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Abstract

Smoothed Particle Hydrodynamics (SPH) is a meshless, particle-based
approach that has been increasingly applied for modelling of various
fluid-flow phenomena. Concerning multiphase flow computations, an
advantage of the Lagrangian SPH over Eulerian approaches is that the
advection step is straightforward. Consequently, the interphasial surface
can be explicitly determined from the positions of particles representing
different phases, therefore there is no need for the interface reconstruc-
tion step. In this review paper, we briefly recall the basics of the SPH
approach, and in particular the physical modelling and numerical imple-
mentation issues. We also mention the weaknesses of the approach and
some remedies to overcome them. Then, we demonstrate the applicabil-
ity of SPH to selected interfacial flow cases, including the liquid column
break-up, gas-liquid flow regimes in a channel capturing the transitions
between them, and the wetting phenomena. Concerning the two-fluid
modelling, it is illustrated with sediment transport in the presence of
surface waves. Various other applications are briefly recalled from the
rich and growing literature on the subject, followed by a tentative list
of challenges in multiphase SPH.

Keywords: multiphase flow, numerical modelling, meshless methods,
interfacial flows, gas-liquid flow regimes, wetting phenomena, two-fluid models

1



Springer Nature 2021 LATEX template

2 SPH modelling of multiphase flows

1 Introduction

Multiphase flows feature rich physics [1], including interphasial momentum
and energy couplings, phase changes, surface tension forces, etc. At the level
of continuous media, the most detailed description accounts for the dynamics
of (generally deformable) interfaces between the immiscible phases, their topo-
logical changes due to break-up or coalescence, or interface-wall interactions
due to wetting effects. As opposed to these complex (separated or segregated)
flows, in disperse flows the entities such solid particles, droplets or bubbles
(all are collectively called particles) and their interactions with a carrier fluid
phase are of interest. At this level of description, the coupling between the
phases is accounted for in an averaged way (by using semi-empirical formulae
for forces and torques). At the next level of averaging, the phases are treated
as interpenetrating continua.

Multiphase systems commonly occur in nature, starting from the astrophys-
ical scales, through hydrometeors in the atmosphere, sandstorms, pyroclastic
flows, gravity and capillary waves, sediment transport, down to gyrotactic
swimmers, red blood cells, and submicron particles. From this first look at
the bestiary of living and inanimate nature, the wealth and span of scales
can be admired. Referring just to the air-water-sand system in environmen-
tal hydraulics, they range from the millimeter-sized sand grains that make up
a deformable bottom featuring seabed ripples, up to the wind-driven surface
waves of hundreds of meters. In the same vein, examples from engineering
include spray atomisation, boiling heat transfer, gas and oil transportation
systems, and a plethora of other applications. Here again, the length (and
time) scales may span a few orders of magnitude. Looked at from the stand-
point of phase content, multiphase flows range from dilute systems (cloud
droplets), through the collisional regime (fluidised beds), up to the granular/-
porous medium (saturated soil); different regimes call for different description.
Therefore, it is pretty obvious that the diversity of physical phenomena at play,
the variability of flow conditions as well as material properties of the various
fluids (and solids) that constitute the phases, and a range of time and length
scales involved, make it virtually impossible to conceive an “all-inclusive”, yet
tractable, model of a multiphase flow.

Generally, corresponding to the above sketch, the physical and mathe-
matical models can roughly be ascribed to two categories: (i) interfacial flow
models of gas-liquid or liquid-liquid systems, often in the “one-fluid” for-
mulation [2], and (ii) disperse flow models that may also involve fluid-solid
systems. The latter are considered in the present paper as averaged, “two-
fluid” models only. However, disperse flows may be efficiently treated in terms
of point-particle simulations (Eulerian-Lagrangian, i.e. trajectory approaches)
or as particle-resolved simulations. Although they are of less interest in this
paper, point-particle models are relatively mature, efficient, and in practice
the only ones affordable when the carrier phase flow is turbulent; for the sake
of completeness, the reader may wish to consult [3–6] and references therein
for the overviews on particles in turbulence, including the direct numerical
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simulations (DNS), large-eddy simulations (LES), the stochastic approaches,
particle deposition, etc. As to the former category, i.e. the interfacial flow
models, here the attention is restricted to fully-resolved simulations (broadly
called DNS), be they of turbulent or laminar flows. The LES of such flows
and statistically-averaged models (featuring, for example, the interfacial area
density), otherwise of keen scientific and practical interest, are not addressed
in this review, also because there is no equivalent to them in the Smoothed
Particle Hydrodynamics (SPH) approach which will be in focus here.

