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This handbook is intended to give a general, but very detailed description of the
code flow36. The code was initially written in 2017 at TU Wien by Giovanni Soligo
& Alessio Roccon, as a replacement for the legacy code FLOWSB, in order to get better
overall performance, a more readable and up to date code and improve its scalability.
The code performs Direct Numerical Simulations (DNS) in a channel geometry, using a
pseudospectral spatial discretization. The flow solver is coupled with a phase variable
solver, which solves the Cahn–Hilliard equation (Phase Field Model).
The code was further developed during the MSCA-ITN-EID project COMETE "Next-
Generation Computational Methods for Enhanced Multiphase Flow Processes” (No
813948) to simulate turbulent three-phase flows and turbulent bubbly-laden flows.

This document was last updated on June 16, 2023.March 13, 2022
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Chapter 1

Getting started

The executable compile.sh includes all the parameters needed to run a simulation. In
Section 1.3 is reported a detailed guide about this file, its structure and how to modify
it.
When running the compile.sh in its own folder, it sets up all the files and folders
needed for the simulation in the set_run folder. Once the compile.sh has finished
without error, go to the set_run folder and launch the executable go.sh; at this point
the simulation should start.
The main folder of the code includes the following files and subfolders:

• initial_fields : contains the initial fields (velocity and phase, if dealing with
a multiphase simulation) used if the initial condition is set to read the initial
fields (both in its serial or parallel version). These files, during the execution of
compile.sh, are copied into the set_run/initial_fields folder, so they can be
removed or modified even when the simulation is running.

• Machine XYZ : contains the makefile and go.sh needed when running on the
above mentioned machine. It is copied in the main folder by the compile.sh script
when needed. For some machines, more than one makefile (i.e. configuration)
might be available depending on the compiler/libraries available and architecture
(CPU, GPU). Depending on the machine, also the openacc_flag is set. This flag
enables the GPU acceleration on the supported machines (e.g. Nvidia GPUs).

• paraview_output : contains the code that can be used to generate Paraview
compatible output file (using a rectilinear grid).

• set_run : contains all the files and subfolders needed for a simulation and its
output.

• source_code : contains all the subroutine and the main file used to compile the
executable file; each subroutine will be described in detail in Chapter 2.

• stats_calc : contains the code that can be used to extract velocity statistics
from the simulation output files (mean, root mean square, skewness and flatness).
These statistics can also be calculated runtime as will be seen in Section 1.3.

• compile.sh : this file is used to generate the simulation folder and executable. It
also includes all the parameter declaration part.

1



2 CHAPTER 1. GETTING STARTED

• go.sh : its edited version is copied during compile.sh execution in the set_run
folder and used to launch the simulation (directly on local machines or to be
submitted to the job/load manager via batch commands).

• input.f90 : its edited version is copied during compile.sh execution in the
set_run/sc_compiled folder and it is used as an input file for the simulation
parameters.

• makefile : called during compile.sh execution to create the executable of the
code.

• scaling : contains strong and weak scaling results obtained on different machines.

• profiling : contains the profiling data obtained on Marconi-100 using GPU. The
file can be view using Nvidia Nsight Systems.

On a local machine the code can be compiled and run just by executing the compile.sh
script. On a cluster, since there is always a job scheduler that handles all the submitted
jobs the last lines of the compile.sh script must be commented out (especially the call
to the script go.sh). When running on a cluster, first run the compile.sh script, then
move to the set_run directory and submit the jobscript go.sh. If you want to compile
and run several simulation with different parameters, after the compilation, copy the
folder set_run somewhere else and then submit the jobscribt to the job scheduler there.

1.1 Output of a simulation

Depending on the parameters choice when compiling the code, the code can give as an
output different data, that will be all saved in the subfolder results inside the set_run
folder.
The code will always save the initial and final velocity fields (and the phase field, if it is
activated) both in physical and modal space, the x, y, z axis arrays and a time check
file. This latter file will include the simulation current time, the bulk Reynolds number
and, for the phase field case only, also the mean value of φ all over the domain and the
integral of the phase φ = +1 (to check the mass losses).
In addition the output of the simulation includes:

• Flow field data (and phase field, if activated) in physical space: [variable
name]_[number of time step].dat

• Flow field data (and phase field, if activated) in modal space: [variable name]c_[number
of time step].dat

• Mean, root mean square, skewness and flatness for the flow field (u, v, w) (single
array in the wall-normal direction). Single formatted file stats.dat.

• Mean pressure and root mean square of pressure fluctuations (single array in
the wall-normal direction). The mean pressure value does not include the mean
pressure gradient in x and y directions. The pressure solver works for a fully-
developed channel flow with a non-zero mean velocity in the x direction and for
a single phase flow. Single formatted file budget.dat; the first lines of the file
explain its content.
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• Energy budgets. For the pressure–strain correlation the pressure calculated above
is used, so they do not consider the presence of multiple phases (the energy
balance may not be zero for a multiphase flow, since some terms are missing/not
properly calculated). The energy budgets are saved in the same file as the pressure
(budget.dat).

• Streamwise and spanwise power spectra for u′, v′ and w′ at z+ = 5, z+ = 15 and
z+ = Re. Power spectra in x direction are saved in the file power_xspectra.dat,
while those in y direction in the file power_yspectra.dat.

Velocity and eventually phase field are saved in a binary file, written with the same
endianness and format as the MPI implementation of the machine where the simulation
was run.
In future others output may be added to the code.

1.2 Post-processing
At the present time two codes are available for direct post-processing of the output
data; the first one, in the folder stats_calc evaluate the statistics of the flow field (can
be done also at run-time), while the other, paraview_output_fg, generates Paraview
compatible output file. Both these codes use either data in physical space, either in
modal space.
The statistics calculation runs alway on three MPI processes, one handle u data, another
v data and the third w data. The Paraview output generation can work independently
on several cores: each core takes care of writing the output at a certain time-step. Use
the input file to modify some parameters of the program to better handle the output.

1.3 The compile.sh file
The script compile.sh is divided in several parts: input parameters declaration, cleaning
of set_run folder, copying and editing files in the set_run folder, compilation of the
code and, only on a local machine, running the go.sh in the proper folder.

1.3.1 Parameters declaration

When running a simulation this is the only part that should be modified; unless needed
(e.g. code modification, . . . ) all the rest of the script should be left untouched.
Always pay attention to the parameter type (integer, real, double, . . . ) when editing
values.

• machine : declare which machine is used for the simulation (local machine, Discov-
erer, VSC5, Leonardo . . . ). According to the machine chosen, the proper modules
are loaded and (on a supercomputer) the proper batch scheduler instructions
will be selected in the go.sh script. openacc_flag: This flag is automatically
set depending on which machine is used. This flag enables to use of GPUs on
supported machines (e.g. Nvidia GPUs). For some machines, there might be two
machine numbers, one with and one without GPU accelerationo.

• fftw_flag : can be 0 or 1; if 0 the plans for the Fourier and Chebyshev transforms
will be created using the default algorithm. On the other hand, if 1 is selected, the
plan creation will take much more time, but it will choose the optimal algorithm



4 CHAPTER 1. GETTING STARTED

to perform the transforms. A value equal to 1 will results in a much higher time
for the FFTW plan creation, but it should choose the most performing algorithm
according to the size of the transforms and the machine where the simulation are
run.

• ix : the number of points is always a power of two: the number of points in x
direction is NX = 2ix.

• iy : same as ix, but for the y direction: the number of points in y direction is
NY = 2iy.

• iz : number of points in z direction is expressed as NZ = 2iz + 1, since Chebyshev
transforms are faster on an odd number of points.

• exp_x : Expansion factor along x for the variables that can be resolved on the
finer grid (only the surfactant at the moment, easy to extend to other variables,
must take care of the coupling).

• exp_y : Expansion factor along y for the variables that can be resolved on the
finer grid.

• exp_z : Expansion factor along z for the variables that can be resolved on the
finer grid.

• NYCPU : number of division of the domain for parallelization (y direction in physical
space, z direction in modal space). In physical space each MPI process holds roughly
Nz ×Ny/Ny,cpu ×Nz/Nz,cpu points (for the exact method please refer to Chapter
4). In modal space each MPI process holds roughly Nx/Ny,cpu ×Ny/Nz,cpu ×Nz.
When running 2D simulation always run on a x− y plane so the value of NYCPU
must be set to 1.

• NZCPU : number of division of the domain for parallelization (z direction when in
physical space, y direction when in modal space).

• NNT : total number of MPI processes used to run the code; equal to NYCPU×NZCPU.

• restart : if equal to 0 the simulation is a new simulation, otherwise a previous
simulation is restarted. When restarting a new simulation the code will automat-
ically set the proper initial conditions for the flow field and for the phase field
(if active). All the other parameters can be modified freely. The restart flag
determines also which files will be kept and which deleted (please refer to Section
1.3.2 for a complete description).

• nt_restart : time step from which restarting the simulation; the code will thus
read the corresponding flow (and phase) fields.

• incond : defines which is the initial condition of the simulation. The complete list
of initial condition are reported in the compile.sh script. Some examples are:

1. zero velocity all over the domain
2. laminar Poiseuille flow in x direction (generated from a unitary pressure

gradient)
3. random velocity value for u, v, w
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4. read input from file (parallel read)
5. read input from file (serial read, used for retro-compatibility with legacy data

files)
6. . . .

• Re : Re number used for the simulation.

• Co : Courant number threshold value, if the Courant number exceeds this value
the simulation is stopped.

• gradpx : mean pressure gradient along x direction, defined as ∂P
∂x .

• gradpy : mean pressure gradient along y direction, defined as ∂P
∂y .

• cpi_flag : if enabled (1), simulations are performed using the constant power
input framework and pressure gradient is adapted to the flow-rate so to keep
constant the power injected (supported only along the x direction).

• repow: Power Reynolds number used to compute the pressure gradient (computed
on the effective viscosity.

• lx : size of the domain (x direction) normalized by π.

• ly : size of the domain (y direction) normalized by π.

• nstart : initial time step of the simulation.

• nend : final time step of the simulation.

• dump : saving frequency of fields (velocity and eventually phase variable) in physical
space. If a value of −1 is provided no fields data will be saved during the time
cycle.

• sdump : saving frequency of fields (velocity and eventually phase variable) in modal
space. If a value of −1s is provided no fields data will be saved during the time
cycle.

• failure_dump : saving frequency of fields (in modal space). These files are not
kept and they are meant to be used only as a checkpoint if the simulation stops.
The saving frequency should be higher than the normal saving frequency.

• st_dump : calculation and saving frequency of flow statistics at run time.

• stat_starts : time step from which starting the statistics calculation.

• mean_flag : if equal to 0 the code does not calculate the mean, root mean square,
skewness and flatness of the flow field at run time, otherwise if equal to 1 it will
calculate these statistics with st_dump frequency.

• budget_flag : if equal to 0 the code will skip pressure statistics and energy
budgets calculation; if equal to 1 these statistics will be calculated and saved.

• spectra_flag : if equal to 0 the code will not calculate any velocity power spectra,
otherwise if equal to 1 it will calculate them.
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• dt : value of the time step used for time advancement.

• bc_upb : boundary conditions on the upper wall, if 0 applies no-slip condition, if
1 applies free-slip condition.

• bc_lb : boundary conditions on the lower wall, if 0 applies no-slip condition, if 1
applies free-slip condition.

• phi_flag : if equal to 0 the phase field part is deactivated and the Cahn–Hilliard
equation will not be solved; if equal to 1 the phase field part is activated and the
Cahn–Hilliard equation is solved. All the following part is used only when the
phase field is activated.

• phicor_flag : Enables different phase-field formulations.

◦ 0: Standard CH equation.
◦ 1: Standard profile-corrected.
◦ 2: Flux-corrected (A Flux-Corrected Phase-Field Method for Surface Diffu-

sion)
◦ 3: Profile-corrected turned off at the walls.
◦ 4: Profile-corrected kill the gradients (filter on gradients lower than threshold

0.02 ∗ Ch).
◦ 5: Flux-corrected kill the gradients (filter on gradients lower than threshold

0.02 ∗ Ch).
◦ 6: Curvature-subtracted PFM (A redefined energy functional to prevent mass

loss in phase-field methods).
◦ 7: Conservative Allen-Cahn, Second-order phase-field model (A conservative
diffuse interface method for two-phase flows with provable boundedness
properties).
◦ 8: Conservative Allen-Cahn, Second-order phase-field model (Accurate con-

servative phase-field method for simulation of two-phase flows).

• lamcorphi: Coefficient used to tune the profile-correction, to be set only when
phicor_flag=1,2,3,4,5.

• matchedrho : if equal to zero the two phases have different densities; if equal to
1 their densities are equal. Warning: this value and the following one must be
coherent, otherwise the code will stop (if matchedrho=0, rhor must be different
from 1).

• rhor : density ratio of the phase φ = +1 over the phase φ = −1 (density ratio of
one phase with respect to the carrier, for example density of the drop over density
of the carrier fluid).

• matchedvis : if equal to zero the two phases have different viscosities; if equal to
1 their viscosities are equal. Warning: this value and the following one must be
coherent, otherwise the code will stop (if matchedvis=0, visr must be different
from 1).

• non_newtonian: Enables the non-Newtonian-Carreau model in the phase φ = +1.
matchedvis must be also set to zero
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• exp_non_new: Exponent of the non-Newtonian model, viscosity ratio is used
to set the infinity viscosity.

• visr : viscosity ratio of the phase φ = +1 over the phase φ = −1 (viscosity ratio
of one phase with respect to the carrier, for example viscosity of the drop over
viscosity of the carrier fluid).

• We : value of Weber number.

• Ch : value of Cahn number. Defines the width of the interface; always make sure
that the interface contains at least three points.

• Pe : value of Peclet number.

• Fr : value of Froud number.

