Mechanical
Engineering

Recent results in modelling and simulation of particle laden flows

Laboratory for transport phenomena in solids and fluids

Acknowledgements:

- Matjaž Hriberšek
- Paul Steinmann
- Yan Cui

Contact:

- jure.ravnik@um.si
- http://jure.ravnik.si
- @JureRavnik

Introduction

- Multiphase flows
- Dispersed flows with particles
- Numerical approach
- Euler-Lagrange framework
- Euler: Carrier fluid phase
- Lagrange: Particulate phase
- Point-particle method
- Particle size << Kolmogorov length scale

$$
d_{p} \ll \eta_{K} \quad S t_{p} \ll 1
$$

- Flow around the particle \rightarrow viscous regime
\because Faculty of Mechanical Engineering

Motivation

Particles in fluids

WolfpackBME, CCC BY-SA 4.0, via Wikimedia Commons

Motivation

- we are constantly exposed to airborne pollutants

GRAIN OF SALT
$60 \mu \mathrm{~m}>$

Pollen
5-20 $\mu \mathrm{m}>$
RESPIRATORY DROPLETS
5-10 $\mu \mathrm{m}>$

can carry smaller particles such as viruses

Superellipsoid formulation

$$
E\left(r^{\prime}\right)=\left[\left[\frac{x^{\prime}}{a}\right]^{2 / \epsilon_{2}}+\left[\frac{y^{\prime}}{b}\right]^{2 / \epsilon_{2}}\right]^{\epsilon_{2} / \epsilon_{1}}+\left[\frac{z^{\prime}}{c}\right]^{2 / \epsilon_{1}}
$$

Corona virus 0.1-0.5 $\mu \mathrm{m}>$

Dust Particles PM2.5 $2.5 \mu \mathrm{~m}>$

Wildfire smoke can persit in the air for several days and even months

Research topics covered

- Spherical particles:
- Application to tracking of aerosol in human respiratory tract
- Superellipsoidal particles:
- Drag force and torque modelling
- Collision modelling

Motivation - pathways of Covid-19 transmission

- dp > $100 \mu m$: Fast deposition due to the domination of gravitational force
- Medium droplets between $5 \mu m$ and $100 \mu m$
- dp $<5 \mu m$: Small droplet nuclei or aerosols - Responsible for airborne transmission

FS

Realistic human lung replicas

- Resolved until 7-10th level of bifurcation (LoBF)
(a) Experimental lung

(b) Female lung

Methodology

Flow field equations

- The flow field is solved in an Eulerian framework with OpenFOAM ${ }^{\circledR}$ (Uses FVM)
- The governing incompressible RANS equations are:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{t}}\left(\rho_{f} \overline{\boldsymbol{u}}\right)+\operatorname{div}\left(\rho_{f} \overline{\boldsymbol{u}} \otimes \overline{\boldsymbol{u}}+\boldsymbol{\tau}^{\mathrm{RANS}}\right)=-\operatorname{grad} \bar{p}+\operatorname{div} \overline{\boldsymbol{\tau}}+\overline{\boldsymbol{f}}_{D} \quad \text { and } \quad \operatorname{div} \overline{\boldsymbol{u}}=0 \quad \text { Note that: } \boldsymbol{u}=\overline{\boldsymbol{u}}+\boldsymbol{u}^{\prime} \\
& \boldsymbol{\tau}^{\mathrm{RANS}}:=\rho_{f} \boldsymbol{u}_{i}^{\prime} \otimes \boldsymbol{u}_{j}^{\prime} \quad \overline{\boldsymbol{\tau}}:=\mu \operatorname{grad}^{\mathrm{SYM}} \overline{\boldsymbol{u}}
\end{aligned}
$$