In line with the developments in general computational fluid mechanics
(CFD) since its advent back to the 1960s, say, also the models of interfacial
flows have been predominantly conceived in the Eulerian, grid-based approach,
with perhaps a notable exception of the Marker-and-Cell method (MAC) due
to Francis Harlow and co-workers at Los Alamos (known as CFD pioneers). In
MAC, which is a hybrid Eulerian-Lagrangian method, passive tracers (mark-
ers) are applied to track the phase distribution [7]. The MAC method has been
a predecessor of the modern front-tracking (FT) approach [2] where the tracer
particles (connected marker points) located at the interface enable to follow
its evolution. Recently, FT has also been applied to handle three phase sys-
tems composed of buoyant bubbles, heavy drops and a carrier liquid (like in
the flotation process) [8].

Arguably, the most popular approach nowadays (also in commercial CFD
packages) is the Volume-of-Fluid (VOF) method [9], see also [2] and references
therein. The VOF method uses the physical concept of the volume fraction α
of a phase (0 ≤ α ≤ 1); from the computational standpoint, it is a marker
function simply advected in the flow field and used to reconstruct the actual
interface shape in the grid cells where 0 < α < 1. The VOF method con-
serves mass and may offer high accuracy; however, when this is required, the
reconstruction step becomes pretty complex, like the computation of a local
curvature necessary to account for the surface tension effects [10]. Another
approach where a marker function (here F ) is advected is the level set (LS)
method. Here, the interface is identified as a particular level set (F = 0) of
the smooth marker function. Including the so-called re-initialisation step [11],
the normal vectors to the interface are readily found from ∇F . However, the
mass conservation has been an issue in LS; it has been partly overcome at
the expense of increased complexity of the method ingredients. One of the
options has been to couple VOF and LS into CLSVOF (the acronym is self-
explanatory), see [12, 13], to take advantage both of the mass conservation and
fast computation of normal vectors to the interface (or to fronts in general, as
a “front” is not necessarily a material interface).

Yet another interface capturing approach, increasingly often applied to
two-phase systems, is the phase field method (PFM) [14]. Rooted in the
physical/thermodynamic description of phase change phenomena and the
Cahn-Hilliard equation, the PFM belongs, unlike the previously recalled
approaches, to the class of diffuse interface (DI) models where the inter-
face thickness spans a few grid cells [15]. In the macroscopic description, the
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physical interface is sharp. (Interestingly, in [16] statistical models of the “inter-
mittency region” at the mesoscopic level are advocated.) The PFM has been
successfully applied to droplets break-up and coalescence in the flow [17], also
surfactant-laden [18], and to bubbles [19]. It has also been compared to the
multiphase variant of the lattice Boltzmann method (LBM) [20]; the latter is
not addressed here (because of its mesoscopic nature), however it has proven
efficient in multiphase flow computation.

As we will see in the following, some specific features of two-phase flows,
such as the presence of steep gradients or even discontinuities in the interfa-
cial region and the effects of surface tension imply difficulties for numerical
solution. Some of them are common for the Eulerian methods briefly recalled
above and for the SPH method, basically Lagrangian, that is the main focus
of the paper. SPH will be presented in more detail in Sec. 2. An advantage of
the Lagrangian description is that the material surfaces (such as the interfaces
separating individual, immiscible phases in the absence of phase transitions)
are explicitly tracked in the fluid flow. Arguably, another advantageous fea-
ture of the Lagrangian approaches, of interest here, is the a priori flexibility
to incorporate complex physics into a single system of evolution equations. A
relevant example from the area of hydraulic engineering is again a wind-water-
sediment system [21, 23] where a comprehensive model would couple, e.g.,
granular media flow [24], constitutive relationships for the sea-bed rheology
[25], together with two-fluid sediment flow models [26–29].