• body_flag: Introduce a body force ∝ Bd ∗ (φ+ 1)/2 (see below for detail on Bd.

• Bd: Coefficient for the body force.

• bodydir: Direction of the body force.

• sgradp_flag: Enables S-shaped pressure gradient for Taylor-Couette.

• sgrapdir: Set the direction of the S-shaped pressure gradient.

• ele_flag: Electric force at the interface

• stuart: Stuart number for the electric force.

• in_condphi

1. only phase φ = −1
2. read input from file (parallel read)
3. read input from file (serial read, for retro-compatibility with old legacy data

files)
4. 2D drop; accepted input values are radius and height (z coordinate)
5. 3D drop; accepted input values are radius and height (z coordinate)
6. stratified flow; accepted input values are mean height of the wave, sine wave

amplitude (x, y direction), sine wave frequency (x, y direction) and random
perturbation amplitude

7. 3D drop array; accepted input values are radius of the single drop, height of
the drop array (z coordinate), number of drops in x direction and number of
drops in y direction. The distance among two drop centers must be at least
2(radius+5

√
2Ch), otherwise the number of drops will be reduced to fit this

constraint.

• gravdir : define direction of gravity.

◦ +1 : positive x direction
◦ −1 : negative x direction
◦ +2 : positive z direction
◦ −2 : negative z direction
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◦ +3 : positive y direction
◦ −3 : negative y direction

• buoyancy : defines which gravity formulation the code will use.

◦ 0 : no gravity
◦ 1 : buoyancy and weight effects
◦ 2 : only buoyancy effects

• psi_flag : Enables solution of the CH-like equation for the surfactant (second
order)

• Pe_psi: Surfactant Peclet number.

• Ex: Ex number for the surfactant.

• Pi: Pi number for the surfactant (diffusive term is proportional to Pi/Pe).

• El: Elasticity number, effect of the surfactant on surface tension.

• in_condpsi : defines initial condition for the surfactant.

◦ 0 : Constant value.
◦ 1 : Read input from file (parallel read).
◦ 2 : Initialize equilibrium profile (psi_bulk).
◦ 4 : Equilibrium profile multiplied with Y gradient.
◦ 5 : Equilibrium profile multiplied with Z gradient.
◦ 6 : Diffusion Test, angular distribution.

• psi_mean: Average surfactant concentration.

• psi_bulk: Bulk surfactant concentration.

• temp_flag : Enables solution of the energy equation (temperature).

• Ra: Rayleigh number; for Rayleigh-Benard chose Re =
√
Ra ∗ Pr/4.

• Pr: Prandtl number.

• A,B,C,D,E,F: Parameters used to setup Boundary condtions as follows: for z = −1,
A ∗ T +B ∗ dT/dZ = C; for z = +1, D ∗ T + E ∗ dT/dZ = F .

• in_cond_temp : defines initial condition for the temperature field.

◦ 0 : Initial constant temperature (mean value).
◦ 1 : Read from data (parallel read).
◦ 2 : Phase φ = +1 (hot) and φ = −1 (cold), only for heat transfer in multiphase

turbulence.
◦ temp_mean: Mean temperature for initial condition.
◦ boussinesq: Activate buoyancy term in N-S.
◦ part_flag: Enables Lagrangian particle Tracking.
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1.3.2 Cleaning of set_run folder

This part of the script delete old simulation files in the set_run folder, to make it
ready for a new run. The following files and folders are removed: go.sh, sc_compiled,
paraview_output, stats_calc, nohup.out; if it is a new simulation also the folder
results is removed, otherwise it is left untouched.
The restarted case will read the initial fields from the results folder at the beginning
of the simulation.

1.3.3 Copying and editing

First of all the script go.sh is copied in the set_run folder and the correct value of MPI
process to be used for the run NNT is replaced in the copied version. Then, the input
file input.f90 is copied in the set_run/sc_compiled folder and all the parameter are
replaced in the file with the correct vaue.
At this point all the source files of the code are copied from the folder source_code to the
folder set_run/sc_compiled. Also the two folders paraview_output and stats_calc
are copied into the folder set_run.
If the phase field is activated, an input file for the phase field initial condition is created
(input_phase_field.f90); this input file is different for the differents initial condition
that can be chosen.
Lastly all the flags for the conditional compilation are replaced in the copied source files
of the code; this way, depending on the parameters choice, the code will be compiled
in different ways including or omitting some parts. This is done to avoid unneeded if
clauses in the execution of the code as they will reduce performance (especially in do
loops). After this step the code will be compiled and all the mdule files will be created
in the folder set_run/sc_compiled, together with the executable.
If you are running on a local machine, you can leave uncommented the last three lines
of the script, such that the compile.sh script will switch to the set_run folder, run
the go.sh file and then switch back to the main folder.
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Chapter 2

Code flowchart

In this chapter a detailed overview of all the suborutines used in the code will be
presented. This chapter is divided in five main sections, the first including all the
subroutine of the main part of the code, the second one includes all the solver part
subroutines, the third the details about physical to modal space tranforms and backwards,
the fourth the statistic calculation part and the latter describes all the modules included
in the code.
All the subroutine from a library (for example FFTW, cuFFT or MPI libraries) will
not be included here; for further information and a detailed description, please refer to
the library guide.

2.1 Main code

2.1.1 FLOW_36

This is the main program; it takes care of starting and terminating the MPI execution
of the code. As shown in Figure 2.1, the first part of this script is the MPI parameter
definition part: once the code is run on a determinate number of MPI processes, all the
MPI processes are numbered and the total number of MPI processes is defined (the
total number of MPI process is already defined when running the code, here its value is
assigned to a variable). The number of MPI process in the y and z directions (NYCPU
and NZCPU) and the number of grid points in the three directions are already defined
in the module commondata as parameters, such that they are known before the input
section. After the MPI initialization the code verifies that the number of MPI processes
in the two directions and the grid are compatible, which means that each MPI process
must always have at least one point in each direction. Due to the domain transposition
and the Fourier transform the code must verify that NYCPU is smaller than NX/2 and NY
and that NZCPU is smaller than NZ and NY. If this check is passed the code goes on with
the execution, otherwise it will stop prompting an error message.
The input part is performed with the call to the read_input subroutine.
Since the domain is divided in a Cartesian-like grid (for further details, refer to Chapter
4), a MPI Cartesian communicator is defined, such that all MPI communications can be
strongly simplified (especially when it comes to find to which MPI process data must be
sent and from which one must be received). Here are also defined the two MPI derived
datatypes used for MPI input/output operation (for further details refer to Section
2.1.10). When only Eulerian variables are solved (e.g. flow, phase-field, surfactant,
temperature), the MPI communicator is unique and no splitting occurs. By opposite,

11
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when particles are tracked (Lagrangian points), two MPI communicators are created,
one for the Eulerian variables (i.e. the MPI tasks taking care of solving the Eulerian
variables) and one for the particles (i.e. the MPI tasks taking care of tracking the
particles).
At this point it comes to the plan creation for the FFTW calls: this subroutine creates
the plans that will be used when performing Fourier and Chebyshev transforms.
The next step is the creation and saving of the axis arrays x, y and z. x and y (the
periodic directions, discretized with a Fourier series) have constant spacing among the
grid points; z axis, due to the Chebyshev discretization, uses Chebyshev nodes, defined
as cos [(k − 1)π/(NZ− 1)] with k spanning from 1 to NZ.
After the plan creation, the array containing the wave numbers are defined in the
subroutine wave_numbers.
The velocity field initialization is performed by the subroutine initialize, while the
subroutine initialize_phi initialize the phase field (if activated).
Then the statistic calculation variables are set up by the subroutine initialize_stats,
while the subroutine initialize_check initialize the simulation check parameters (bulk
Reynolds number, . . . ). Here there is also the first call to integral_phi, which allows
to check some useful phase field related quantities at run time, giving a general idea of
the quality of the simulation.
At this point the initial fields are saved both in physical and modal space and then the
time iteration loop starts. During the time advancement, first the subroutine solver is
called; then, according to their saving frequency, statistics and fields are saved. At the
end of the time step the simulation check subroutines integral_phi and sim_check
are called.
At the end of the time advancement the auxiliary files created for statistics calculation
are deleted, the final fields are saved in physical and modal space and the allocated
variables are deallocated (subroutines destroy and destroy_phi). Then the FFTW
plans (destroy_plan), the MPI derived datatypes and the MPI Cartesian communicator
are freed.
The program concludes with the MPI finalization call.

2.1.2 read_input

This subroutine reads the edited version of the file input.f90. If the simulation is
a restart, the initial conditions on both the velocity and the phase field are forced
to read from the results folder. This subroutine also checks that the parameters
matchedrho, rhor, matchedvis, visr are coherent. At the end of the subroutine it
calls the subroutine print_start that print to screen all the informations about the
simulation when it starts.

2.1.3 define_sizes

This subroutine define the sizes of the data arrays for each MPI process, both in physical
space (fpy, fpz) and in modal space (spx, spy); these sizes can differ from one MPI
process to another.
In physical space each rank holds an array NX×fpz×fpy, while in modal space this array
has size spx×NZ×spy. Each of these sizes is defined in the following way (here a 1D
case is presented for simplicity, the extension to 3D is straightforward): N points must
be divided in Nt MPI processes. The MPI processes are numbered from 0 to Nt − 1; if
their identification number (also called rank) is lower than the remainder of the division
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of N by Nt, r = mod (N,Nt), then they will hold (N − r)/Nt + 1 points, otherwise
only (N − r)/Nt points.

2.1.4 create_plan

This subroutine creates the plans for the Fourier and Chebyshev transform performed by
the code. The conditional compilation flag flag_fftw determines which algorithm will
be chosen to perform the transforms. If a value of 0 is provided, the default algorithm
will be chosen, otherwise if 1 is provided the creation plan will last much longer, and
the best performing algorithm (for a determinate architecture, size of the arrays and
memory distribution of the arrays) will be chosen. At the present time is still to be
determined whether the flag 1 gives better performance than the flag 0. The FFTW
library subroutines will not be reported here; if needed refer to M. Frigo and S. G.
Johnson (2017).

2.1.5 dump_grid

This subroutine saves the x, y and z arrays in the folder set_run/results.

2.1.6 wave_numbers

This subroutine creates the arrays containing the wave numbers in the x and y direction.

kx(i) = 2π(i− 1)
Lx

i = 1, . . . , Nx

2 + 1

ky(j) =


2π(j − 1)

Ly
j = 1, . . . , Ny

2 + 1

−2π(Ny − j + 1)
Ly

j = Ny

2 + 2, . . . , Ny

Here are also defined some useful parameters:

γ = ∆t
2Re

k2(i, j) = k2
x(i) + k2

y(j) i = 1, . . . , Nx

2 + 1 , j = 1, . . . , Ny

2.1.7 initialize

This subroutine first allocate the velocity arrays both in physical and modal space, then
calculate the mean pressure gradient in modal space. The following step is setting the
initial conditions on the velocity; at the present moment the following initial conditions
are implemented.

1. Zero velocity field.

2. Laminar Poiseuille flow, generated by a unitary mean pressure gradient in x
direction.

3. Random velocity field with values among [−0.01, 0.01].



14 CHAPTER 2. CODE FLOWCHART

4. Read from an input file (either in physical space or in modal space, depending
on which one is available). This is a parallel read (MPI input/output) and is the
condition used for a restart.

5. Read from an old input file (for retro-compatibility with the previous code). This
read is serial, every MPI process reads the whole flow field and keeps only its own
part. May not work on clusters for large grids (not enough available memory in
the node).

Then, depending on the user choice, the boundary conditions on the velocity and the
vorticity at the upper and lower walls are set.
At the end of the subroutine the auxiliary problems for the influence matrix method
are solved and included in the module velocity. For the influence matrix method refer
to Section 3.8.

2.1.8 initialize_phi

This subroutine allocates the phase field arrays in physical and modal space at first;
then the paraemter s_coeff is defined. This parameter is used for the splitting of the
Cahn–Hilliard equation.

s_coeff = s =

√
4PeCh2

∆t
For the case of non-matched densities only, additional velocity arrays are allocated; they
will be used to store the velocity of the previous time step, needed for the calculation of
the non linear part of the time derivative. For further details on the solution algorithm
refer to Section 2.2 and to Chapter 3 for the equations solved.
At this point the initial conditions on the phase field are defined:

1. φ = −1 all over the domain.

2. Read from input file (parallel read). This is the condition enforced in a restarted
case.

3. Serial read from input file for retro-compatibility with the previous code. This
may not work on clusters for very large grids, as it may exceed the node memory
as each MPI process loads the whole field.

4. Initialize 2D single drop on the y − z plane (actually it is a cylinder with the axis
in the x direction). This condition is employed when performing 2D simulations.
The initialization is done by the subroutine drop_2d.

5. Initialize 3D single drop. The initialization is done by the subroutine drop_3d.

6. The subroutine stratified is called and a stratified flow is initialized.

7. Initialize a 2D array of 3D drops; done from the subroutine drop_array.

2.1.8.1 drop_2d

This subroutine reads from the inpu_phase_field.f90 file the radius of the drop and
the height of its center, and then initializes a cylinder with given radius and the axis
at y = Ly/2 and z = height. The parameters radius and height must be specified in
the compile.sh script.
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2.1.8.2 drop_3d

This subroutine reads from the input_phase_field.f90 file the radius of the drop
and the height of its center, and then initializes a sphere with given radius. The center
of the sphere is at (Lx/2, Ly/2, height). The parameters radius and height must be
specified in the compile.sh script.

2.1.8.3 stratified

This subroutine initializes a stratified flow with a wave perturbation in x and y directions
and a random perturbation. It reads from the input_phase_field.f90 file the wave
amplitude and the wave frequency in x and y direction, the amplitude of the random
perturbation and the mean height of the interface.

