_1$
 $e_1 = [0.2,1.8]$ $e_2 = [0.2,1.8]$

- Parameter range: $\rightarrow \sim 5400$ Particles
- Superposition of simple flow fields
 - Investigated separately

Numerical framework

- Boundary element method
 - Spherical domain boundary
 - Constant velocity field
 - Domain size >> d_p
 - Momentum transport by diffusion
 - Particle in the domain centre
 - No slip condition
 - Particle force and torque

$$\vec{F} = \int_{\Gamma} \vec{\sigma} \cdot \vec{n} \, d\Gamma \qquad \vec{T} = \int_{\Gamma} \vec{r} \times (\vec{\sigma} \cdot \vec{n}) \, d\Gamma$$

Faculty of Mechanical Engineering

Numerical results

- Computed on 5400 intervals of $\lambda_1, \lambda_2, e_1, e_2$
 - 9 simulations per particle (3 flows × 3 directions)

- Data representation
 - 4-dimensional space

aculty of Mechanical Engineering

- Model derivation
 - For each individual tensor component via polynomial approximation

Force and torque model

Translation resistance tensor: (drag)

Particle ^a	Coeff. <u>K</u>	An. Res.	Pres. BEM	Sphere	Prolate ell. ^b	[27]	[28]	[29]	Approx. Scheme
Z	K_{xx}	6.0	6.002	6.0	6.0	6.046	5.845	5.871	6.003
<i>I</i> .	$K_{\mu\nu}$	6.0	6.002	6.0	6.0	6.046	5.894	5.876	6.003
	K_{zz}	6.0	6.002	6.0	6.0	6.046	5.845	5.854	6.004
×, ~ ~ y		Averag	e error:	0.0%	0.0%	0.44%	1.34%	1.28%	0.03%
Z	K_{xx}	10.71	10.69	6.0	10.71	10.54	9.728	11.16	10.70
II. \int	K_{yy}	14.23	14.22	6.0	14.23	10.54	12.23	12.03	14.23
	K_{zz}	14.23	14.22	6.0	14.23	10.54	12.12	11.97	14.24
x y		Averag	e error:	30.95%	0.00%	11.04%	7.44%	7.17%	0.05%
III AZ	K_{xx}	_	15.50	6.0	10.71	15.24	14.73	16.39	15.50
111.	K_{yy}	_	17.07	6.0	14.23	15.24	15.82	16.62	17.06
	K_{zz}	—	20.56	6.0	14.23	15.24	18.87	18.40	20.57
x, y		Averag	e error:	37.91%	15.08%	8.00%	4.00%	3.78%	0.02%
IV AZ	K_{xx}	_	24.73	6.0	10.71	22.37	22.18	25.27	24.83
IV.	K_{yy}	_	24.73	6.0	14.23	22.37	22.22	25.29	24.82
	K_{zz}	—	30.92	6.0	14.23	22.37	27.97	28.25	30.98
x, y		Averag	e error:	44.54%	29.44%	9.48%	5.72%	2.69%	0.17%
$V \uparrow^{Z}$	K_{xx}	_	32.33	6.0	15.88	29.76	30.00	35.39	32.40
v .	K_{yy}	_	32.31	6.0	22.87	29.76	30.41	35.43	32.35
	K_{zz}	—	45.87	6.0	22.87	29.76	42.16	41.44	45.98
x, y		Averag	e error:	47.62%	25.16%	10.93%	4.08%	5.47%	0.11%

Rotation resistance tensor: (spin)

Particle ^a	Coeff. <u>Ω</u>	An. Res.	Pres. BEM	Sphere	Prolate ell. ^b	Approx. Scheme
, AZ	Ω_{xx}	28.24	27.76	8.0	28.24	27.91
	Ω_{yy}	185.6	184.4	8.0	185.6	185.2
	Ω_{zz}^{ss}	185.6	184.2	8.0	185.6	185.0
x y		Average	error:	47.41%	0.0%	0.19%
Z Z	Ω_{xx}	_	782.0	8.0	28.24	784.5
IV.	Ω_{yy}	—	782.0	8.0	185.6	784.0
x	Ω_{zz}	_	1023	8.0	185.6	1025
		Average	error:	56.71%	48.40%	0.14%