Lagrangian particle formulation

- Maxey-Riley equation

$$
\begin{gathered}
\boldsymbol{a}^{*}=\frac{d \boldsymbol{v}^{*}}{d t^{*}}=\frac{A}{S t}\left[\boldsymbol{v}_{s}^{*}+\frac{c}{3 d_{e q}} \boldsymbol{K} \cdot\left[\boldsymbol{u}^{*}-\boldsymbol{v}^{*}\right]\right]+\frac{3}{2} R \frac{\partial \boldsymbol{u}^{*}}{\partial t^{*}}+R\left[\left[\boldsymbol{u}^{*}+\frac{1}{2} \boldsymbol{v}^{*}\right] \cdot \boldsymbol{\nabla}\right] \boldsymbol{u}^{*} \\
A=\frac{\rho_{p}}{\rho_{p}+0.5 \rho_{f}} \\
S t=\frac{1}{18} \frac{\rho_{p}}{\rho_{f}} \frac{d_{e q}^{2}}{\nu} \frac{u_{0}}{L_{0}}
\end{gathered} \boldsymbol{v}_{s}^{*}=\frac{1}{18} \frac{d_{e q}^{2}}{\nu u_{0}}\left[\frac{\rho_{p}}{\rho_{f}}-1\right] \boldsymbol{g} \quad \sim \quad \text { neglegible if: }
$$

Particles

- 10^{5} spherical and rigid particles, $\rho_{p}=1704 \mathrm{~kg} / \mathrm{m} 3$
- cough, sneeze and breath generated particles
- touch \& stick wall interaction
- drag, gravity and buoyancy ($\rho_{p} \gg \rho_{f}$, St $\ll 1$)
- turbulent dispersion: Continuous random walk
- initial particle velocity is set to local flow-velocity

Limitations

- dilute flow allowing for one-way coupling of particles and fluid,
- assumption of isotropic turbulence (turbulent dispersion model: StochasticDispersionRAS) and k- ω-SST / k- ω-SST DES RANS turbulence approach,
- sufficiently small aerosols: surface tension strong enough \rightarrow small spherical rigid particles,
- we study aerosol deposition in selected lung regions rather than precise deposition locations,
- particle volume fractions is well below 10^{-6} (suggested limit for one-way coup. by Elghobashi (1994)),
- majority of d_{p} (average sizes: $0.3 \mu \mathrm{~m}$ (speaking), $1.5 \mu \mathrm{~m}$ (cough), $6 \mu \mathrm{~m}$ (sneeze)) are smaller than $\eta_{k}=R_{e}^{-3 / 4} D_{\text {inlet }} \rightarrow$ their impact on the turbulence modulation is small (see Crowe 2000),
\rightarrow Combining these statements, we consider RANS with one-way coupling as appropriate in the scope of the present application.

Deposition

- steady state inhalation
- study volumetric deposition efficiency (DE)
- particles produced by breathing, coughing, or sneezing
- 10^{5} inhaled particles

FS
Faculthraf. Méchanical Engineering

Deposition, at 15 I/min steady state

- Particles are colored according to particle size and scaled with diameter

E Faculty of Mechanical Engineering

Deposition, 15 I/min, realistic inhalation

- Female lung
- $\dot{V}_{e}=15 \mathrm{l} / \mathrm{min}$
- sneeze generated particles
$=$ Faculty of Mechanical Engineering

Room size and activity

30 min

Fig. 10 Inhaled droplet/aerosol volume after a specified time

Deposition in different lung sizes

Fig. 7 Aerosol deposition for different lung sizes; \diamond Child (Age 1), + Child (Age 3), \times Child (Age 5), \triangleleft Child (Age 7), \triangle Child (Age 9), \square Child (Age 13), O Adult (Male). (Color figure online)

Fig. 11 Aerosol deposition after 15 min -inhalation for different lung sizes; \diamond Child (Age 1), + Child (Age 3), \times Child (Age 5), \triangleleft Child (Age 7), \triangle Child (Age 9), \square Child (Age 13), ○ Adult (Male). (Color figure online)

Deposition in different lung sizes

(a) Overall

(c) Tracheobronchial tree

(b) Mouth-throat region

(d) Particles that reach deep into the lung

Tracking superellipsoid particles in flows

$=$ Faculty of Mechanical Engineering

Particle-Fluid interaction models

- Drag \& Torque acting on a particle

Stokes flow form:
$\nabla \cdot \underline{\sigma}+\rho_{f} \vec{g}=0$

Cauchy stress tensor:

$$
\underline{\sigma}=-P \underline{I}+\underline{\tau}
$$

- Methods:
- Analytical: direct integration from Stokes equations

Torque:

$$
\vec{T}=\int_{\Gamma} \vec{r} \times(\vec{\sigma} \cdot \vec{n}) d \Gamma
$$

Spherical particle: $\vec{F}=6 \pi \mu d_{p} \cdot \vec{u}$

$$
\vec{T}=8 \pi \mu d_{p}^{3} \cdot\left(\vec{\omega}_{f}-\vec{\omega}_{p}\right)
$$