φ(x, y, z) = − tanh
(
k(x, y, z)− z√

2Ch

)

k(x, y, z) = h+Ax sin(ωxx) +Ay sin(ωyy) +Ar(2rand− 1)

The input parameters h =height,Ax =wave_amp_x, ωx =wave_freq_x,Ay =wave_amp_y,
ωy =wave_freq_y and Ar =pert_amp must be specified in the compile.sh script.

2.1.8.4 drop_array

This subroutine initializes a 2D array of 3D drops in a x−y plane. The radius, the number
of droplets and the height of this plane are specified in the input_phase_field.f90 file.
The distance between two drop centers must be at least 2(radius + 5

√
2Ch), otherwise

the number of droplets in the direction where this condition is not met is reduced. The
actual number of droplets used in the simulation is then printed at the beginning of the
run.
The input parameters that must specified in the compile.sh script are: the radius of
the droplets (radius), the height of the x− y plane (height), the number of droplets
in the x (num_x) and y (num_y) directions.

2.1.9 write_failure

This subroutine saves in the results/backup folder the fields, the checkpoint iteration
number and the time_check.dat file. These files can be used as a checkpoint to recover
a stopped simulation. When updating the checkpoint, to the old checkpoint data is
appended the _old suffix.

2.1.10 write_output, write_output_spectral and write_output_recovery

These subroutines use MPI input/output subroutines combined with MPI derived
datatypes to write in parallel to an output file (either in physical space, either in modal
space). Once opened a file and obtained its handle, each MPI process can access only to
a part of the file, which is determined by the MPI derived datatype specified in the call
to mpi_file_set_view subroutine. After writing its own part of file, each MPI process
close the file and goes on with the code execution. There is no need for MPI process
synchronization during this task.
The two subroutines differ only for the MPI derived datatype used: one saves the data
in physical space, while the other in modal space.
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2.1.11 integral_phi

This subroutine integrates all over the domain the positive phase field variable φ > 0.
This quantity is used to check the quality of the simulation by controlling the mass loss
due to numerical diffusion. Reducing the Cahn number reduces the mass losses (but the
interface must always be described by at least three points in each direction).

2.1.12 initialize_check

This subroutine creates the simulation check file time_check.dat and fill in the header
of the file and the first line for the initial field.
If the phase field is deactivated, the current time (in wall units, t+) and the bulk
Reynolds number will be written to the file. If the phase field is activated it will also
write the mean value of φ all over the domain and the value of the volume integral on
φ > 0.

2.1.13 sim_check

This subroutine opens the already created file time_check.dat and adds the line for the
current time step. The data written to the file are the same indicated in the subroutine
initialize_check (exception made for the file header).

2.1.14 destroy and destroy_phi

These two subroutines take care of deallocating all the fields array: destroy deallocates
all the velocity (both in physical and modal space) arrays, while destroy_phi deallocates
all the phase field arrays.

2.1.15 destroy_plan

This subroutine frees the plan created for the FFTW execution.

2.2 Solver
This subroutine includes all the calls to the subroutines involved in the solution of the
Navier–Stokes equations (and Cahn–Hilliard equation, if the phase field is activated). At
the beginning of the subroutine the data at the current time step are provided and at
the end of the subroutine these data are updated with those at the following time step.
At first the arrays of the non-linear terms for the Navier–Stokes equation s1, s2 and s3
are allocated and they are initialized to zero. After that the subroutine convective_ns
is called; this subroutine calculates the non-linear term arising from the convective term
in the Navier–Stokes equation and it includes also the additional term coming from the
non-matched densities case.
Then the mean pressure gradient in x and y direction is added to the non-linear term
and, if the phase field is activated, the non-linear terms arising from the surface force,
gravity and buoyancy force and the non-linear part of the time derivative are also added
to the non-linear term.
After this step the non-linear term is integrated explicitly using an explicit Euler
algorithm at the first time step and an Adams–Bashforth one for the second time step
on. The implicit part is discretized in time with a Crank–Nicolson algorithm.
The old non-linear term is then updated with the new one and it will be used again in
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the following time iteration. The historical term (the right hand side of the equations
for velocity and vorticity) starts to get assembled: the first part is an output of the
time integration subroutine, then the second and last part is given in output from the
subroutine hist_term. Here the non-linear terms are also deallocated.
Then, in order, there is the call to the subroutine calculate_w, calculate_omega and
calculate_uv which solve the Navier–Stokes equations, obtaining the velocity (and
wall-normal vorticity values). These calls conclude the Navier–Stokes solution part.
At this point, if the phase field is activated, the Cahn–Hilliard equation is solved: at
first the non-linear term is formed in the subroutine sterm_ch and then integrated in
time explicitly with an explicit Euler (first time step) or an Adams–Bashforth algorithm
(second time step on). The implicit part is integrated with an implicit Euler algorithm.
Then the subroutine calculate_phi is called and the solver part concludes; the
velocity and phase field variables have been updated with the new values.

2.2.1 convective_ns

This subroutine calculates the term
(
1 + (φ+ 1)α−1

2

)
∇(u⊗ u). For the single phase

case φ is not defined and α is equal to 1, so the first part is constant equal to 1.
The convective term is calculated as ∇(u⊗ u) instead of (u · ∇)u since it requires less
transforms (both from physical to modal and from modal to physical) than the usual
way, but here the hypothesis of ∇ · u has been settled.

∇(u⊗ u) = ∇
([
u
v
w

]
[u v w]

)
=


u∂u∂x + v ∂u∂y + w ∂u

∂z + u∇ · u
u ∂v∂x + v ∂v∂y + w ∂v

∂z + v∇ · u
u∂w∂x + v ∂w∂y + w ∂w

∂z + w∇ · u



2.2.2 phi_non_linear

This subroutine calculates all the non-linear terms of the Navier–Stokes equation which
arises from the presence of the phase field.
The first term calculated is the surface force, then the non-linear part of the viscous
term, the gravity and buoyancy term and the non-linear part of the time derivative.
The non linear-part of the viscous term is non-zero only for the non-matched viscosities
case, while the gravity and buoyancy term and the non-linear part of the time derivative
are non-zero only for the non-matched densities case.
At the end of the subroutine these non-linear contributions are added to the non-linear
terms s1, s2 and s3.

2.2.3 euler, adams_bashforth

This subroutine performs the explicit time integration of the non-linear terms, using
an explicit Euler algorithm at the first time step and an Adams–Bashforth one from
the second time step on. euler and adams_bashforth are used for the Navier–Stokes
non-linear terms.

2.2.4 euler_phi and adams_bashforth_phi

This subroutine performs the explicit time integration of the non-linear terms of the
Cahn-Hilliard equation, using an explicit Euler algorithm at the first time step and an
Adams–Bashforth one from the second.
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2.2.5 euler_psi and adams_bashforth_psi

This subroutine performs the explicit time integration of the non-linear terms of the
CH-like equation for the surfactant, using an explicit Euler algorithm at the first time
step and an Adams–Bashforth one from the second.

2.2.6 euler_theta and adams_bashforth_theta

This subroutine performs the explicit time integration of the non-linear terms of the
energy equation equation, using an explicit Euler algorithm at the first time step and
an Adams–Bashforth one from the second.

2.2.7 hist_term

This subroutine assembles the right hand side of the fourth order equation for the
wall-normal velocity and for the second order equation for the wall-normal vorticity.

2.2.8 hist_term_temp

This subroutine assembles the right hand side of the energy equation. Note: This
procedure can be simplified and made directly in the solver (like for the surfactant, and
the second-order phase-field method).

2.2.9 calculate_w

This subroutine solves the equation for the wall-normal component of the velocity. The
fourth order equation is split in two second order Helmholtz like equations; due to the
lack of boundary conditions on one of the two equations, the influence matrix method
is used here.
In this subroutine all the quantities needed to solve the Helmholtz problem are set up.

2.2.10 calculate_omega

This subroutine sets up all the quantities needed to solve the second order Helmholtz
equation for the wall-normal vorticity. At the end of the subroutine the new wall-normal
vorticity is updated with the new value.

2.2.11 calculate_uv

This subroutine calculates the streamwise and spanwise velocity components starting
from the wall-normal velocity and the wall-normal vorticity. Here the continuity equation
and the definition of wall normal vorticity are used.

2.2.12 sterm_ch

This subroutine calculates the non-linear term of the Cahn–Hilliard equation; this term
includes the convective term and part of the laplacian of the chemical potential.

Sφ = −u · ∇φ+ 1
Pe∇

2φ3 − s+ 1
Pe ∇

2φ
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The s coefficient allows for the inclusion of part of the diffusive-like term in the non-linear
term (to improve numerical stability) and it is defined as:

s =

√
4PeCh2

∆t

The term mentioned above is the standard term computed using the standard phase-field
method equation (CH), i.e. using phicor_flag=0. If phicor_flag is not equal 0, the
computed non-linear terms are different and depend on the formulation considered.
Also the splitting coefficient might be different (recomputed), as some terms (diffusive)
are included in the linear part for stability reasons. For sake of brevity (otherwise this
becomes the bible and not an handbook), the formulation of these terms is not reported
but can be easily obtained from the subroutine.

2.2.13 sterm_psi

This subroutine calculates the non-linear term of the CH-like for the surfactant. This
term is computed in a non-intuitive way for performance. In particular, each term is
not computed directly, but instead the term is first decomposed in three different pieces
using vectorial identity. Finally, the advection term is then added.

2.2.14 sterm_temp

This subroutine calculates the non-linear term of the energy equation for the temperature.
As the energy equation is only a simple advection diffusion equation, this terms is
basically:

Sθ = −u · ∇θ

2.2.15 calculate_phi

This subroutine first splits the fourth order equation for the phase variable in two second
order Helmholtz equations and then solves these Helmholtz equations. Here there is no
need for the influence matrix method, as enough boundary conditions are provided for
both Helmholtz equations. This subroutine is used when the Cahn-Hilliard equation is
used (phicor_flag=1 to 6).

2.2.16 calculate_phi_ac

This subroutine solves the second order equation for the phase variable when the
conservative Allen-Cahn equation is employed (phicor_flag=7) . Here there is no need
for the influence matrix method, as enough boundary conditions are provided for the
Helmholtz equation.

2.2.17 calculate_psi

This subroutine solves the second order equation for the CH-like equation for the
surfactant. Here there is no need for the influence matrix method, as enough boundary
conditions are provided for the Helmholtz equation.
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2.2.18 calculate_theta

This subroutine solves the second order equation for the energy transport equation. This
is basically the advection-diffusion equation of a scalar. Here there is no need for the
influence matrix method, as enough boundary conditions are provided for the Helmholtz
equation.

2.2.19 courant_check

This subroutine calculates the maximum Courant number on the whole domain; if the
calculated Courant exceeds the Courant limit, the simulation is stopped.

2.2.20 dz and dz_red

These subroutines calculate the wall-normal derivative in the modal space. The only
difference between the two subroutines resides in the passed array dimensions.
Since there are dependencies between the input and output arrays, the arrays passed
to the subroutine must not be the same, otherwise the output array will be wrongly
calculated.

2.2.21 dz_fg

This subroutine computes the wall-normal derivative in the modal space of a variable
defined in the fine grid space.

2.2.22 helmholtz, helmholtz_red and helmholtz_rred

All these subroutines solve the given Helmholtz problem; they differ only for the passed
array dimensions. The input of the subroutine is the right hand side of the equation
and, at the end of the subroutine, is replaced by the solution of the Helmholtz problem.
The subroutine asssembles the matrices that will be passed to the Gauss solver. The
coefficient matrix holds in the first two lines the boundary conditions at the upper and
lower wall, then the rest of the matrix is a tridiagonal-like matrix that allows for a fast
and efficient Gauss solver.

2.2.23 helmholtz_fg

This subroutine solves the Helmholtz problem for a variable defined in the fine grid
space.

2.2.24 gauss_solver, gauss_solver_red and gauss_solver_rred

These subroutines perform the Gauss back-substitution algorithm on the passed set of
equations (matrix form) and return the solution. They only differ for the size of the
arrays passed.

2.3 Transforms

The two most important subroutine used to shuttle data from physical to modal space
and backward are phys_to_spectral and spectral_to_phys. These subroutines accept
as arguments the input array in physical [modal] space, the output array in modal
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[physical] space and a flag for the dealiasing of the output array. The dealiasing follows
the 2/3 rule, which means that only the 2/3 of the lower modes will be retained.

2.3.1 phys_to_spectral

At the beginning of this subroutine each MPI process holds an array containing all the
data in the x direction and only part of the data in the y and z directions; the array is
in physical space. At first the subroutine fftx_fwd performs a 1D Fourier transform
in the x direction. Since all data in a certain direction are needed when performing a
transform, the subroutine yz2z takes care of exchanging data among the various MPI
processes, such that, after this subroutine each MPI process holds all the data in the
y direction and only part of the data in the x and z directions. Now, the subroutine
ffty_fwd performs a 1D transform in the y direction. At this point another subroutine
xz2xy exchange data among the various MPI processes, such that each MPI process
holds all the data in the z direction. Finally the subroutine dctz_fwd performs a discrete
Chebyshev transform in the z direction.
At the end of the subroutine, the array is in modal space.

2.3.2 phys_to_spectral_fg

Same as phys_to_spectral but for a variable defined in the fine grid space.

2.3.3 fftx_fwd

This subroutine performs a discrete Fourier transforms in the x direction on the
input array. It is a real-to-complex transform: the input is a real array, while the
output is a complex array. The output array is defined as a real in the code but the
last index of the array determines whether it is the real or the imaginary part (1
corresponds to the real part, 2 to the imaginary part). According to the dealiasing flag,
this subroutine can perform dealiasing in the x direction. Depending on the value of
the openacc_flag, FFTW (CPU) or cuFFT (GPU) libraries are used to perform the
transform. All transform subroutines are inside modules (since May 2022) for visibility
and compatibility with Nvidia Fortran compiler.