Deformation resistance tensor: (shear)

Particle ^a	Coeff. <u>П</u>	An. Res.	Pres. BEM	Sphere	Prolate ell. ^b	Approx. Scheme
II. Z	$\Pi_{xx} \\ \Pi_{yy} \\ \Pi_{zz}$	0.0 -171.3 171.3	$0.021 \\ -170.4 \\ 170.2$	0.0 0.0 0.0	0.0 -171.3 171.3	$0.021 \\ -171.1 \\ 170.8$
x >y		Average	e error:	47.14%	0.0%	0.11%
IV. Z	$\Pi_{xx} \\ \Pi_{yy} \\ \Pi_{zz}$	$\begin{array}{cccc} \Pi_{xx} & - & 67 \\ \Pi_{yy} & - & -6 \\ \Pi_{zz} & - & -0 \end{array}$		0.0 0.0 0.0	0.0 -171.3 171.3	$676.1 \\ -675.2 \\ -0.006$
x, y		Average	e error:	47.14%	47.14%	0.23%

Force and torque model

- Reallistic pollen particle
 - Reconstruct 3D geometry
 - Find best fitting superellipsoid
- **Optimization problem:**

$$\min_{\lambda_1,\lambda_2,e_1,e_2} \sum_{i=1}^n [S(x_i, y_i, z_i) - 1]^2 \qquad \lambda_1 = 1.96, \lambda_2 = 1.83, \\ e_1 = 0.564, e_2 = 0.472; \\ 3D \text{ surface points}$$

Superellipsoid surface:

$$S(x, y, z) = \left(\left| \frac{x}{\lambda_1 c} \right|^{2/e_2} + \left| \frac{y}{\lambda_2 c} \right|^{2/e_2} \right)^{e_2/e_1} + \left| \frac{z}{c} \right|^{2/e_1}$$

ty of Mechanical Engineering

Coeff. <u>Κ</u> , <u>Ω</u> , <u>Π</u>	Pres. BEM	Sphere	Prolate ell. ^b	[27]	[28]	[29]	Approx. Scheme
$K_{xx} \ K_{yy} \ K_{zz}$	10.77 10.80 12.01	6.0 6.0 6.0	7.174 8.184 8.184	9.505 9.505 9.505	9.324 9.431 10.36	9.922 9.968 10.46	10.58 10.71 11.86
Average err	Average error:		17.24%	8.70%	7.68%	5.56%	0.74%
$egin{array}{c} \Omega_{xx} \ \Omega_{yy} \ \Omega_{zz} \end{array}$	50.07 50.88 63.20	8.0 8.0 8.0	12.70 23.14 23.14	_ _ _			47.23 50.71 61.65
Average err	or:	49.00%	36.77%	_	_	_	1.60%
$ \begin{array}{c} \Pi_{xx} \\ \Pi_{yy} \\ \Pi_{zz} \end{array} $	25.31 -26.22 0.86	0.0 0.0 0.0	0.0 13.57 13.57			_ _ _	23.51 -27.56 3.791
Average errpr:		47.90%	46.34%	_	_	_	2.36%

A Model for Translation and Rotation Resistance Tensors for Superellipsoidal Particles

A model was developed that

- for a chosen **superellipsoid** with known **velocity** and **angular velocity** at a location in the flow where
- the flow velocity and flow velocity gradient tensor are known gives
- the **force** and **torque** on the particle

The model is available at Github:

https://github.com/transport-phenomena/superellipsoid-force-torque-model

Model used for a pollen particle

Table 3

 \mathbf{K}' , $\mathbf{\Omega}'$ and $\mathbf{\Pi}'$ tensor coefficients estimations for a realistic pollen particle (Štrakl et al., 2022a), obtained via DNS, approximated via sphere, prolate ellipsoid, triaxial ellipsoid and superellipsoid.