Before general SPH is presented in the next section, let us take a moment
to look at the work to date regarding SPH for multiphase flows, which is also
the main concern of this overview. There have been a few authoritative and
comprehensive review papers on free surface flows [30, 31] and on complex fluid
flows [32]; there have also been reviews on particular research areas, such as
ocean and coastal engineering [33–35] or industrial applications [36], including
nuclear thermal-hydraulics [37]. A valuable overview of SPH for multiphase
flows by Wang et al. [38] is considerably more detailed than the present one
with respect to the fundamental concepts and technical aspects of one-phase
SPH, such as kernel choice, pressure treatment, time integration, and boundary
conditions. It deals with free-surface and interfacial models of high density
ratios. In [38], a number of critical issues in SPH are listed: low accuracy, high
(sometimes critically high) computational cost, treatment of boundaries (for
two-phase flow systems) and surface tension. In the present review, we revisit
some of these issues, hopefully adding new pieces of information as per our own
experience. We have also done our best to include (by no means all) relevant
references beyond 2015 until early 2023.

This paper is organised as follows. In Sec. 2, we recall the governing
equations of two-phase flows, both with interfaces and at the averaged (mix-
ture) level. We then present the basics of the SPH approach and specific
developments for the two-phase flow simulations: density computation, sur-
face tension implementation, micromixing artifacts, etc. Next, we present a
selection of SPH applications to interfacial flows (Sec. 3) and the two-fluid
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modelling of sediment transport (Sec. 4). Challenges in multiphase SPH are
briefly discussed in Sec. 5; conclusions and outlook are given in Sec. 6.

2 Multiphase fluid dynamics and SPH
The title of this section intentionally parallels the title of a comprehen-
sive monograph by Violeau [39] that starts by fundamental concepts of the
Lagrangian and Hamiltonian theoretical mechanics, offers the Author’s per-
spective on fluid dynamics, to smoothly introduce the SPH in action, applying
these theoretical concepts. All proportions kept, here we just recall the govern-
ing equations of the one-fluid (interfacial) and two-fluid (mixture) models of
multiphase fluid dynamics that will then be solved using the SPH machinery.

2.1 Equations to be solved

2.1.1 One-fluid model

Assuming that fluids 1 and 2 separated by an interface are Newtonian and
weakly compressible, the multiphase flow dynamics is governed by the con-
tinuity and the Navier-Stokes (NS) equations. They are written in the form
suitable for SPH discretisation, i.e. with the material derivatives on the LHS:

dρ

dt
= −ρ∇ · u (1)

du

dt
= −1

ρ
∇p +

1

ρ
∇ · µ

(
∇u + ∇uT − 2

3 (∇ · u)I
)

+ g +
1

ρ
fst (2)

where ρ is the density, u is the velocity, p is the pressure, µ is a local dynamic
viscosity coefficient, and g is a body force; fst stands for the (regularised)
surface tension force, further detailed in Sec. 2.3. In the one-phase flow case,
the equations remain the same (except that there is no fst term).

The material parameters, say Q (be it the viscosity or density) may be
found from the weighted average of quantities representing the respective
phases, Q1 and Q2, using the phase indicator function α often called the colour
function (and denoted by c). Let α = 0 in the bulk of phase 1 and α = 1 in
the bulk of phase 2. Then Q = (1− α)Q1 + αQ2; a single field of Q (viscosity,
density or other scalar variables where relevant) justifies the name “one-fluid”
model. In Eulerian methods of the diffuse interface (DI) type, such as PFM, α
changes smoothly across the interfacial region taking intermediate values there.
As detailed in Sec. 2.3, an analogous description is used in SPH (although the
interface can be seen as sharp when only the particle colours are considered).