2.3.4 fftx_fwd_fg

Fine grid version.

2.3.5 yz2xz

This subroutine exchange data among MPI processes such that at the beginning of the
subroutine each MPI process holds all data in the x direction and only part in the y and
z directions and at the end of the subroutine each MPI process holds all data in the y
direction and only part in the x and z directions. The MPI communications among the
various MPI processes are easily handled by exploiting the Cartesian topology defined
for the MPI processes.

2.3.6 yz2xz_fg

Fine grid version.
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2.3.7 ffty_fwd

This subroutine performs a discrete Fourier transforms in the y direction. Both input
and output arrays are complex, the last index of the array determines the real (1)
and imaginary (2) part. According to the dealiasing flag, this subroutine can perform
dealiasing in the y direction. Depending on the value of the openacc_flag, FFTW
(CPU) or cuFFT (GPU) libraries are used to perform the transform. All transform
subroutines are inside modules (since May 2022) for visibility and compatibility with
Nvidia Fortran compiler.

2.3.8 xz2xy

This subroutine takes care of exchanging data among MPI processes, such that at the
beginning of the subroutine each MPI process hold all data in the y direction and only
part in the x and z direction, while at the end of the subroutine each MPI process
holds all data in the z direction and part of them in the x and y directions. As before,
a Cartesian topology is exploited during MPI communications.

2.3.9 xz2xy_fg

Fine grid version.

2.3.10 dctz_fwd

This subroutine performs a discrete Chebyshev tranforms in the wall-normal direction;
it work on complex valued arrays and their storage in memory is the same as stated in
Section 2.3.4. According to the dealiasing flag, this subroutine can perform dealiasing in
the z direction. Depending on the value of the openacc_flag, FFTW (CPU) or cuFFT
(GPU) libraries are used to perform the transform. All transform subroutines are inside
modules (since May 2022) for visibility and compatibility with Nvidia Fortran compiler.

A few notes for the GPU version only: this is a real-to-real transform that is not
directly supported by cuFFT. However, it it possible to use FFT routines to perform
DCT: first the array is made even symmetric and then the real and complex part of the
array undergo a classic FFT transform, only the real part of the output is kept (fun fact,
using this trick, DCT forward and backward can be done with the very same code). In
addition, as transforms on the GPUs are very fast, contrary to the CPU implementation
where DCT is performed row by row, here DCT is performed in a batched mode. This
however requires transposition of the input array so that the input satisfies the advanced
data layout of FFTW. Even with transposition (back and forth), DCT performed in
this way is faster than row by row (or slice by slice).

2.3.11 dctz_fwd_fg

Fine grid version.

2.3.12 spectral_to_phys

This subroutine shuttle the data array from modal space to physical space. At the
beginning of the subroutine each rank holds all the data in the z direction and only a
part in the x and y directions. The subroutine dctz_bwd perform an inverse Chebyshev
transform in the z direction; then the subroutine xy2xz exchange data among MPI
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processes, such that, after the subroutine execution, each MPI process holds all the data
in the y direction and only a part in the other two dimensions. Then the subroutine
ffty_bwd performs a 1D inverse Fourier transform on the data and the subroutine
xz2yz exchange data among MPI processes in such a way that each MPI process holds
all data in the x direction. After the call to fftx_bwd, which performs an inverse Fourier
transform on the data, each MPI process holds the data in physical space.

2.3.13 spectral_to_phys_fg

Fine grid version.

2.3.14 dctz_bwd

This subroutine performs an inverse discrete Chebyshev transforms in the wall-normal
directions; it works on complex valued arrays and their storage in memory is the same
as stated in Section 2.3.4. According to the dealiasing flag, this subroutine can perform
dealiasing in the x direction. Depending on the value of the openacc_flag, FFTW
(CPU) or cuFFT (GPU) libraries are used to perform the transform. All transform
subroutines are inside modules (since May 2022) for visibility and compatibility with
Nvidia Fortran compiler. As for the dctz_fwd, the GPU implementation of the DCT
transform is slightly different as the real-to-real transform is not directly supported by
cuFFT (see above for details).

2.3.15 dctz_bwd_fg

Fine grid version.

2.3.16 xy2xz

This subroutine exchange data among the MPI processes, such that in input each MPI
process holds all data in the z direction and only part in the x and y directions and in
output each MPI process holds all data in the y directions and only part in the x and z
directions. The MPI communications are easily handled by using a Cartesian topology.

2.3.17 xy2xz_fg

Fine grid version.

2.3.18 ffty_bwd

This subroutine performs an inverse discrete Fourier transfoms in the y direction.
According to the dealiasing flag, this subroutine can perform dealiasing in the y direction.
Depending on the value of the openacc_flag, FFTW (CPU) or cuFFT (GPU) libraries
are used to perform the transform. All transform subroutines are inside modules (since
May 2022) for visibility and compatibility with Nvidia Fortran compiler.

2.3.19 ffty_bwd_fg

Fine grid version.
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2.3.20 xz2yz

This subroutine exchange data among the MPI processes, such that in input each MPI
process holds all data in the y direction and only part in the x and z directions while in
output each MPI process holds all data in the x directions and only part in the y and z
directions. The MPI communication are easily handled by using a Cartesian topology.

2.3.21 xz2yz_fg

Fine grid version.

2.3.22 fftx_bwd

This subroutine performs an inverse discrete Fourier transforms in the x direction on
the input array. It is a complex-to-real transform: the input is a complex array, while
the output is a real array. According to the dealiasing flag, this subroutine can perform
dealiasing in the z direction. Depending on the value of the openacc_flag, FFTW
(CPU) or cuFFT (GPU) libraries are used to perform the trasnform. All transform
subroutines are inside modules (since May 2022) for visibility and compatibility with
Nvidia Fortran compiler.

2.3.23 fftx_bwd_fg

Fine grid version.

2.4 Statistic calculation

This section is addressed to the run time statistics calculation; at the present moment
the code can calculate mean, root mean square, skewness and flatness of the velocities,
mean and root mean square for the pressure (without considering the mean pressure
gradient), energy budget for a single phase channel flow (mean flow in the x direction)
and the power spectra of the velocity fluctutations at z+ = 5, z+ = 15 and z+ = Re.

2.4.1 initialize_stats

This subroutine initializes the statistic calculation; if the simulation is not a restart it
initializes the counter flowiter to 0 and creates the files where statistics are saved. On
the other hand, if the simulation is restarted, it reads the flowiter value from the files
where statistic are saved and exit the subroutine.
For the new simulation case, if the time step from where the statistics calculation starts
is the initial time step the statistics are calculated, otherwise the statistics are initialized
to zero and the counter is reduced by one.

2.4.2 del_old_stats

At the end of the time advancement cycle this subroutine deletes the old statistics
file, denoted by the suffix _old.dat in the results folder. This file are kept so that, if
the simulation crashes when writing new statistics to the corresponding file, there is a
backup and the simulation can be restarted from the previous time step available.
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2.4.3 statistics

This subroutine is called during the time advancement cycle to calculate statistics at run
time. At first the counter flowiter is incremented by one, then the previous statistics
files are read and renamed adding the suffix _old. Then the statistics at the current
time step are read and a weighted time average with the old statistics is performed. At
the end of the subroutine the new statistics are written to a file.
Flow statistics (mean, root mean square, skewness and flatness) are written to stats.dat,
pressure mean and root mean square and the energy budget are written to budget.dat,
the streamwise power spectra are written to power_xspectra.dat and the spanwise
power spectra to power_yspectra.dat.

2.4.4 mean_calc

This subroutine calculates the mean, root mean square, skewness and flatness of the
flow field. The results are gathered to the MPI process with number 0, which also takes
care of reading and writing to file.

2.4.5 budget_calc

This subroutine calculate the mean and the root mean square of the pressure and the
energy budgets. Pressure is calculated with the hypothesis of single phase flow, while
energy budgets are calculated for a fully developed flow with mean flow only in the x
direction and they do not consider the presence of another phase (for a two or more
phases flow the pressure will be wrongly calculated and some energy budget terms, like
the surface force, would be missing from the total energy budget). Here also, all the
data are gathered to the MPI process 0 which writes them to a file.

2.4.6 sterm_pressure

This subroutine calculates the non-linear term of the Navier–Stokes equation. These
terms are calculated by scratch since the saved non-linear terms in the module sterms
and the velocity data are shifted by one time step (∆t).

2.4.7 power_spectra

This subroutine calculates the streamwise and spanwise power spectra at three differents
z locations (z+ =5, 15 and Re). All the power spectra data are gathered to the MPI
process 0.

2.5 Modules

Here all the modules included in the code with the variables there defined will be
introduced.

• commondata

– nx : number of grid points in x direction (passed as a parameter)
– ny : number of grid points in y direction (passed as a parameter)
– nz : number of grid points in z direction (passed as a parameter)
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– nycpu : number of MPI processes in which the y direction is divided (physical
space, passed as a parameter)

– nzcpu : number of MPI processes in which the z direction is divided (physical
space, passed as a parameter)

– rank : number of the MPI process (each MPI process has its own number,
spanning from 0 to ntask−1)

– ntask : total number of MPI processes
– ierr : mandatory argument for all MPI subroutine calls (up to use mpi, in

use mpi_f08 it is an optional argument)
– cart_comm : Cartesian communicator for the MPI Cartesian topology
– xl : x length of the domain
– yl : y length of the domain
– folder : folder where results are saved (passed as a parameter)

• grid

– x : array containing the x axis
– y : array containing the y axis
– z : array containing the z axis

• velocity

– u : array containing u velocity (physical space, allocatable)
– v : array containing v velocity (physical space, allocatable)
– w : array containing w velocity (physical space, allocatable)
– uc : array containing u velocity (modal space, allocatable)
– vc : array containing v velocity (modal space, allocatable)
– wc : array containing w velocity (modal space, allocatable)
– wa2 : array containing the first auxiliary Helmholtz problem for the influence

matrix method (allocatable)
– wa3 : array containing the second auxiliary Helmholtz problem for the influ-

ence matrix method (allocatable)
– sgradpx : array containing the mean pressure gradient in the x direction
(modal space, allocatable)

– sgradpy : array containing the mean pressure gradient in the y direction
(modal space, allocatable)

• wavenumber

– kx : array containing the x wavenumbers
– ky : array containing the y wavenumbers
– k2 : array containing k2(i, j) = k2

x(i) + k2
y(j)

• sim_par

– pi : value of π (parameter)
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– Re : Reynolds number
– dt : time step
– gradpx : mean pressure gradient in x direction (physical space, scalar)
– gradpy : mean pressure gradient in y direction (physical space, scalar)
– Co : limit Courant number
– gamma : ∆t/(2Re)
– p_u, q_u, r_u : coefficients for the boundary conditions on u, written as

pu(±1) + q
∂u

∂z

∣∣∣∣∣
z=±1

= r

Used for the case where kx = ky = k2 = 0 and it is not possible to calculate
u and v as usual, and a Helmholtz equation must be solved for u.

– p_v, q_v, r_v : coefficients for the boundary conditions on v, written as

pv(±1) + q
∂v

∂z

∣∣∣∣∣
z=±1

= r

Used for the case where kx = ky = k2 = 0 and it is not possible to calculate
u and v as usual, and a Helmholtz equation must be solved for v.

– p_w, q_w, r_w : coefficients for the boundary conditions on w, written as

pw(±1) + q
∂w

∂z

∣∣∣∣∣
z=±1

= r

– p_o, q_o, r_o : coefficients for the boundary conditions on ωz, written as

pωz(±1) + q
∂ωz
∂z

∣∣∣∣∣
z=±1

= r

– zp : z location of boundaries: [−1,+1]
– bc_up : boundary condition at the upper boundary
– bc_low : boundary condition at the lower boundary
– restart : restart flag
– nt_restart : time step from which the simulation is restarted
– in_cond : initial condition for the flow field
– nstart : starting time step
– nend : final time step
– ndump : saving frequency of solution in physical space
– sdump : saving frequency of solution in modal space

• phase_field

– phi_flag : flag for the activation/deactivation of the phase field calculations
– in_cond_phi : initial condition for the phase variable
– b_type : flag used to switch from:



28 CHAPTER 2. CODE FLOWCHART

1. no gravity case
2. gravity and buoyancy case
3. buoyancy case

– rhor : density ratio
– visr : viscosity ratio
– We : Weber number
– Ch : Cahn number
– Pe : Peclet number
– Fr : Froud number
– grav : gravity versor
– s_coeff : coefficient used for the splitting of the Cahn–Hilliard equation,
s =

√
4PeCh2

∆t
– phi : phase field variable (physical space, allocatable)
– phic : phase field variable (modal space, allocatable)
– one_s : transform of a unit array in modal space (allocatable)

• velocity_old

– ucp : u velocity at previous time step (modal space, allocatable)
– vcp : v velocity at previous time step (modal space, allocatable)
– wcp : w velocity at previous time step (modal space, allocatable)

• mpiIO

– ftype : derived datatype, used for MPI input/output operations in physical
space

– stype : derived datatype, used for MPI input/output operations in modal
space

• par_size

– fpy : y size of the field array in physical space (for parallelization)
– fpz : z size of the field array in physical space (for parallelization)
– spx : x size of the field array in modal space (for parallelization)
– spy : y size of the field array in modal space (for parallelization)
– cstart : 3 element array containing the triplet of the lowest indexes in the

global indexing system for arrays in physical space
– fstart : 3 element array containing the triplet of the lowest indexes in the

global indexing system for arrays in modal space

• fftw3

– plan_x_fwd : plan for 1D Fourier transform, x direction
– plan_y_fwd : plan for 1D Fourier transform, y direction
– plan_z_fwd : plan for 1D Chebyshev transform, z direction
– plan_x_bwd : plan for 1D inverse Fourier transform, x direction
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– plan_y_bwd : plan for 1D inverse Fourier transform, y direction
– plan_z_bwd : plan for 1D inverse Chebyshev transform, z direction