Κ', Ω', Π'	Pollen ^a (Štrakl et al., 2022a)	Sphereb	Prolate ^c	Triaxiald	Superel. ^e	Shape factors				
		<u> </u>				Haider and Levenspiel (1989)	Leith (1987)	Hölzer and Sommerfeld (2008)		
Case ID	-	Α	В	С	D1/D2	E1/E2	F1/F2	G1/G2		
<i>K</i> ′ _{xx}	10.7	6	7.235	9.413	10.58	9.505	9.324	9.922		
K' _{vv}	10.80	6	8.293	9.582	10.71	9.505	9.431	9.968		
K'zz	12.01	6	8.293	10.84	11.86	9.505	10.36	10.46		
Ω'_{xx}	50.07	8	12.95	34.05	0/47.23	0/8	0/8	0/8		
Ω'_{yy}	50.88	8	24.29	37.65	0/50.71	0/8	0/8	0/8		
Ω'_{zz}	63.20	8	24.29	44.79	0/61.65	0/8	0/8	0/8		
Π'_{xx}	25.31	0	0.0	19.35	0/23.51	0/0	0/0	0/0		
Π'_{yy}	-26.22	0	-14.63	-23.53	0/-27.56	0/0	0/0	0/0		
Π'_{zz}	0.86	0	14.63	3.87	0/3.791	0/0	0/0	0/0		
$K'_{xx} 2c/d_{eq}$	6.09	6	5.733	5.944	0/6.025	5.412	5.309	5.650		
$K'_{yy}2c/d_{eq}$	6.15	6	6.572	6.051	0/6.100	5.412	5.370	5.676		
$K'_{zz}2c/d_{eq}$	6.84	6	6.572	6.846	0/6.756	5.412	5.899	5.956		

^aFitted tensor coefficients (Štrakl et al., 2022a) solely for comparison (superellipsoid surrogate approach not applicable due to non-symmetric particle shape).

^bAnalytical tensor coefficients for $\lambda_1 = \lambda_2 = \epsilon_1 = \epsilon_2 = 1.0$.

^cAnalytical tensor coefficients for $\lambda_1 = 2.009$; $\lambda_2 = \epsilon_1 = \epsilon_2 = 1.0$.

Faculty of Mechanical Engineering

^dSuperellipsoid surrogate mode, l (Štrakl et al., 2022a), for $\lambda_1 = 2.081$; $\lambda_2 = 1.907$; $\epsilon_1 = \epsilon_2 = 1.0$.

^eSuperellipsoid surrogate approach, Štrakl et al. (2022a), for $\lambda_1 = 1.96$; $\lambda_2 = 1.83$; $\epsilon_1 = 0.564$; $\epsilon_2 = 0.472$.

A pollen particle in laminar pipe flow

(b) normalized deviation in gravitational direction: y^*

Fig. 11. Deviation of particle position compared to superellipsoid particle position (x^{se} , y^{se}). The deviation is normalized to the volume equivalent diameter of a sphere (d_{eg}). The Finitial particle orientation is set to fsettling sphere in Stokes flow $(y_{max}/d_{eq} = v_t t_{max}/d_{eq})$.

Superellipsoid collision modelling

Faculty of Mechanical Engineering

Spheroid

Α

в

Detect contact point

- A point on the surface of one superellipsoid is inside of the second superellipsoid.
- We solve an optimization problem that seeks the point on the second superellipsoid that is deepest inside of the first.

Figure 8: Detection of collision point on superellipsoid 2 and inside superellipsoid 1 with common normal n

Collision model

- We assume the particles are rigid with elastic contact (coef. of restitution normal direction < 1)
- Friction is modelled by tangential coef. of restitution (-1,1)
- Conservation of linear and angular momentum are considered.