Particle-Fluid interaction models

Translation resistance: \underline{K}

Deformation resistance: $\underline{\Pi}$

$$
\begin{aligned}
\Pi_{x x} & =0 \\
\Pi_{z z} & =-\Pi_{y y}=\frac{16 \lambda_{1}}{3} \frac{1-\lambda_{1}^{2}}{\alpha_{0}+\lambda_{1}^{2} \gamma_{0}}
\end{aligned}
$$

Spin:

Rotation resistance: Ω

$$
\Omega_{x x}=\frac{16 \lambda_{1}}{3} \frac{1}{\alpha_{0}}
$$

$$
\Omega_{y y}=\Omega_{z z}=\frac{16 \lambda_{1}}{3} \frac{1+\lambda_{1}^{2}}{\alpha_{0}+\lambda_{1}^{2} \gamma_{0}}
$$

Particle-Fluid interaction models

- Methods:
- Experimental
- Sedimentation velocity in viscous fluids
- Predominantely drag models
- Lack of rotation prediction
- Generalized shape description parameters:

Aspect ratio:
$A_{R}=\frac{d_{\text {min }}}{d_{\max }}$

$$
\begin{aligned}
& \text { Sphericity: } \\
& \qquad \Psi=\frac{A_{s}}{A_{p}}=\frac{\pi^{\frac{1}{3}}\left(6 V_{p}\right)^{2 / 3}}{A_{p}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Crosswise - sphericity: } \\
& \qquad \Psi_{\perp}=\frac{\sigma_{s}}{A_{p_{\perp}}}=\frac{\frac{1}{4} \pi^{\frac{1}{3}}\left(6 V_{p}\right)^{2 / 3}}{A_{p_{\perp}}}
\end{aligned}
$$

Lengthwise - sphericity:

$$
\Phi_{\|}=\frac{\sigma_{s}}{\frac{1}{2} A_{p}-A_{p_{\|}}}=\frac{\frac{1}{4} \pi^{\frac{1}{3}}\left(6 V_{p}\right)^{2 / 3}}{\frac{1}{2} A_{p}-A_{p_{\|}}}
$$

Superellipsoid particle

- Parametric surface equation:

$$
S(x, y, z)=\left(\left|\frac{x}{a}\right|^{2 / e_{2}}+\left|\frac{y}{b}\right|^{2 / e_{2}}\right)^{e_{2} / e_{1}}+\left|\frac{z}{c}\right|^{2 / e_{1}}
$$

- Superellipsoid volume:

$$
V_{p}=2 a b c e_{1} e_{2} B\left(\frac{e_{1}}{2}+1, e_{1}\right) B\left(\frac{e_{2}}{2}, \frac{e_{2}}{2}\right)
$$

- Axial ratios

Normalized volume:

$$
V_{p}=\frac{\pi}{6} \longrightarrow d_{p}=1
$$

$$
c=\left[\frac{\pi}{\left[12 \lambda_{1} \lambda_{2} e_{1} e_{2} B\left(\frac{e_{1}}{2}+1, e_{1}\right) B\left(\frac{e_{2}}{2}, \frac{e_{2}}{2}\right)\right]}\right]^{1 / 3}
$$

Design of numerical experiments

- Numerical approach

$$
\begin{array}{ll}
\lambda_{1}=[1,11] & \lambda_{2} \geq \lambda_{1} \\
e_{1}=[0.2,1.8] & e_{2}=[0.2,1.8]
\end{array}
$$

- Parameter range: $\rightarrow \sim 5400$ Particles
- Superposition of simple flow fields
- Investigated separately

$$
\vec{F}=\pi \mu a K \cdot \overrightarrow{u_{j}}
$$

$$
\vec{T}=\pi \mu c^{3}\left[\begin{array}{c}
{\left[\begin{array}{l:}
----- \\
\square \\
g \\
h
\end{array}\right]\left[\begin{array}{c}
f \\
\eta-\omega_{x} \\
\eta-\omega_{y} \\
\chi-(1)_{z}
\end{array}\right]}
\end{array}\right]
$$