• sterms

– s1_o : non-linear term, Navier–Stokes x component, used to avoid to calculate
again the old non-linear term at the following time step (modal space,
allocatable)

– s2_o : non-linear term, Navier–Stokes y component, used to avoid to calculate
again the old non-linear term at the following time step (modal space,
allocatable)

– s3_o : non-linear term, Navier–Stokes z component, used to avoid to calculate
again the old non-linear term at the following time step (modal space,
allocatable)

– sphi_o : non-linear term of Cahn–Hilliard equation, used to avoid to calculate
again the old non-linear term at the following time step (modal space,
allocatable)

• stats

– flowiter : counter, keeps track of the number of field used for time averages
– stat_dump : frequency of statistics calculation and saving
– stat_start : time step from where start the statistics calculation
– plane_comm : MPI Cartesian subcommunicator, used to exchange data among

MPI processes in the same x− y plane
– col_comm : MPI Cartesian subcommunicator, used to exchange data among

MPI processes that cover the same x− y region (same “column”)
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Figure 2.1: Scheme of main program FLOW_36. xxx stands for a generic field (e.g.
phase-field, surfactant field, temperature)

program FLOW_36
module declaration

MPI initialization
define total number of MPI processes

define MPI process numbering
check whether the domain is compatible with the desired parallelization

Code initialization
call read_input

call define_sizes
create Cartesian communicator

create derived datatype ftype and stype for MPI input/output
create FFTW plans

define grid
call dump_grid

call wave_numbers
call initialize

call initialize_xxx (if xxx is activated)
call initialize_stats (if run time statistics are set to be calculated)

save initial fields both in physical and modal space
call integral_xxx (if xxx is activated)

call initialize_check (if not a restart)

Time advancement
do loop over time

call solver

save fields in physical and/or in modal space (at set saving frequency)
calculate statistics (at set saving frequency)

call integral_xxx (if xxx field is activated)
call sim_check
save recovery files

End of time advancement

save final fields both in physical and modal space
deallocation of all allocated variables

MPI finalization

End of FLOW_36

time+∆t
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Figure 2.2: Scheme of subroutine solver

subroutine solver

allocation of s1, s2 and s3

Assembling of non-linear term
call convective_ns

add mean pressure gradient
call phi_non_linear (if phase filed is activated)

Time integration and forming of historical term (N–S)

Solution of Navier–Stokes
call calculate_w

call calculate_omega
call calculate_uv

call sterm_ch

Time integration and forming of historical term (C–H)

Solution of Cahn–Hilliard
call calculate_phi

End of solver
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Chapter 3

Numerical method

3.1 Problem description

The code is meant to solve a turbulent channel flow, either a closed channel case, either
an open channel case; the basic formulation includes the incompressible Navier–Stokes
equations, that can be coupled in the full formulation with the Cahn–Hilliard equation.
In Figure 3.1 the geometry of the channel is presented together with the reference frame
used. The domain size is nπh×mπh× 2h (x× y × z).

x

y
z

0

+h

−h

0 nπh

mπh

Figure 3.1: Sketch of the domain

The x and y directions are periodic directions, while z = +h and z = −h can be
either a solid boundary, either a free-slip boundary, depending on the choice of the
boundary conditions.

3.2 Single phase flow

For the single phase case (phase field deactivated) the incompressible Navier–Stokes
equations are solved. The equations are made non-dimensional using the shear velocity
uτ and the channel half height h. The Reynolds number is defined as:

Reτ = ρhuτ
µ

33
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where ρ is the fluid density and µ the dynamic viscosity.
The dimensionless incompressible Navier–Stokes equations reads:

∇ · u = 0

∂u
∂t

+ u · ∇u = −∇p+ 1
Reτ
∇̄2u

(3.1)

The pressure gradient is then split in two part, a mean pressure gradient and a fluctuating
part:

∇p = Π +∇p′

This splitting is done in order to remove the pressure as a problem unknown: the code
solves the Navier–Stokes equation using the velocity–vorticity formulation, which means
that the four variables are the three velocity components and the wall-normal component
of the vorticity.
The velocity–vorticity formulation solves a second order equation for the transport
of vorticity and a fourth order equation for the wall-normal velocity; streamwise and
spanwise velocity components are calculated from the continuity equation and the
definition of the wall-normal vorticity. Before starting to derive all the equations, the
Navier–Stokes equation will be rewritten in a more compact form:

∇ · u = 0

∂u
∂t

= S−∇p′ + 1
Reτ
∇̄2u

The S term is the non-linear term of the Navier–Stokes equations (in the code its
components are s1, s2 and s3) and for a single phase flow is defined as:

S = −u · ∇u−Π

The second oreder equation for the transport of the vorticity is obtained by taking
the curl of the Navier–Stokes equations; the fourth order equation for the transport of
wall-normal velocity is obtained by taking again the curl of the Navier–Stokes equations
(basically, taking two times the curl of the Navier–Stokes equations). The full set
of equations includes (in order): the second order equation for vorticity, the fourth
order equation for wall-normal velocity, the continuity equation and the definition of
wall-normal vorticity.

∂ω

∂t
= ∇× S + 1

Reτ
∇̄2ω only z component

∂(∇̄2u)
∂t

= ∇̄2S−∇(∇ · S) + 1
Reτ
∇̄4u only z component

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

ωz = ∂v

∂x
− ∂u

∂y

(3.2)

The system of equations 3.2 is discretized in the code using a pseudospectral method
and solved in modal space; here discrete Fourier transforms are used in the periodic
directions (x and y), while discrete Chebyshev transforms in the wall-normal direction
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(z). A detailed explanation of the pseudospectral discretization will be given in Section
3.5, here only the results will be used.
The discretized system of equation in modal space reads:

∂ω̂z
∂t

= ikxŜ2 − ikyŜ1 + 1
Reτ

(
∂2ω̂z
∂z2 − k

2ω̂z

)
∂

∂t

(
∂2ŵ

∂z2 − k
2ŵ

)
= −k2Ŝ3 − ikx

∂Ŝ1
∂z
− iky

∂Ŝ2
∂z

+ 1
Reτ

(
k4ŵ + ∂4ŵ

∂z4 − 2k2∂
2ŵ

∂z2

)

ikxû+ ikyv̂ + ∂ŵ

∂z
= 0

ω̂z = ikxv̂ − ikyû
(3.3)

The coefficient k2 is given by k2 = k2
x + k2

y.
The system of equations 3.3 is then discretized in time using a Crank–Nicolson scheme
for the implicit part and an Adams–Bashforth for the explicit one (complete details on
the time integration are given in Section 3.6).
A more compact notation can be introduced with the historical terms Hn

i with i = 1, 2, 3
and Hn.

Hn
i = ∆t

3
2 Ŝ

n
i −

1
2 Ŝ

n−1
i + 1

2Reτ
∂2ûni
∂z2 +

(
1

∆t −
k2

2Reτ

)
ûni

 for i = 1, 2, 3

Hn = ∂

∂z

(
ikxHn

1 + ikyHn
2
)

+ k2Hn
3

The superscript n denotes the current time step, n+ 1 is the time step for which the
unknowns have to be calculated.
Once defined the historical terms, the time and space discretized system of equation
can be rewritten in a more compact form, highlighting the Helmholtz problems:

(
∂2

∂z2 − β
2
)(

∂2

∂z2 − k
2
)
ŵn+1 = Hn

γ(
∂2

∂z2 − β
2
)
ω̂n+1
z = − ikxHn

2 − ikyHn
1

γ

ikxû+ ikyv̂ + ∂ŵ

∂z
= 0

ω̂z = ikxv̂ − ikyû

(3.4)

The coefficients γ and β2 are defined as:

γ = ∆t
2Reτ

β2 = 1 + γk2

γ

The values of ŵ and ω̂z can be obtained using the Chebyshev–Tau method and the
influence matrix method. For the details on the resolution of these two variables, please
refer to Sections 3.7 and 3.8.
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Once the values of ŵn+1 and ω̂n+1
z have been calculated, the continuity equation and

the definition of wall-normal vorticity can be used to obtain the values of ûn+1 and
v̂n+1. [

−iky ikx
ikx iky

] [
ûn+1

v̂n+1

]
=

 ω̂n+1
z

−∂ŵ
n+1

∂z


This system of equation can be solved unless the determinant of the coefficient matrix
is zero. In that case a different path must be sought.
Starting from the fourth order equation for the velocity (vectorial equation) for the x
and y components and with the hypothesis of kx = 0 and ky = 0 we obtain two fourth
order equations for û and v̂: 

∂2û

∂z2 −
û

γ
= −H1

γ

∂2v̂

∂z2 −
v̂

γ
= −H2

γ

(3.5)

Solving these two Helmholtz equations gives the solution for û and ŵ for kx = ky = 0.

3.3 Phase Field Model

If the phase field is activated in the code, an additional phase is included in the
computations. This multiphase system is solved using the Phase Field Model. The
interface between the two phases is a diffuse interface: all the variables varies smoothly
across the interface, following an hyperbolic tangent profile. This approach is the
opposite of the sharp interface one, where the interface is seen as a discontinuity and
jump conditions across the interface are imposed on the variables. With the diffuse
interface approach there is no need to introduce any jump condition across the interface,
as the interface and the variables across the interface are resolved.
With the introduction of the Phase Field Model an additional variable is introduced:
the phase field φ. The advection of this new variable is calculated by the Cahn–Hilliard
equation.
In this code the modified H model is implemented; this model allows the use of phases
with different densities and viscosities, but still keeping the hypothesis of divergency
free flow field. This hypothesis is exact in the bulk phases, but it is not correct at the
interface; on the other hand the interface is a very limited portion of the whole domain.
Another hypothesis of the modified H model is to neglect the density gradients; as
before, this hypothesis is exact in the bulk phases. The variable density and viscosity
are a function of the phase field variable φ.
The introduction of the Phase Field Model introduces some new terms in the Navier–
Stokes equations:
∇ · u = 0

ρ
∂u
∂t

+ ρu · ∇u = −∇p+ 1
Reτ

(
µ(∇u +∇uT )

)
+ 1

Fr2
ρg + 3√

8
1

WeChκ∇φ
(3.6)

κ is the chemical potential and is defined as κ = φ3 − φ − Ch2∇2φ, Fr is the Froud
number, g is the gravity versor, We is the Weber number and Ch is the Cahn number.
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This quantities are defined as follows:

Fr = uτ√
gh

We = ρ̃u2
τh

σ̃

Ch = ε

h

σ̃ is the dimensional surface tension, ε is a measure of the interface thickness and h is
the channel half height.
Density and viscosity are made dimensionless using the values of the phase with φ = −1.

ρ = 1 + α− 1
2 (φ+ 1)

µ = 1 + β − 1
2 (φ+ 1)

α and β are the density and the viscosity ratio, respectively.

α = ρφ=+1
ρφ=−1

= ρ+
ρ−

β = µφ=+1
µφ=−1

= µ+
µ−

It can be seen that ρ and µ can be split easily in a constant part and in a φ dependent
part.
With the introduction of phase field and this definition for the density and the viscosity,
the Navier–Stokes solving procedure is unchanged: the only change is in the non-linear
term, to which other parts are added. The new Navier–Stokes non-linear term thus
results in:

S =− α− 1
2 (φ+ 1)∂u

∂t
−
(

1 + α− 1
2 (φ+ 1)

)
u · ∇u−Π+

+ 1
Reτ
∇ ·

(
β − 1

2 (φ+ 1)(∇u +∇uT )
)

+

+ 1
Fr2

(
1 + α− 1

2 (φ+ 1)
)

g + 3√
8

1
WeChκ∇φ

For the the matched densities case α is equal to 1, so the time derivative term, the
gravity and buoyancy terms and part of the convective terms vanish; for the matched
viscosities case β is equal to 1 and the viscous term in S vanishes.
Thus, for the case of two phases with matched densities and viscosities the only added
term to the original Navier–Stokes non-linear term is the surface force term.
Once intrduced these new terms in the non-linear part of the equation, the solution
algorithm is the same for the single phase case.

3.3.1 Cahn–Hilliard equation

The Cahn–Hilliard equation describes the advection of the phase field variable φ in the
domain; the interface is advected by the flow field u and the shape of the interface is
kept by the chemical potential κ.

∂φ

∂t
+ u · ∇φ = 1

Pe∇(M∇κ) (3.7)
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Here M is the dimensionless mobility coefficient; in the code M is assumed constant
and equal to one (once made dimensionless):

∂φ

∂t
+ u · ∇φ = 1

Pe∇
2κ

The Peclet number is defined as:
Pe = uτh

M̃κ̃

where M̃ is the dimensional mobility coefficient.
Inserting the expression for the chemical potential in the Cahn–Hilliard equation, a
fourth order equation for the phase variable is obtained:

∂φ

∂t
+ u · ∇φ = 1

Pe(∇2φ3 −∇2φ− Ch2∇4φ)

To increase the stability of the numerical solution, the laplacian term is split in two
parts, one that will be dealt with implicitly and the other explicitly:

−∇2φ = s∇2φ− (1 + s)∇2φ

The s coefficient is defined as:

s =

√
4PeCh2

∆t
At this point the Cahn–Hilliard non-linear term can be highlighted:

Sφ = −u · ∇φ+ 1
Pe∇

2φ3 − 1 + s

Pe ∇
2φ

Thus, the Cahn–Hilliard equation in compact form reads:

∂φ

∂t
= Sφ + s

Pe∇
2φ− Ch2

Pe ∇
4φ

After the spatial discretization, the equation in modal space is:

∂φ̂

∂t
= Ŝφ +

(
∂2

∂z2 − k
2
) s

Pe −
Ch2

Pe

(
∂2

∂z2 − k
2
) φ̂

For the time discretization an implicit Euler method is used for the implicit part, while
for the explicit part an Adams–Bashforth method is used, except for the first time step,
where an explicit Euler algorithm is used.
The following fourth order equation for the phase field is then obtained:(

∂2

∂z2 − k
2 − s

2Ch2

)(
∂2

∂z2 − k
2 − s

2Ch2

)
φ̂ =

Hn
φ

γ
(3.8)

The historical term Hn
φ is defined as:

Hn
φ = ∆t

2 (3Ŝn − Ŝn−1) + φ̂n
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Equation3.8 can be split in two Helmholtz equation, each of them has its own known
boundary conditions, as the boundary conditions for the phase field are on the first and
third derivative. 