	m_1	0	0	m_2	0	0	0	0	0	0	0	0
	0	m_1	0	0	m_2	0	0	0	0	0	0	0
	0	0	m_1	0	0	m_2	0	0	0	0	0	0
	-1	0	0	1	0	0	0	$r_{1z}^{\prime\prime}$	$-r_{1y}^{\prime\prime}$	0	$-r_{2z}^{\prime\prime}$	$r_{2y}^{\prime\prime}$
	0	-1	0	0	1	0	$-r_{1z}^{\prime\prime}$	0	$r_{1x}^{\prime\prime}$	$r_{2z}^{\prime\prime}$	0	$-r_{2x}^{\prime\prime}$
4 —	0	0	-1	0	0	1	$r_{1y}^{\prime\prime}$	$-r_{1x}^{\prime\prime}$	0	$-r_{2y}^{\prime\prime}$	$r_{2x}^{\prime\prime}$	0
<u>71</u> –	0	$-m_1 r_{1z}''$	$m_1 r_{1y}^{\prime\prime}$	0	0	0	$I_{xx}^{\prime\prime}$	$I_{xy}^{\prime\prime}$	$I_{xz}^{\prime\prime}$	0	0	0
	$m_1 r_{1z}^{\prime\prime}$	0	$-m_1r_{1x}^{\prime\prime}$	0	0	0	$I_{yx}^{\prime\prime}$	$I_{yy}^{\prime\prime}$	$I_{yz}^{\prime\prime}$	0	0	0
	$-m_1r_{1y}^{\prime\prime}$	$m_1 r_{1x}^{\prime\prime}$	0	0	0	0	$I_{zx}^{\prime\prime}$	$I_{zy}^{\prime\prime}$	$I_{zz}^{\prime\prime}$	0	0	0
	0	0	0	0	$-m_2 r_{2z}''$	$m_2 r_{2y}^{\prime\prime}$	0	0	0	$I_{xx}^{\prime\prime}$	$I_{xy}^{\prime\prime}$	$I_{xz}^{\prime\prime}$
	0	0	0	$m_2 r_{2z}^{\prime\prime}$	0	$-m_2r_{2x}^{\prime\prime}$	0	0	0	$I_{yx}^{\prime\prime}$	$I_{yy}^{\prime\prime}$	$I_{yz}^{\prime\prime}$
	0	0	0	$-m_2r_{2y}^{\prime\prime}$	$m_2 r_{2x}^{\prime\prime}$	0	0	0	0	$I_{zx}^{\prime\prime}$	$I_{zy}^{\prime\prime}$	$I_{zz}^{\prime\prime}$

Figure 10: Two superellipsoidal particles undergoing collision

Thank you for your attention!

dr. Jure Ravnik, professor of power, process and environmental engineering

References:

- Wedel, J., Steinmann, P., Štrakl, M., Hriberšek, M., & Ravnik, J. (2023). Shape matters: Lagrangian tracking of complex nonspherical microparticles in superellipsoidal approximation. International Journal of Multiphase Flow, 158, 104283. doi:10.1016/j.ijmultiphaseflow.2022.104283
- Wedel, J., Steinmann, P., Štrakl, M., Hriberšek, M., Cui, Y., & Ravnik, J. (2022). Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition A CFD study. Computer Methods in Applied Mechanics and Engineering, 401, 115372. doi:10.1016/j.cma.2022.115372
- Štrakl, M., Hriberšek, M., Wedel, J., Steinmann, P., Ravnik, J. (2022). A Model for Translation and Rotation Resistance Tensors for Superellipsoidal Particles in Stokes Flow. J. Mar. Sci. Eng. 2022, 10, 369. doi:10.3390/jmse10030369
- Mitja Štrakl, Jana Wedel, Paul Steinmann, Matjaž Hriberšek & Jure Ravnik (2022). Numerical drag and lift prediction framework for superellipsoidal particles in multiphase flows. International Journal of Computational Methods and Experimental Measurements (2022), Vol 10, Pages 38-49, doi:10.1016/10.2495/CMEM-V10-N1-38-49
- J. Wedel, P. Steinmann, M. Štrakl, M. Hriberšek, J. Ravnik (2021). Risk Assessment of Infection by Airborne Droplets and Aerosols at Different Levels of Cardiovascular Activity. Archives of Computational Methods in Engineering (2021), doi:10.1007/s11831-021-09613-7
- J. Wedel, P. Steinmann, M. Štrakl, M. Hriberšek, J. Ravnik (2021). Can CFD establish a connection to a milder COVID-19 disease in younger people? Aerosol deposition in lungs of different age groups based on Lagrangian particle tracking in turbulent flow. Computational Mechanics, doi:10.1007/s00466-021-01988-5

Contact:

- jure.ravnik@um.si
- http://jure.ravnik.si
- *@JureRavnik*

Faculty of

Mechanical

Engineering