Numerical framework

- Boundary element method
- Spherical domain boundary
- Constant velocity field
- Domain size >> d_{p}

- Momentum transport by diffusion
- Particle in the domain centre
- No slip condition
- Particle force and torque

$$
\vec{F}=\int_{\Gamma} \vec{\sigma} \cdot \vec{n} d \Gamma \quad \vec{T}=\int_{\Gamma} \vec{r} \times(\vec{\sigma} \cdot \vec{n}) d \Gamma
$$

Numerical results

- Computed on 5400 intervals of $\lambda_{1}, \lambda_{2}, e_{1}, e_{2}$
-9 simulations per particle (3 flows $\times 3$ directions)
- Data representation
- 4-dimensional space
- Model derivation

- For each individual tensor component via polynomial approximation

Force and torque model

Translation resistance tensor: (drag)

Particle ${ }^{\text {a }}$	Coeff. K	An. Res.	Pres. BEM	Sphere	Prolate ell. ${ }^{\text {b }}$	[27]	[28]	[29]	Approx. Scheme
	K	6.0	6.002	6.0	6.0	6.046	5.845	5.871	6.003
	$K_{y y}$	6.0	6.002	6.0	6.0	6.046	5.894	5.876	6.003
	$K_{z z}$	6.0	6.002	6.0	6.0	6.046	5.845	5.854	6.004
		Averas	e error:	0.0\%	0.0\%	0.44\%	1.34\%	1.28\%	0.03\%
	$K_{x x}$	10.71	10.69	6.0	10.71	10.54	9.728	11.16	10.70
	$K_{y y}$	14.23	14.22	6.0	14.23	10.54	12.23	12.03	14.23
	$K_{z z}$	14.23	14.22	6.0	14.23	10.54	12.12	11.97	14.24
		Averag	e error:	30.95\%	0.00\%	11.04\%	7.44\%	7.17\%	0.05\%
	$K_{x x}$	-	15.50	6.0	10.71	15.24	14.73	16.39	15.50
	$K_{y y}$	-	17.07	6.0	14.23	15.24	15.82	16.62	17.06
		-	20.56	6.0	14.23	15.24	18.87	18.40	20.57
		Averag	error:	37.91\%	15.08\%	8.00\%	4.00\%	3.78\%	0.02\%
		-	24.73	6.0	10.71	22.37	22.18	25.27	24.83
	$K_{y y}$	-	24.73	6.0	14.23	22.37	22.22	25.29	24.82
	$K_{z z}$	-	30.92	6.0	14.23	22.37	27.97	28.25	30.98
		Averag	error:	44.54\%	29.44\%	9.48\%	5.72\%	2.69\%	0.17\%
	$K_{x x}$	-	32.33	6.0	15.88	29.76	30.00	35.39	32.40
	$K_{y y}$	-	32.31	6.0	22.87	29.76	30.41	35.43	32.35
	$K_{z z}$	-	45.87	6.0	22.87	29.76	42.16	41.44	45.98
		Average error:		47.62\%	25.16\%	10.93\%	4.08\%	5.47\%	0.11\%

Rotation resistance tensor: (spin)

Particle ${ }^{\text {a }}$	Coeff. $\underline{\Omega}$	An. Res.	Pres. BEM	Sphere	Prolate ell. ${ }^{\text {b }}$	Approx. Scheme
	$\Omega_{x x}$	28.24	27.76	8.0	28.24	27.91
	$\Omega_{y y}$	185.6	184.4	8.0	185.6	185.2
	$\Omega_{z z}$	185.6	184.2	8.0	185.6	185.0
		Average error:		47.41\%	0.0\%	0.19\%
	$\Omega_{x x}$	-	782.0	8.0	28.24	784.5
	$\Omega_{y y}$	-	782.0	8.0	185.6	784.0
	$\Omega_{z z}$	-	1023	8.0	185.6	1025
		Average error:		56.71\%	48.40\%	0.14\%

Deformation resistance tensor: (shear)