(
∂2

∂z2 − k
2 − s

2Ch2

)
φ̂n+1 = θ

∂φ̂n+1

∂z

∣∣∣∣∣∣
z=±1

= 0



(
∂2

∂z2 − k
2 − s

2Ch2

)
θ =

Hn
φ

γ

∂θ

∂z

∣∣∣∣∣
z=±1

= 0

(3.9)

First, the Helmholtz equation for the auxiliary variable θ is solved, then the value of
the phase field is obtained from the other Helmholtz problem.

3.4 Boundary conditions

The boundary conditions on the phase field do not depend on the type of boundary
(open or closed boundary) and they are:

∂φ

∂z

∣∣∣∣∣
zb

= 0

∂3φ

∂z3

∣∣∣∣∣
zb

= 0

On the other hand, the boundary conditions on the velocity and on the vorticity depend
on the type of boundaries: In the code two different cases can be chosen: two solid
boundaries (closed channel case) or one solid boundary and one open boundary (open
channel case).

3.4.1 No–slip condition

The no–slip condition is enforced whenever there is a solid wall: in this case u = v = w = 0
for each x, y at the boundary. This way the continuity equation yelds to:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∂w

∂z
= 0

From the vorticity definition it results:

ωz = ∂v

∂x
− ∂u

∂y
= 0

3.4.2 Free–slip condition

For the free–slip condition w = 0 at the boundary, while the derivatives of u and v
along z are zero (free–slip means that there is no shear stress at the boundary).
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The derivative in the wall-normal direction of the continuity equation yelds:

∂2u

∂x∂z
+ ∂2v

∂y∂z
+ ∂2w

∂z2 = ∂

∂x

∂u

∂z
+ ∂

∂y

∂v

∂z
+ ∂2w

∂z2 = ∂2w

∂z2 = 0

Taking the derivative of the vorticity equation along the z direction yelds:

∂ωz
∂z

= ∂2v

∂x∂z
− ∂2u

∂y∂z
= ∂

∂x

∂v

∂z
− ∂

∂y

∂u

∂z
= 0

3.4.3 Recap of the boundary conditions for the Navier–Stokes equa-
tion

Table 3.1: Boundary conditions

type velocity vorticity

no–slip w(zb) = 0 , ∂w

∂z

∣∣∣∣∣
zb

= 0 ωz(zb) = 0

free–slip w(zb) = 0 , ∂2w

∂z2

∣∣∣∣∣
zb

= 0 ∂ωz
∂z

∣∣∣∣∣
zb

= 0

3.4.4 Closed channel and open channel

The code uses the non-dimensionaliztion for the closed channel case: the shear velocity
are different for the open channel and the closed channel cases. The shear velocity is
defined as:

uc = uτ =
√
τw
ρ

where τw is the shear stress at the wall. Its value can be easily obtained from a force
balance and depends on the geometry studied:

• Open channel:
τwLxLy = ∆p̄Ly2h

τw = 2∆p̄
Lx

h

• Closed channel:
2τwLxLy = ∆p̄Ly2h

τw = ∆p̄
Lx

h

∆p̄ is the time and space averaged pressure gradient in the flow direction x. This mean
component is Π as seen in the previous sections, since we apply the following splitting
to the pressure term:

∇p = ∇p̄+∇p′ = Π +∇p′
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This way the values of the wall shear stress can be rewritten as τw = 2Πh for the open
channel case and as τw = Πh for the closed channel case.
Thus, for the open channel, the shear velocity is:

uocτ =
√

2Πh
ρ

=
√

2uccτ (3.10)

while for the closed channel it is:

uccτ =
√

Πh
ρ

(3.11)

Since the definition of the shear Reynolds number is unique in the code and is:

Reτ = Reccτ = ρuccτ h

µ

when performing an open channel simulation the input parameter in the compile.sh
script is the closed channel shear Reynolds number. The actual shear Reynolds number
for the open channel case is:

Reocτ = ρuocτ 2h
µ

= 2
√

2ρu
cc
τ h

µ
= 2
√

2Reccτ

Usually, for the open channel case, the Reynolds number is defined on the channel
height, not on the half channel height as done for the closed channel case.

3.5 Pseudospectral spatial discretization
The grid is uniform in the x and y directions, while for the z direction the Chebyshev
Gauss-Lobatto points are used. The grid points are thus defined as follows:

xi = i− 1
Nx − 1Lx i = 1, . . . , Nx

yj = j − 1
Ny − 1Ly j = 1, . . . , Ny

zk = cos
(

(k − 1)π
Nz − 1

)
k = 1, . . . , Nz

The use of Fourier discretization in the x and y directions implicitly forces a periodic
boundary condition on the corresponding boundaries. Since in the wall-normal direction
a periodic boundary condition can not be applied, Chebyshev polynomials are used to
discretize variables in that direction.
For the Fourier transforms in the two directions two sets of wave numbers can be defined,
kx for the x direction and ky for the y direction. These wave numbers are directly used
in the transforms.

kx(i) = 2(i− 1)π
Lx

with i = 1, . . . , Nx/2 + 1

ky(j) =


2(j − 1)π

Ly
with j = 1, . . . , Ny/2 + 1

−2(Ny − j + 1)π
Ly

with j = Ny/2 + 2, . . . , Ny
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A generic variable f(x, y, z, t) in physical space can be represented in the modal space as
a function of the wave numbers and of the Chebyshev polynomials (truncated series). The
coefficient f̂(kx, ky, k, t) represents the Fourier coefficient, while Tk is the kth Chebyshev
polynomial.

f(x, y, z, t) =
Nx/2∑
i=0

Ny/2∑
j=−Ny/2+1

Nz−1∑
k=0

f̂(kx, ky, k, t)Tk(z)ei(kxx+kyy)

The adoption of a modal representation of the variables allows the exact calculation
of the derivatives in the three directions. For the Fourier directions the derivative can
be easily calculated by multiplying the variable for the imaginary unit i times the
corresponding direction’s wave numbers:

∂f(x, y, z, t)
∂x

=
Nx/2∑
i=0

Ny/2∑
j=−Ny/2+1

Nz−1∑
k=0

f̂(kx, ky, k, t)Tk(z)ikxei(kxx+kyy)

∂f(x, y, z, t)
∂y

=
Nx/2∑
i=0

Ny/2∑
j=−Ny/2+1

Nz−1∑
k=0

f̂(kx, ky, k, t)Tk(z)ikyei(kxx+kyy)

For the wall-normal derivatives the derivative is not so immediate: to obtain the exact
value the recursive relationship on the Chebyshev polynomials and their derivatives for
the Chebyshev Gauss-Lobatto points must be exploited.
First of all, the Chebyshev polynomials are defined as:

T0(z) = 1
T1(z) = z
Tn(z) = 2zTn−1(z)− Tn−2(z)

Their derivatives are recursively defined as:

∂T0(z)
∂z

= 0

∂T1(z)
∂z

= 1

∂Tn(z)
∂z

= ∂Tn−2
∂z

+ 2nTn−1

This way all spatial derivatives are exact and can be directly taken in modal space; this
does not mean that there is no discretization error, which is actually introduced when
truncating the infinite Fourier and Chebyshev series to a finite sum of interpolating
functions.

3.6 Time discretization

The time integration algorithm follows an implicit/explicit (IMEX) scheme. The non-
linear term are discretized in time using either an explicit Euler scheme (for the first
time step only) either an Adams–Bashforth scheme (from the second time step on).
This is valid both for the Navier–Stokes and for the Cahn–Hilliard time discretization
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of the (non-linear) explicit terms.
un+1 − un

∆t = Fn Explicit Euler

un+1 − un
∆t = 3Fn − Fn−1

2 Adams–Bashforth

For the implicit part two different algorithms are used: for the Navier–Stokes equations
the Crank–Nicolson algorithm is used, while for the Cahn–Hilliard equation the more
dissipative impicit Euler is used.

un+1 − un
∆t = Fn+1 Implicit Euler

un+1 − un
∆t = Fn+1 + Fn

2 Crank–Nicolson

3.6.1 Dealiasing

Being a pseudospectral code, the products between variables are evaluated in physical
space. To avoid the arising of aliasing when transforming variables back to modal space,
dealiasing must be performed on the variables.
In the code the dealiasing is performed directly by the subroutines phys_to_spectral
and spectral_to_phys by the flag aliasing. If this flag is set equal to one, then
dealiasing is performed; dealiasing occurs at the end of the subroutines that perform
Fourier or Chebyshev transforms and at the beginning of the subroutines the perform
inverse Fourier and Chebyshev transforms.
The code follows the 2/3 rule (see Canuto et al. (2006) for a detailed reference) for
dealiasing. According to the 2/3 rule, all the modes with |k| greater then 2/3 of N
(where k is the mode number and N is the total number of modes) are set to zero.
Due to the particular ordering of the modes of the FFTW library, three different
dealiasing procedures are applied in the code:

• 1D Fourier transform, x: this is a real-to-complex transform, so the negative
frequencies are the complex conjugate of the positive ones, thus they do not need
to be saved. If Nx is the number of points in the x direction, the output of the
Fourier transform will be Nx/2 + 1 complex numbers (the first and the last have
zero imaginary part). The modes are stored in memory as: 0, 1, 2, . . . , Nx/2 (due to
Fortran array indexing, in the code they are shifted by one, so the corresponding
array indexes are 1, 2, 3, . . . , Nx/2 + 1). The index one corresponds to the zeroth
mode (mean mode).
When applying dealiasing the modes from 2/3Nx/2 to Nx/2 are set to zero.

• 1D Fourier transform, y: this is a complex-to-complex transform. If Ny is the
number of points in the y direction, the modes are stored as: 0, 1, 2, . . . , Ny/2,−Ny/2+
1,−Ny/2+2, . . . ,−1, so first are stored the positive frequencies and then the nega-
tive ones in backward order. The corresponding array indexing is 1, 2, 3, . . . , Ny/2+
1, Ny/2 + 2, Ny/2 + 3, . . . , Ny. The first mode corresponds to the mean mode in
the y direction.
When applying dealiasing the modes from 2/3Ny/2 to Ny/2 and from −Ny/2 + 1
to -2/3Ny/2 are set to zero.

• 1D Chebyshev transform, z: this transform is formally a complex-to-complex
transform, even though it can be considered as two real-to-real transforms. The
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real part of the array is transformed in a real array and the imaginary part in a
real array. The modes are saved as 0, 1, 2, . . . , Nz − 1 (where Nz is the number of
points in the z direction). The corresponding array indexing is 1, 2, 3, . . . , Nz.
When applying dealiasing the modes from 2/3Nz to Nz are set to zero.

3.7 Chebyshev–Tau method

3.7.1 General method

The most general form of the Chebyshev–Tau method is presented here by applying it
to the Burger equation. In the following equation the Burger equation is reported in
strong form.

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2 = 0 ∀t > 0 (3.12)

Strong form means that the equation must be verified at each point of the domain Ω.
A solution in (−1, 1) that verifies the following boundary conditions is sought:u(−1, t) = uL(t)

u(1, t) = uR(t)

The Chebyshev–Tau method solves the equation in weak form, which means that the
integral over the domain of the equation multiplied by a test function v must be zero
for each test function.∫

Ω

∂u

∂t
vdx+

∫
Ω
u
∂u

∂x
vdx−

∫
Ω
ν
∂2u

∂x2 vdx = 0 ∀v ∈ X, ∀t > 0 (3.13)

The weak form is called also integral form.
The discrete solution uN is:

uN (x, t) =
N∑
k=0

ûk(t)Tk(x)

We define now the following sets: the set PN is the set of all the polynomials of degree
lower or equal to N , the set XN which is a subset of PN and the set YN which is a
subset of PN−2.
The Chebyshev–Tau method enforces the equation in weak form using the test function
of YN , N − 1 test function (polynomials of degree from 0 to N − 2). Since the discrete
solution han N + 1 coefficients we enforce the two boundary conditions to obtain the
other two missing equations.
This way we have N + 1 equations for N + 1 unknown coefficients ûk.∫ 1

−1

(
∂uN
∂t

+ uN
∂uN
∂x
− ν ∂

2uN
∂x2

)
Tk(x) 1√

1− x2
dx = 0 ∀ k = 0, ..., N − 2uN (−1, t) = uL(t)

uN (1, t) = uR(t)
(3.14)

The weight w(x) = 1√
1−x2 is required for the orthogonality condition of Chebyshev

polynomials:
∫ 1

−1
Tk(x)Tj(x)w(x)dx =


0 if j 6= k

π if j = k = 0
π
2 if j = k 6= 0
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3.7.2 Application to the 2nd order equation for vorticity

The second order equation for vorticity reads:

∂2ω̂n+1
z

∂z2 − β2ω̂n+1
z = Fn

with boundary conditions in physical space:
p1ωz(x, y,−1) + q1

∂ωz(x,y,−1)
∂z = r1(x, y)

p2ωz(x, y, 1) + q2
∂ωz(x,y,1)

∂z = r2(x, y)

