

COMETE kickoff

Simulation of turbulent bubbly flows

Gabriele Labanca

G. Labanca COMETE kickoff at TUWien - Vienna, 23 oct 2019

1

COMETE project

Computational effort

Homogeneous Isotropic Turbulence (HIT) in a cube of $1m^3$

Interface: smallest Scale $\simeq 10^{-9}m$ 9 orders of magnitude.

$$N_P \simeq (10^9)^3 = 10^{27}!$$

M.S. Dodd and A. Ferrante, On the interaction of Taylor length scale size droplets and isotropic turbulence, JFM (2016)

Approaches to model the interface

Interface tracking/capturing

INTERFACE TRACKING

INTERFACE CAPTURING

Interface described by points Lagrangian advection Scalar function: phase characterised by its value

Cahn-Hilliard Equation

A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF, 2017

Unique equation for both fluids: properties depending on phase field value

A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF, 2017

Goals of simulations

Reynolds number: inertial over viscous		Viscosity ($Pa \cdot s$)	Density ($kg \cdot m^{-3}$)
$Re_{\tau} = \frac{\rho u_{\tau} h}{\eta_c}$	Air	10 ⁻⁵	1
Weber number: ratio between inertial and surface forces	Water	10 ⁻³	10 ³
$We = \frac{\rho u_{\tau}^2 h}{\sigma}$	Butane	10 ⁻⁵	600
	$\gamma \lambda$	0.01 1	100
Viscosity ratio: $\lambda = \frac{\eta_d}{\eta_c} = 0.01 \div 100$	0.001		
	0.01		
Density ratio: $\gamma = \frac{r a}{\rho_c} = 0.001 \div 1$	0.1		
	1	\times	

Viscosity ratio $\lambda = 100$

Results: qualitative differences

$$\lambda = \gamma = 1$$

Density ratio $\gamma = 0.001$

A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF, 2017

Results: Number of drops

Higher viscosity leads to drops more resistant to breakage

Dominance of coalescence events leads to a lover number of drops

A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF, 2017

Results: Mean streamwise velocity

Streamwise component of velocity averaged over streamwise (\hat{x}) and span wise (\hat{y}) directions

Resistance to deformation damps the flow

No significative changes for different γ

Global reduction for $\lambda = 100$

u' • u' evaluated at
 10 w.u. from the wall
 ↓
 Structures aligned with streamflow

Results: Effects on streaks

At higher λ , the bubbles resist more to deformations

Less streaks, bigger timescales Globally, higher fluctuations

A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF, 2017

Continuation of the analysis

Widening of the range of parameters (FD wall-normal direction)

Conferences: ERCOFTAC, APS (november 2019)

Non-uniform grid

TECHNISCHE

UNIVERSITÄT

Vienna Austria

WIEN

General compact finite difference scheme: *i*

$$u_i^{(p)} + \sum_{j \in J_n} a_j u_j^{(p)} = \sum_{j \in I_n} b_j u_j + \sum_{j \in J_m} b_j u_j$$

The coefficients can be derived with polynomial interpolation and adapted to non-uniform grid (Chebyschev)

Badalassi et al., Computation of multiphase systems with phase model, JCP (2003)

Lele, S. K. "Compact finite difference schemes with spectral-like resolution." J. Comput. Phys. 103 (1991)

Shukla, Zhong. "Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation." J Comput Phys 204.2 (2005)

Shukla, Tatineni, Zhong. "Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations." J Comput Phys 224.2 (2007)

gabriele.labanca@tuwien.ac.at www.fluid.tuwien.ac.at

TECHNISCHE **Collision/Coalescence/Break-up** UNIVERSITÄT **Drops & Carrier Fluid w. different viscosity** Vienna | Austria

Coalescence Regime for every λ

Coalescence Regime for $\lambda < 1$ Break-up Regime for $\lambda > 1$

Coalescence Regime for $\lambda < 1$ Break-up Regime for $\lambda > 1$

$$\lambda = \frac{\eta_d}{\eta_c} = \frac{\text{Drop Viscosity}}{\text{Continuous Viscosity}}$$

WIEN

ΕN

L. Scarbolo, A. Soldati et. al., Unified framework for a side-by-side comparison of different multicomponent algorithms, JCP. (2013) A. Roccon, M. De Paoli, F. Zonta, A. Soldati, Viscosity-modulated breakup and coalescence of large drops in bounded turbulence, PRF (2017)

Surfactant Equations

G. Soligo et al., Coalescence of surfactant-laden drops by Phase Field Method, JCP, 2019

Steady State of Field Variables

Mass losses

Spontaneous shrinkage of droplets

Total energy is lowered by drop shrinkage

 $\delta \mathcal{F} \propto \delta r$

P. Yue et al., Spontaneous shrinkage of drops and mass conservation in phase-field simulations, JCP (2007)

G. Soligo et al., Mass-conservation-improved phase field methods for turbulent multiphase flow simulation, Acta Mechanica (2019)

Finite Differences: Uniform Grid

21

Badalassi et al., Computation of multiphase systems with phase model, JCP (2003)

Lele, S. K. "Compact finite difference schemes with spectral-like resolution." J. Comput. Phys. 103 (1991)

Shukla, Zhong. "Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation." J Comput Phys 204.2 (2005)

Shukla, Tatineni, Zhong. "Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations." J Comput Phys 224.2 (2007)

General compact finite difference scheme:
$$u_i^{(p)} + \sum_{j \in J_n} a_j u_j^{(p)} = \sum_{j \in I_n} b_j u_j + \sum_{j \in J_m} b_j u_j$$

 $u(x) = \sum_{i \in I_n} u_i \rho_i(x) + \sum_{i \in I_n} u_i' q_i(x) + \sum_{i \in I_m} u_i r_i(x)$
Conditions on ρ_i , q_i , r_i
 $\rho_i(x_j) = \delta_{ij}$ $\forall i \in I_n, \forall j \in I_n \cup I_m$
 $\rho_i''(x_j) = 0$ $\forall i \in I_n, \forall j \in I_n$
Guess of the form
 $\rho_i(x) = \frac{\prod_m (x)}{\prod_m (x_i)} l_i^n(x) \left(1 + \sum_{r=1}^n A_r(x - x_i)^r\right), i \in I_n$

Differentiating and using the condition gives *n* equations in *n* unknowns $A_1, A_2, \ldots A_n$

The coefficients can be adapted to non-uniform grid (Chebyschev)

Shukla, Zhong. "Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation." *J Comput Phys* 204.2 (2005) Shukla, Tatineni, Zhong. "Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations." *J Comput Phys* 224.2 (2007)

END

Numerical Method

Direct Numerical Solution (DNS) coupled CH and NS equations, no models used.

Computational Domain

Space Discretisation:

- X Periodic direction (Fourier)
- Y Periodic direction (Fourier)
- Z Wall-normal (Chebyshev-Tau)

Time Discretisation:

- N-S: Crank-Nicolson/Adams-Bashforth scheme
- C-H: Crank-Nicolson/Euler scheme

Solver NS (Vorticity-Velocity Formulation) Curl of NS (Vorticity):

$$rac{d\omega}{dt} =
abla imes {f S} + rac{1}{Re_ au}
abla^2 \omega$$

Double Curl of NS (Vorticity)

$$\frac{d\nabla^2 \mathbf{u}}{dt} = \nabla^2 \mathbf{S} - \nabla (\nabla \cdot \mathbf{S}) + \frac{1}{Re_\tau} \nabla^4 \mathbf{u}$$

CH (Same formulation)