Particle ${ }^{\text {a }}$	Coeff. $\underline{\text { I }}$	An. Res.	Pres. BEM	Sphere	Prolate ell. ${ }^{\text {b }}$	Approx. Scheme
II. -	$\Pi_{x x}$	0.0	0.021	0.0	0.0	0.021
	$\Pi_{y y}$	-171.3	-170.4	0.0	-171.3	-171.1
	$\Pi_{z z}$	171.3	170.2	0.0	171.3	170.8
		Average	error:	47.14\%	0.0\%	0.11\%
	$\Pi_{x x}$	-	672.9	0.0	0.0	676.1
	$\Pi_{y y}$	-	-671.9	0.0	-171.3	-675.2
	$\Pi_{z z}$	-	-0.083	0.0	171.3	-0.006
		Average error:		47.14\%	47.14\%	0.23\%

Force and torque model

- Reallistic pollen particle
- Reconstruct 3D geometry
- Find best fitting superellipsoid
- Optimization problem:

$$
\min _{\lambda_{1}, \lambda_{2}, e_{1}, e_{2}} \sum_{i=1}^{n}[S \underbrace{[S \underbrace{\left(x_{i}, y_{i}, z_{i}\right)}-1]^{2} \underbrace{\begin{array}{l}
\lambda_{1}=1.96, \lambda_{2}=1.83, \\
e_{1}=0.564, e_{2}=0.472 ;
\end{array}}}
$$

Superellipsoid surface:

$$
S(x, y, z)=\left(\left|\frac{x}{\lambda_{1} c}\right|^{2 / e_{2}}+\left|\frac{y}{\lambda_{2} c}\right|^{2 / e_{2}}\right)^{e_{2} / e_{1}}+\left|\frac{z}{c}\right|^{2 / e_{1}}
$$

Particle image 3D reconstruction

Coeff. $\underline{K}, \underline{\Omega}, \underline{\Pi}$	Pres. BEM	Sphere	Prolate ell. ${ }^{\text {b }}$	[27]	[28]	[29]	Approx. Scheme
$K_{x x}$	10.77	6.0	7.174	9.505	9.324	9.922	10.58
$K_{y y}$	10.80	6.0	8.184	9.505	9.431	9.968	10.71
$K_{z z}$	12.01	6.0	8.184	9.505	10.36	10.46	11.86
Average err	r:	26.76\%	17.24\%	8.70\%	7.68\%	5.56\%	0.74%
$\Omega_{x x}$	50.07	8.0	12.70	-	-	-	47.23
$\Omega_{y y}$	50.88	8.0	23.14	-	-	-	50.71
$\Omega_{z z}$	63.20	8.0	23.14	-	-	-	61.65
Average err	r:	49.00\%	36.77\%	-	-	-	1.60\%
$\Pi_{y y}$	-26.22	0.0	-13.57	-	-	-	-27.56
$\Pi_{z z}$	0.86	0.0	13.57	-	-	-	3.791
Average err	r:	47.90\%	46.34\%	-	-	-	2.36\%

A Model for Translation and Rotation Resistance Tensors for Superellipsoidal Particles

A model was developed that

- for a chosen superellipsoid with known velocity and angular velocity at a location in the flow where
- the flow velocity and flow velocity gradient tensor are known
gives
- the force and torque on the particle

The model is available at Github:
https://github.com/transport-phenomena/superellipsoid-force-torque-model

Model used for a pollen particle

Table 3
$\mathbf{K}^{\prime}, \boldsymbol{\Omega}^{\prime}$ and $\boldsymbol{\Pi}^{\prime}$ tensor coefficients estimations for a realistic pollen particle (Štrakl et al., 2022a), obtained via DNS, approximated via sphere, prolate ellipsoid, triaxial ellipsoid and superellipsoid.