In modal space these boundary conditions are:
p1ω̂z(k1, k2,−1) + q1

∂ω̂z(k1,k2,−1)
∂z = r̂1(k1, k2)

p2ω̂z(k1, k2, 1) + q2
∂ω̂z(k1,k2,1)

∂z = r̂2(k1, k2)

To apply the Chebyshev–Tau method a one-dimensional second order equation with
mixed boundary conditions is needed; in this case these hypothesis are verified.
The two functions ω̂z and F can be written as a Chebyshev truncated serie:

ω̂n+1
z =

N∑
n=0

anTn(z)

Fn =
N∑
n=0

bnTn(z)

The second order equation is then integrated in z twice; the following property of
Chebyshev polynomials can be exploited:

∫ z

−1

N∑
n=0

anTn(s)ds =
N+1∑
n=1

lnTn(z)

ln can thus be expressed as a function of an:
lN+1 = aN

2(N+1)
lN = aN

2N
ln = 1

2N (an−1 − an+1) for n = 1, ..., N − 1

After integrating twice the vorticity transport equation, the resulting equation reads:

N∑
n=0

anTn(z)− β2
N+2∑
n=2

mnTn(z) =
N+2∑
n=2

fnTn(z) +AT1(z) +BT0(z)

Where
A = ∂ω̂z(k1, k2,−1)

∂z

and
B = ∂ω̂z(k1, k2,−1)

∂z
+ ω̂z(k1, k2,−1)
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sn is now defined as:
sn = an − β2mn − fn

This way, the equation can be rewritten as (fn comes from the double integration of
the Fn term, thus it depends on the bn):

(a0 −B)T0(z) + (a1 −A)T1(z) +
N∑
n=2

snTn(z)−
N+2∑

n=N+1

(
β2mn − fn

)
Tn(z) = 0

The Chebyshev–Tau method is now applied, using N − 1 Chebyshev polynomials as
test function; in particular the test functions used are Tn(z)w(z) with n = 2, ..., N .
This choice implies that all the sn must be zero for n = 2, ..., N ; this results comes from
the orthogonality of the Chebyshev polynomials. Thanks to the integration property sn
can be expressed as a linear combination of the an, while fn as a linear combination of
the bn.
The remaining two missing equations are obtained from the boundary conditions:

p1
N∑
n=0

anTn(−1) + q1
N∑
n=0

an
∂Tn
∂z

∣∣∣
z=−1

= r1

p2
N∑
n=0

anTn(1) + q2
N∑
n=0

an
∂Tn
∂z

∣∣∣
z=1

= r2

The boundary conditions are then rewritten in a more compact form gathering the
unknowns:

N∑
n=0

dnan = r1

N∑
n=0

enan = r2

This way a N + 1 linear equations system with N + 1 unknowns is obtained:

d1 d2 d3 d4 d5 d6 d7 d8 ... dn
e1 e2 e3 e4 e5 e6 e7 e8 ... en
s1 0 v1 0 t1 0 0 0 ... 0
0 s2 0 v2 0 t2 0 0 ... 0
0 0 s3 0 v3 0 t3 0 ... 0
...

...
...

...
...

...
...

... ...
...

0 0 0 0 0 0 0 0 ... vN





a0
a1
a2
a3
a4
...
aN


=



r1
r2
g1
g2
g3
...
gN


The matrix coefficients are:

sn−2 = −k2n n = 3, . . . , N + 1
vn−2 = 4n(n− 1)(n− 2) + 2(n− 1)k2 n = 3, . . . , N + 1
tn−2 = −k2(n− 2) n = 3, . . . , N − 1
gn−2 = nbn−2 − 2(n− 1)bn + (n+ 2)bn+2 n = 3, . . . , N − 1
gN−1 = (N − 1)bN−3 − 2(N − 2)bN−1

gN = NbN−2 − 2(N − 1)bN

The coefficient matrix obtained has the first two rows full, then from the third to
the N + 1 row is a tridiagonal matrix; the system can be easily solved using a Gauss
elimination algorithm.



3.8. INFLUENCE MATRIX 47

3.7.3 Application to the 4th order equation for velocity

The velocity transport equation is a fourth-order equation, so the Chebishev–Tau
algorithm cannot be applied directly: first this equation must be split in two Helmholtz
equations.
The auxiliary variable θ is thus defined as:

θn+1 = ∂2ŵn+1

∂z2 − k2ŵn+1

This way two Helmholtz for ŵ and θ are obtained:
∂2ωn+1

∂z2 − β2θn+1 = Fn

∂2ŵn+1

∂z2 − k2ŵn+1 = θn+1

The Helmholtz problem for ŵ has known boundary conditions in physical space but
there are no a priori known boundary conditions for the auxiliary variable θ, as they are
a function of the unknown velocity. The influence matrix method must thus be applied
to solve these two Helmholtz problems; the detailed procedure used to calculate ŵ is
reported in Section 3.8.2.
It must be noticed that when k2 = 0 the Helmholtz equations for the wall-normal
velocity degenerates; in that case the solution for k2 = 0 is always zero. This comes
from the point that k2 = 0 implies kx = 0 and ky = 0, which is the mean mode of the
wall-normal velocity in the x and y directions, which is zero for each z value.

3.8 Influence matrix

3.8.1 General method

The influence matrix method is employed in differential problems where one of the
boundary conditions depends on an unknown function.
Be Ω a generic domain and Γ = ∂Ω its boundary; we define then three linear differential
operators F, G and H.
The following problem [P ] has boundary conditions for f which depends on the unknown
function h:

[P ]


F[f(x)] = g(x) in Ω
G[h(x)] = f(x) in Ω
f(x) = H[h(x)] in Γ
h(x) = hΓ(x) in Γ

(3.15)

f and h are the two unknown functions, g is a known function and hΓ is a known
boundary condition for h.
Using the influence matrix method we can evaluate the boundary conditions for f so
that we can resolve the problem [P ].
Let’s introduce another problem [P̃ ]; the only difference from the formulation of [P ] is
the boundary condition on f̃ . f̃Γ(x) is an arbitrary distribution on Γ.

[P̃ ]


F[f̃(x)] = g(x) in Ω
G[h̃(x)] = f̃(x) in Ω
f̃(x) = f̃Γ(x) in Γ
h̃(x) = hΓ(x) in Γ

(3.16)
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The problem [P̃ ] has an unique solution (f̃ , h̃), which does not necessarily verify the
boundary condition f̃(x) = H[h̃(x)] in Γ.
We define now two functions, f̄ and h̄ and the problem [P̄ ] as the difference between
the problems [P ] and [P̃ ].

f̄ = f − f̃

h̄ = h− h̃

[P ]− [P̃ ] = [P̄ ]


F[f̄(x)] = 0 in Ω
G[h̄(x)] = f̄(x) in Ω
f̄(x) = H[h̄(x)] + H[h̃(x)]− f̃Γ(x) in Γ
h̄(x) = 0 in Γ

(3.17)

We can split problem [P̄ ] in N sub-problems [P̄k] with k = 1, ..., N and each one of
these sub-problems has its own solution (f̄k, h̄k).
This way we have:

f̄(x) =
N∑
k=1

λkf̄k(x)

h̄(x) =
N∑
k=1

λkh̄k(x)

The generic problem [P̄k] is (in the following the boundary has been discretized in N
points xl = 1, ..., N):

[P̄k]


F[f̄k(xl)] = 0 in Ω
G[h̄k(xl)] = f̄k(xl) in Ω
f̄k(xl) = δkl in Γ
h̄k(xl) = 0 in Γ

(3.18)

The λk coefficients are unknown and they can be calculated from the third equation of
the problem [P̄ ] evaluated at each point xl, substituting in f̄ and h̄ the sub-problems
solutions.

N∑
k=1

λkf̄k(x)−H

 N∑
k=1

λkh̄k(x)

 = −f̃(x) + H[h̃(x)]

Since H is a linear operator we can write:
N∑
k=1

λk
(
f̄k(x)−H[h̄k(x)]

)
= −f̃(x) + H[h̃(x)]

This equation holds for each xl with l = 1, ..., N , so we have a linear equations system:
f̄1(x1)−H[h̄1(x1) ... f̄N (x1)−H[h̄N (x1)
f̄1(x2)−H[h̄1(x2) ... f̄N (x2)−H[h̄N (x2)

...
...

f̄1(xN )−H[h̄1(xN ) ... f̄N (xN )−H[h̄N (xN )




λ1
λ2
...
λN

 =


−f̃(x1) + H[h̃(x1)]
−f̃(x2) + H[h̃(x2)]

...
−f̃(xN ) + H[h̃(xN )]


(3.19)

Using the definitions of f̄ and h̄ we have:

f(x) = f̃(x) + f̄(x) = f̃(x) +
N∑
k=1

λkf̄k(x)

h(x) = h̃(x) + h̄(x) = h̃(x) +
N∑
k=1

λkh̄k(x)
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Using problems [P̄ ] and [P̃ ] we have:

f(x) = f̃(x) + f̄(x) = G[h̃(x)] +
N∑
k=1

λkG[h̄k(x)]

3.8.2 Application to the 4th order equation for ŵ

The influence matrix method is needed as the boundary conditions on one of the two
Helmholtz problems (obtained from the splitting of the fourth order equation for the
wall-normal velocity) are missing. The original fourth order equation reads:(

∂2

∂z2 − k
2
)(

∂2

∂z2 − β
2
)
ŵ = H (3.20)

The ·̂ denotes quantities in modal space; for ease of notation in this section the ·̂ notation
will be dropped.
For the closed channel case the boundary conditions are on the velocity value and on
its first derivative at the wall: 

w(z = ±1) = 0

∂w

∂z

∣∣∣∣∣
z=±1

= 0
(3.21)

For the open channel case the boundary conditions on the open boundary are on
the velocity value and on its wall-normal second derivative; in this case there are the
boundary conditions for the auxiliary problem, but only at one boundary. For the other
boundary, the closed boundary, the boundary conditions for the auxiliary problem are
still missing.
Equation 3.20 can be splitted in two Helmholtz equations (the previous section notation
is kept: Ω denotes the domain, Γ = δΩ is the border of the domain):

(
∂2

∂z2 − k
2
)
w = ψ in Ω

w = wγ in Γ
(
∂2

∂z2 − β
2
)
ψ = H in Ω

ψ = f(w) in Γ

(3.22)

The boundary conditions on the ψ problem are unknown, as they are a function of the
wall-normal velocity w. As seen for the general case, these Helmholtz problems can be
split in a subproblem that do not necessarily verifies the boundary conditions and two
other subproblems that verify the boundary conditions on one of the two boundaries
(one subproblem satisfies the boundary condition at z = +1, while the other at z = −1).w = w1 +Aw2 +Bw3

ψ = ψ1 +Aψ2 +Bψ3
(3.23)

Problem with subscript 1 has a unique solution that does not necessarily verify the
boundary conditions on ψ, problem with subscript 2 verifies the boundary conditions
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on ψ at z = −1, while problem with subscript 3 verifies the boundary conditions on ψ
at z = +1. The three subproblems are thus:

[P1] =



∂2w1
∂z2 − k

2w1 = ψ1 in Ω
w1 = wγ in Γ
∂2ψ1
∂z2 − β

2ψ1 = H in Ω
ψ1 = ψγ in Γ

[P2] =



∂2w2
∂z2 − k

2w2 = ψ2 in Ω
w2 = 0 in Γ
∂2ψ2
∂z2 − β

2ψ2 = 0 in Ω
ψ2(−1) = 1 ψ2(+1) = 0

[P3] =



∂2w3
∂z2 − k

2w3 = ψ3 in Ω
w3 = 0 in Γ
∂2ψ3
∂z2 − β

2ψ3 = 0 in Ω
ψ3(−1) = 0 ψ3(+1) = 1

(3.24)

The boundary condition on ψ1 is arbitrary; in the code ψ1 = 0 in Γ was selected. The
problems [P2] and [P3] are not time dependent, so they are solved at the beginning of
the simulation and stored in the arrays wa2 and wa3 (only the auxiliary solution for w
is kept); the problem [P1] is time dependent (the H term is time dependent), so it is
calculated during the time cycle.
Once splitted the original Helmholtz problems in three subproblems, the boundary
conditions on w are applied:

p1w(−1) + q1
∂w

∂z

∣∣∣∣∣
z=−1

= r1

p2w(+1) + q2
∂w

∂z

∣∣∣∣∣
z=+1

= r2

The variable w can be split in a linear combination of w1, w2 and w3:
p1
(
w1(−1) +Aw2(−1) +Bw3(−1)

)
+ q1

(
∂w1(−1)

∂z
+A

∂w2(−1)
∂z

+B
∂w3(−1)

∂z

)
= r1

p2
(
w1(+1) +Aw2(+1) +Bw3(+1)

)
+ q2

(
∂w1(+1)

∂z
+A

∂w2(+1)
∂z

+B
∂w3(+1)

∂z

)
= r2

Since the three subproblems have an unique solution and verify the Chebyshev–Tau
method hypothesis, they can be solved using the Chebyshev–Tau method and then the
values of the coefficient A and B can be calculated:p1w2(−1) + q1

∂w2(−1)
∂z

p1w3(−1) + q1
∂w3(−1)

∂z

p2w2(+1) + q2
∂w2(+1)

∂z
p1w3(+1) + q1

∂w3(+1)
∂z


[
A
B

]
=

r1 − p1w1(−1)− q1
∂w1(−1)

∂z

r2 − p2w1(+1)− q2
∂w1(+1)

∂z
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To solve for wi with i = 1, 2, 3, first the Helmholtz problem for ψi is solved, then the
right hand side of the Helmoltz equations for wi is known.
Since the code works in modal space, w1 is a complex valued function, while w2 and w3
are real valued fuction; thus A and B must be complex valued coefficients.[

a11 a12
a21 a22

]
︸ ︷︷ ︸

R

[
A
B

]
︸︷︷︸
C

=
[
b1
b2

]
︸ ︷︷ ︸
C[

a11 a12
a21 a22

] [
Re(A)
Re(B)

]
=
[
Re(b1)
Re(b2)

]
[
a11 a12
a21 a22

] [
Im(A)
Im(B)

]
=
[
Im(b1)
Im(b2)

] (3.25)

Once A and B have been calculated, the value of w can be obtained as:Re(w) = Re(w1) + Re(A)w2 + Re(B)w3

Im(w) = Im(w1) + Im(A)w2 + Im(B)w3
(3.26)

3.9 Wall units and outer units
In the code two different dimensionless categories are used: outer units and wall units.
The first ones are denoted using the superscript −, while the second ones using the
superscript +.
Outer units are obtained making physical units dimensionless with the channel half-
height h and the shear velocity: uτ

x− = x
h

u− = u
uτ

t− = tuτ
h

On the other hand wall units are obtained nondimensionalizing physical units with the
shear velocity uτ and the kinematic viscosity ν (typical turbulence related quantities):

x+ = xuτ
ν

u+ = u
uτ

t+ = tu2
τ

ν

So, the dimensionless velocity is the same in both wall units and outer units, while for
the spatial coordinate we have:

x+ = xuτ
ν

= x
h

huτ
ν

= x−Reτ

We have the same result for time:

t+ = tu2
τ

ν
= tuτ

h

huτ
ν

= t−Reτ
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Chapter 4

MPI Parallelization and GPUs

In this chapter, the parallelization, two possible domain decomposition algorithms
and the acceleration strategy will be presented: the slab decomposition and the pencil
decomposition. Section 4.1 presents the general parallelization strategy. Sections 4.2
and 4.3 will be dedicated to the detailed explanation of these parallelization strategies,
focusing also on their strengths and limitations. Section 4.4 will present a benchmark
between these strategies, together with some scalability results. Finally, section 4.5
will discuss the acceleration strategy for GPU-use and section 4.6 will discuss possible
performance improvement and profiling techniques.