$\mathbf{K}^{\prime}, \mathbf{\Omega}^{\prime}, \boldsymbol{\Pi}^{\prime}$	Pollen ${ }^{\text {a }}$ (Štrakl et al., 2022a)	Sphere ${ }^{\text {b }}$	Prolate ${ }^{\text {c }}$	Triaxial ${ }^{\text {d }}$	Superel. ${ }^{\text {e }}$	Shape factors		
						Haider and Levenspiel (1989)	Leith (1987)	Hölzer and Sommerfeld (2008)
Case ID	-	A	B	C	D1/D2	E1/E2	F1/F2	G1/G2
$K_{\text {xx }}^{\prime}$	10.7	6	7.235	9.413	10.58	9.505	9.324	9.922
$K_{\text {yy }}^{\prime}$	10.80	6	8.293	9.582	10.71	9.505	9.431	9.968
$K_{z z}^{\prime}$	12.01	6	8.293	10.84	11.86	9.505	10.36	10.46
$\Omega_{x x}^{\prime}$	50.07	8	12.95	34.05	0/47.23	0/8	0/8	0/8
$\Omega_{y y}^{\prime}$	50.88	8	24.29	37.65	0/50.71	0/8	0/8	0/8
$\Omega_{z z}^{\prime}$	63.20	8	24.29	44.79	0/61.65	0/8	0/8	0/8
$\Pi_{\mathrm{xx}}^{\prime}$	25.31	0	0.0	19.35	0/23.51	0/0	0/0	0/0
$\Pi_{\text {yy }}^{\prime}$	-26.22	0	-14.63	-23.53	0/-27.56	0/0	0/0	0/0
$\Pi_{z z}^{\prime}$	0.86	0	14.63	3.87	0/3.791	0/0	0/0	0/0
$K_{x x}^{\prime} 2 c / d_{e q}$	6.09	6	5.733	5.944	0/6.025	5.412	5.309	5.650
$K_{y y}^{\prime} 2 c / d_{\text {eq }}$	6.15	6	6.572	6.051	0/6.100	5.412	5.370	5.676
$K_{z z}^{\prime} 2 c / d_{\text {cq }}$	6.84	6	6.572	6.846	0/6.756	5.412	5.899	5.956

${ }^{\text {a }}$ Fitted tensor coefficients (Štrakl et al., 2022a) solely for comparison (superellipsoid surrogate approach not applicable due to non-symmetric particle shape).
${ }^{\mathrm{b}}$ Analytical tensor coefficients for $\lambda_{1}=\lambda_{2}=\epsilon_{1}=\epsilon_{2}=1.0$.
${ }^{\mathrm{c}}$ Analytical tensor coefficients for $\lambda_{1}=2.009 ; \lambda_{2}=\epsilon_{1}=\epsilon_{2}=1.0$.
${ }^{\text {d }}$ Superellipsoid surrogate mode, 1 (Štrakl et al., 2022a), for $\lambda_{1}=2.081 ; \lambda_{2}=1.907 ; \epsilon_{1}=\epsilon_{2}=1.0$.
${ }^{\text {e }}$ Superellipsoid surrogate approach, Štrakl et al. (2022a), for $\lambda_{1}=1.96 ; \lambda_{2}=1.83 ; \epsilon_{1}=0.564 ; \epsilon_{2}=0.472$.

A pollen particle in laminar pipe flow

(a) normalized deviation in streamwise direction: x^{*}

(c) particle trajectory

(b) normalized deviation in gravitational direction: y^{*}

(d) deviation in particle trajectory

Superellipsoid collision modelling

Faculty of Mechanical Engineering

Detect contact point

- A point on the surface of one superellipsoid is inside of the second superellipsoid.
- We solve an optimization problem that seeks the point on the second superellipsoid that is deepest inside of the first.

Figure 8: Detection of collision point on superellipsoid 2 and inside superellipsoid 1 with common normal \boldsymbol{n}
$=$ Faculty of Mechanical Engineering

Collision model

- We assume the particles are rigid with elastic contact (coef. of restitution normal direction <1)
- Friction is modelled by tangential coef. of restitution ($-1,1$)
- Conservation of linear and angular momentum are considered.

$$
\begin{gathered}
m_{1} v_{1 x}^{\prime \prime}+m_{2} v_{2 x}^{\prime \prime} \\
m_{1} v_{1 y}^{\prime \prime}+m_{2} v_{2 y}^{\prime \prime} \\
m_{1} v_{1 z}^{\prime \prime}+m_{2} v_{2 z}^{\prime \prime} \\
-\epsilon_{n}\left[v_{2 x}-\omega_{2 y} r_{2 z}+\omega_{2 z} r_{2 y}-v_{1 x}+\omega_{1 y} r_{1 z}-\omega_{1 z} r_{1 y}\right] \\
\epsilon_{t}\left[v_{2 y}-\omega_{2 z} r_{2 x}+\omega_{2 x} r_{2 z}-v_{1 y}+\omega_{1 z} r_{1 x}-\omega_{1 x} r_{1 z}\right] \\
\epsilon_{t}\left[v_{2 z}-\omega_{2 x} r_{2 y}+\omega_{2 y} r_{2 x}-v_{1 z}+\omega_{1 x} r_{1 y}-\omega_{1 y} r_{1 x}\right] \\
I_{1 x x}^{\prime \prime} \omega_{1 x}^{\prime \prime}+I_{1 x y}^{\prime \prime} \omega_{1 y}^{\prime \prime}+I_{1 x z}^{\prime \prime} \omega_{1 z}^{\prime \prime}+m_{1} r_{1 y}^{\prime \prime} v_{1 z}^{\prime \prime}-m_{1} r_{1 z}^{\prime \prime} v_{1 y}^{\prime \prime} \\
I_{1 y x}^{\prime \prime} \omega_{1 x}^{\prime \prime}+I_{1 y y}^{\prime \prime} \omega_{1 y}^{\prime \prime}+I_{1 y z}^{\prime \prime} \omega_{1 z}^{\prime \prime}+m_{1} r_{1 z}^{\prime \prime} v_{1 x}^{\prime \prime}-m_{1} r_{1 x}^{\prime \prime} v_{1 z}^{\prime \prime} \\
I_{1 z x}^{\prime \prime} \omega_{1 x}^{\prime \prime}+I_{1 z y}^{\prime \prime} \omega_{1 y}^{\prime \prime}+I_{1 z}^{\prime \prime} \omega_{1 z}^{\prime \prime}+m_{1} r_{1 x}^{\prime \prime} v_{1 y}^{\prime \prime}-m_{1} r_{1 y}^{\prime \prime} v_{1 x}^{\prime \prime} \\
I_{2 x x}^{\prime \prime} \omega_{2 x}^{\prime \prime}+I_{2 x y}^{\prime \prime} \omega_{2 y}^{\prime \prime}+I_{2 x z}^{\prime \prime} \omega_{2 z}^{\prime \prime}+m_{2} r_{2 y}^{\prime \prime} v_{2 z}^{\prime \prime}-m_{2} r_{2 z}^{\prime \prime} v_{2 y}^{\prime \prime} \\
I_{2 y x}^{\prime \prime} \omega_{2 x}^{\prime \prime}+I_{2 y y}^{\prime \prime} \omega_{2 y}^{\prime \prime}+I_{2 y z}^{\prime \prime} \omega_{2 z}^{\prime \prime}+m_{2} r_{2 z}^{\prime \prime} v_{2 x}^{\prime \prime}-m_{2} r_{2 x}^{\prime \prime} v_{2 z}^{\prime \prime} \\
I_{2 z x}^{\prime \prime} \omega_{2 x}^{\prime \prime}+I_{2 z y}^{\prime \prime} \omega_{2 y}^{\prime \prime}+I_{2 z z}^{\prime \prime} \omega_{2 z}^{\prime \prime}+m_{2} r_{2 x}^{\prime \prime} v_{2 y}^{\prime \prime}-m_{2} r_{2 y}^{\prime \prime} v_{2 x}^{\prime \prime}
\end{gathered}
$$