4.1 Parallelization
For the solution of Eulerian fields (flow field, phase-field, surfactant concentration
temperature fields), the computational domain is splitted into pencil. Each MPI is
assigned to a chunk of nodes (see details in the two sections below). MPI transpositions
are required every time non-linear terms are computed (i.e. full forward or backward
transforms). When also the Lagrangian particles is enabled (particles, fibers), the
situation is different and depends on the number of nodes considered. If running on a
single-node, all MPI tasks perform the computations of the Eulerian fields as well as the
tracking of the Lagrangian points/entities. If running multi-node with M nodes, M − 1
nodes solve the Eulerian fields while the nodeM take care of the Lagrangian tracking
using the MPI-shared memory feature.

4.2 Slab decomposition
The slab decomposition is the simpler case of domain decomposition presented here.
The domain is divided in so called slabs which contain all the data in two directions
and only a part of the data in the remaining direction.
Since here a pseudospectral method is used and when performing transforms each MPI
process must hold all the data in the transform direction, during the passage from
physical to modal space (and backwards) MPI processes must exchange data. As shown
in Figure 4.1 in physical space each MPI process holds all the data in a x− y plane and
only a part of data in the z direction, while in modal space each MPI process hold all
data in a y − z plane and only a part of data in the x direction.
When in physical space 1D Fourier transforms are performed in the x and y directions;
then all MPI processes exchange data to transpose the slabs from the x− y plane to the
y − z plane and a 1D Chebyshev transform is performed in the wall-normal direction.

53
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(a) Slab decomposition, physical space
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(b) Slab decomposition, modal space

Figure 4.1: Slab decomposition, MPI processes numbering

At this point the data are in modal space.
The slab decomposition requires one series of MPI communication among all MPI
processes for each passagge for physical [modal] space to modal [physical] space. The
way the domain is divided among all processes restricts the maximum number of MPI
processes that can actually be used: using a N3 domain limits the maximum number of
processes to roughly N . In fact each MPI process must hold at least a plane of data
(N ×N × 1). This limit thus depends on the choice of the grid.
Using the slab decomposition method allows to reduce the number of MPI communica-
tions but poses a strong limit on the maximum number of MPI processes.

4.3 Pencil decomposition

The pencil decomposition strongly increases the limit on the maximum number of MPI
processes that can be used at the cost of an increased number of MPI communication.
With this strategy each MPI process holds all the data in one direction and part of the
data in the other two directions. When passing from physical space to modal space,

x

z y

#0

#1

. . .

#N

(a) Pencil decomposition, physical space

x

z y

#0 #1 . . .

#N

(b) Pencil decomposition, modal space

Figure 4.2: Pencil decomposition, MPI processes numbering
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according to Figure 4.2, first a 1D Fourier transform is performed in the x direction,
then there is a series of MPI communications such that each rank, after that, holds
all the data in the y direction. Then, a 1D Fourier transform is performed in the y
direction; again there is a series of MPI communication such that each MPI process
then holds all data in the z direction. Finally a 1D Chebyshev transform is performed
in the z direction. In order to pass from modal space to physical space, all the previous
steps must be done in reverse order.
The pencil decomposition strategy thus strongly increases the maximum number of
MPI processes that can be used: a domain with N3 point can be parallelized up to
roughly N2 MPI processes (each MPI process hold N × 1× 1 points with the highest
number of MPI processes). The cost for this increasing in the maximum number of MPI
processes is a higher number of MPI communication: now there are two series of MPI
communications.
In the pencil domain decomposition case a doubly periodic Cartesian topology can be
used to find out in a much easier way which are the MPI processes involved in the
communications. For example, in the first MPI communication series only the MPI
processes in the same x−y plane exchange data, while in the second MPI communication
series only the MPI processes belonging to the same y − z plane exchange data.

4.4 Domain decomposition strategies benchmark

Some test cases were run on the Marconi A1 Broadwell partition to verify the scalability
of the code. The Marconi A1 partition machine has 1 512 nodes, each one with 36
cores/node, for a total of 54 432 cores. Each node is made up of two socket; each one is
an Intel Xeon E5-2697 v4 @2.3 GHz. The total amount of RAM memory available per
node is 128 GB/node, but it is suggested to use up to ∼120 GB/node.
Two kind of scalability tests were run: a strong scalability analysis and a weak scalability
one. In the strong scalability case the overall domain size is kept constant, while the
number of MPI processes is increased. As the number of MPI processes increases, the
load on each core is reduced (lower number of points per core). In the weak scalability
case the load (number of points per core) is kept constant while the overall number of
points is increased according to the increase in the number of MPI processes.
For the strong scalability case three different grids were tested both for slab and pencil
domain decomposition: 512× 256× 257, 512× 512× 513 and 1024× 1024× 1025. As
commonly found in literature the speed-up obtained is normalized by the speed-up
obtained on the lowest number of MPI processes used; in this case the lowest number was
64 MPI processes. The ideal behaviour is linear in the total number of MPI processes;
as can be seen from Figure 4.3 the slab decomposition runs deviate quite early from the
ideal case, while the pencil cases keep an optimal speed-up at least up to 1 024 MPI
processes. At this point only the larger grid does not show worsening in the performance,
while the smaller grids show a larger deviation from the ideal case. Due to the limit
on the maximum number of cores that can be requested on the Marconi A1 partition
(around 6 000), we could not verify the scalability on a higher number of MPI processes.
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Figure 4.3: Strong scalability

Table 4.1: Strong scaling speed-up calculated with respect to 64 MPI processes case

Ny,cpu Nz,cpu grid time per time step [s] speed-up ideal speed-up

1 64 512× 256× 257 1.22 1 1
1 128 512× 256× 257 0.79 1.54 2
1 256 512× 256× 257 0.69 1.77 4
8 8 512× 256× 257 1.44 1 1
16 16 512× 256× 257 0.32 4.5 4
32 32 512× 256× 257 0.10 14.4 16
64 64 512× 256× 257 0.25 5.76 64
1 64 512× 512× 513 4.82 1 1
1 128 512× 512× 513 3.18 1.52 2
1 256 512× 512× 513 1.81 2.66 4
8 8 512× 512× 513 6.64 1 1
16 16 512× 512× 513 1.58 4.20 4
32 32 512× 512× 513 0.39 17.03 16
64 64 512× 512× 513 0.24 27.67 64
1 64 1024× 1024× 1025 55.72 1 1
1 128 1024× 1024× 1025 22.20 2.51 2
1 256 1024× 1024× 1025 14.46 3.85 4
1 512 1024× 1024× 1025 9.20 6.06 8
8 8 1024× 1024× 1025 62.40 1 1
16 16 1024× 1024× 1025 14.10 4.43 4
32 32 1024× 1024× 1025 4.00 15.6 16
64 64 1024× 1024× 1025 1.23 50.73 64

For the weak scalability case three different runs were run: in the first two cases
denoted by 512 × 8 × 8 and 1024 × 16 × 16 the aspect ratio of the arrays was kept
constant as the number of MPI processes increased. In the other case, denoted by 643
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Figure 4.4: Weak scalability

only the total number of points per MPI process was kept constant. This allowed for a
better data layout in memory, which gave much better results, only matched by the
others two cases when the global grid approached a unitary aspect ratio in the three
dimensions.

Table 4.2: Weak scaling time per time step normalized with respect to 64 MPI processes
case

Ny,cpu Nz,cpu load/core grid t/tstep [s] t/tstep normalized

8 8 512× 8× 8 512× 64× 65 0.06 1
16 16 512× 8× 8 512× 128× 129 0.81 14.46
32 32 512× 8× 8 512× 256× 257 1.85 33.04
64 64 512× 8× 8 512× 512× 513 0.34 6.07
8 8 1024× 16× 16 1024× 128× 129 0.54 1
16 16 1024× 16× 16 1024× 256× 257 2.50 4.66
32 32 1024× 16× 16 1024× 512× 513 4.64 8.66
64 64 1024× 16× 16 1024× 1024× 1025 1.10 2.05
8 8 643 256× 256× 257 0.65 1
16 16 643 512× 512× 257 0.73 1.12
32 32 643 512× 512× 1025 0.85 1.30
64 64 643 1024× 1024× 1025 1.10 1.69

4.5 Acceleration
When using a GPU-accelerated cluster, the parallelization backbone of the code still
relies on a MPI approach; the overall workload is divided among the different MPI tasks
using a 2D domain decomposition. On top of the MPI parallelization scheme, CUDA
Fortran instructions and OpenACC directives are used to accelerate the code execution.
Each MPI task is assigned to a specific GPU and thus to a specific pencil of the domain.
All the computationally intensive operations are performed on the GPUs. Specifically, the
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Nvidia cuFFT libraries are used to perform all the transforms (Fourier and Chebyshev)
and the entire solver can be efficiently executed on the GPU thanks to the fine-grain
parallelism offered by the numerical scheme (series of 1D independent problems along
the wall-normal direction). To limit as much as possible Device to Host (D2H) and Host
to Device (H2D) communications, which may hamper code performance, the required
MPI communications are performed exploiting the CUDA-awareness capabilities of the
MPI libraries when available (e.g., when using MPI Spectrum, OpenMPI, MPICH, etc.).
In this way, GPUDirect RDMA technologies can be used to avoid costly D2H and H2D
synchronizations. The only library required by the GPU version of the code FLOW36
is the Nvidia cuFFT library, which is used to perform all the transforms (Fourier
and Chebyshev transforms). This library is part of the standard software stack of the
targeted machine (present inside the Nvidia hpc-sdk together with the CUDA-aware
version of the MPI libraries). Additional details on the bottlenecks of the GPU version
and further possible optimizations can found in the git repository of the code.

4.6 Profiling
The CPU version of the code can be profiled with any of the tools available (TAU-C,
Intel vTune, AMDuProf, etc.). AMDuProf is required when using AMD architectures
(AMD Rome, Milan, Epic). The GPU version of the code can be profiled using the tools
provided by Nvidia. For better tracking of the different activities, you can enable the
NVTX module available at the end of module.f90. This module should be decommented
(as it is not supported in other compilers). Naturally, NVTX is supported only by the
nvfortran (ex-PGI compiler) and results can be visualized using Nvidia Nsight system.
Support to the NVTX instructions should be enabled via specific compiler options. For
details on NVTX module see: https://github.com/maxcuda/NVTX_example.

https://github.com/maxcuda/NVTX_example


Chapter 5

Code validation

5.1 Single phase validation

The code was validated running a simulation at Reτ = 300 starting from a fully developed
turbulent channel flow; all the results were gathered on a timespan of 1 500 t+. The
results were then compared with the DNS database of N. Kasagi (2017) at the same
shear Reynolds number. Here is presented the outcome of this comparison; the data
from N. Kasagi (2017) are denoted as tht-lab in the following pictures.
The velocity skewness was also compared with the old code results (FlOWSB), showing a
perfect agreement.
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Figure 5.1: Mean velocity
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5.2 Phase field validation
The phase field was validated using the undamped analytical solution from Prosperetti
(1981) for capillary waves at the interface between two superposed fluids (stable config-
uration).
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Figure 5.11: Capillary waves, comparison of numerical solution (damped) with Pros-
peretti analytic solution (undamped). Case A : ρR = 0.9, Fr = 0.1, ky = 1. Case B :
ρR = 0.5, Fr = 0.1, ky = 1. Case C : ρR = 0.5, Fr = 0.05, ky = 1. Case D : ρR = 0.5,
Fr = 0.1, ky = 2.

Table 5.1: Case run for phase field validation

Case ω0 (analytic) ω (numerical) ∆ω = ω0−ω
ω0
· 100 [%] Density ratio Fr

Case A 1.976789 1.993080 -0.82 0.9 0.1
Case B 4.879132 4.986655 -2.20 0.5 0.1
Case C 9.721965 9.933890 -2.18 0.5 0.05
Case D 7.001862 8.107336 -15.79 0.5 0.1
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