$\underline{A}=\left[\begin{array}{cccccccccccc}m_{1} & 0 & 0 & m_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & m_{1} & 0 & 0 & m_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & m_{1} & 0 & 0 & m_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & r_{1 z}^{\prime \prime} & -r_{1 y}^{\prime \prime} & 0 & -r_{2 z}^{\prime \prime} & r_{2 y}^{\prime \prime} \\ 0 & -1 & 0 & 0 & 1 & 0 & -r_{1 z}^{\prime \prime} & 0 & r_{1 x}^{\prime \prime} & r_{2 z}^{\prime \prime} & 0 & -r_{2 x}^{\prime \prime} \\ 0 & 0 & -1 & 0 & 0 & 1 & r_{1 y}^{\prime \prime} & -r_{1 x}^{\prime \prime} & 0 & -r_{2 y}^{\prime \prime} & r_{2 x}^{\prime \prime} & 0 \\ 0 & -m_{1} r_{1 z}^{\prime \prime} & m_{1} r_{1 y}^{\prime \prime} & 0 & 0 & 0 & I_{x x}^{\prime \prime} & I_{x y}^{\prime \prime} & I_{x z}^{\prime \prime} & 0 & 0 & 0 \\ m_{1} r_{1 z}^{\prime \prime} & 0 & -m_{1} r_{1 x}^{\prime \prime} & 0 & 0 & 0 & I_{y x}^{\prime \prime} & I_{y y}^{\prime \prime} & I_{y z}^{\prime \prime} & 0 & 0 & 0 \\ -m_{1} r_{1 y}^{\prime \prime} & m_{1} r_{1 x}^{\prime \prime} & 0 & 0 & 0 & 0 & I_{z x}^{\prime \prime} & I_{z y}^{\prime \prime} & I_{z z}^{\prime \prime} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -m_{2} r_{2 z}^{\prime \prime} & m_{2} r_{2 y}^{\prime \prime} & 0 & 0 & 0 & I_{x x}^{\prime \prime} & I_{x y}^{\prime \prime} & I_{x z}^{\prime \prime} \\ 0 & 0 & 0 & m_{2} r_{2 z}^{\prime \prime} & 0 & -m_{2} r_{2 x}^{\prime \prime} & 0 & 0 & 0 & I_{y x}^{\prime \prime} & I_{y y}^{\prime \prime} & I_{y z}^{\prime \prime} \\ 0 & 0 & 0 & -m_{2} r_{2 y}^{\prime \prime} & m_{2} r_{2 x}^{\prime \prime} & 0 & 0 & 0 & 0 & I_{z x}^{\prime \prime} & I_{z y}^{\prime \prime} & I_{z z}^{\prime \prime}\end{array}\right]$

Figure 10: Two superellipsoidal particles undergoing collision

Faculty of Mechanical Engineering

Thank you for your attention!

dr. Jure Ravnik,
professor of power, process and environmental engineering

References:

- Wedel, J., Steinmann, P., Štrakl, M., Hriberšek, M., \& Ravnik, J. (2023). Shape matters: Lagrangian tracking of complex nonspherical microparticles in superellipsoidal approximation. International Journal of Multiphase Flow, 158, 104283. doi:10.1016/j.ijmultiphaseflow.2022.104283
- Wedel, J., Steinmann, P., Štrakl, M., Hriberšek, M., Cui, Y., \& Ravnik, J. (2022). Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition — A CFD study. Computer Methods in Applied Mechanics and Engineering, 401, 115372. doi:10.1016/j.cma.2022.115372
- Štrakl, M., Hriberšek, M., Wedel, J., Steinmann, P., Ravnik, J. (2022). A Model for Translation and Rotation Resistance Tensors for Superellipsoidal Particles in Stokes Flow. J. Mar. Sci. Eng. 2022, 10, 369. doi:10.3390/jmse10030369
- Mitja Štrakl, Jana Wedel, Paul Steinmann, Matjaž Hriberšek \& Jure Ravnik (2022). Numerical drag and lift prediction framework for superellipsoidal particles in multiphase flows. International Journal of Computational Methods and Experimental Measurements (2022), Vol 10, Pages 38-49, doi:10.1016/10.2495/CMEM-V10-N1-38-49
- J. Wedel, P. Steinmann, M. Štrakl, M. Hriberšek, J. Ravnik (2021). Risk Assessment of Infection by Airborne Droplets and Aerosols at Different Levels of Cardiovascular Activity. Archives of Computational Methods in Engineering (2021), doi:10.1007/s11831-021-09613-7
- J. Wedel, P. Steinmann, M. Štrakl, M. Hriberšek, J. Ravnik (2021). Can CFD establish a connection to a milder COVID-19 disease in younger people? Aerosol deposition in lungs of different age groups based on Lagrangian particle tracking in turbulent flow. Computational Mechanics, doi:10.1007/s00466-021-01988-5

Contact:

- jure.ravnik@um.si
- http://jure.ravnik.si
- @JureRavnik