In the WC models, the velocity divergence ∇·u in the second RHS term in
Eq. (2) is usually neglected because of (approximate) incompressibility. Finally,
the system of governing equations, Eqs. (1)–(2), is completed by a pressure-
density relationship. The Tait equation is often applied for the purpose of WC
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simulations. It writes

p =
c2sρ0
γ

[(
ρ

ρ0

)γ

− 1

]
(3)

where ρ0 is a reference density; cs is a sound speed and γ is a constant (often
γ = 7 is taken in liquids), chosen to keep the density fluctuations at O(1%).

2.1.2 Two-fluid model

In the averaged description of two-phase dispersed flows (at the mixture level),
the phases are treated as interpenetrating continua, see [1]. In particular, for
the material densities of the carrier fluid (f) and the dispersed (d) phases,
ρf and ρd, the respective volume (bulk) densities are ρ̂f = (1 − θd)ρf and
ρ̂d = θdρd where θd is the volume fraction of the dispersed phase. The quanti-
ties ρ̂f and ρ̂d obey the standard continuity equations, cf. Eq. (1). The phases
interact through the momentum coupling term in the respective momentum
equations formulated in terms of the two-fluid model:

∂uf

∂t
+ (uf · ∇)uf = −∇p

ρf
− K

ρ̂f
(uf − ud) +

1

ρf
(∇µ · ∇)uf + g (4)

∂ud

∂t
+ (ud · ∇)ud = −∇p

ρd
+

K

ρ̂d
(uf − ud) + g (5)

where uf and ud stand for the velocities of the respective phases; there is a
single pressure field p, though (no collisional effects as the flow regime is not
dense/granular). Unlike in Eq. (2), the material derivatives on the LHS of
Eqs. (4) and (5) have been expanded to avoid ambiguity in the symbol d/dt
and to explicitly distinguish between the two advection velocities; this applies
to the continuity equations as well. Then, g is the gravity acceleration and
K = K(Re) is the interphase drag factor where Re is the Reynolds number
based on the local relative velocity of the phases. The volume fractions of the
phases and the Stokesian drag formula accounting for a higher-Re correction
enter the semi-empirical drag expression for K in the dilute regime. The so-
called Gidaspow’s drag formula is a crucial ingredient of the two-fluid model;
it becomes more complicated in the dense regime with θd typically larger than
0.2. For variants of the two-fluid model equations, see also [26, 40].

The Eulerian description of two-phase dispersed flows (at the mixture level)
using the two-fluid model, although approximate, has proven to be computa-
tionally efficient; for an example of computing the sedimentation process, see
[41]. The two-fluid model in the SPH implementation is considered in Sec. 2.4.

2.2 Brief presentation of SPH

For an authoritative presentation to the SPH method, the books [39, 42] may
be referred to, along with general reviews [32, 43–47] and references therein.

As a brief introduction: SPH is one of the particle-based, meshless
approaches in computational mechanics. It originated in astrophysics to deal
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with large-scale, variable-density systems in unbounded space. Over the years,
the (basically) Lagrangian nature of SPH and its conceptual simplicity has
attracted attention beyond its native astrophysics. The method has become
increasingly popular in the scientific community for the last 20+ years or so.
It continues to be developed as an alternative modelling tool for a wide range
of problems in the macroscopic mechanics of continua, including multiphase
flows, complex fluids and multiphysics phenomena, granular media and solid
mechanics [45]; it has also been extended to the mesoscopic level [48, 49].
The word ”hydrodynamics” in the SPH acronym refers to the hydrodynamic
(continuous medium) level of description, even when referring to dusty gas
applications. Actually, the name “Smoothed Particle Applied Mechanics”, pro-
posed in the literature, would much better characterise it but this is unlikely
to be changed; this might be due to the misfortunate acronym but, first of all,
due to the fact that “SPH” is already well established.

Fig. 1 The SPH discretisation concept; the dash-lined circles show the kernel range for
particle-particle interactions. A single-phase case (left picture): SPH averages computed at
the location of particle a applying the summation interpolants over neighbouring particles
b (red) located within the kernel range. Other particles (gray) do not enter the summation
formulae. The two-fluid model (right picture, cf. Sec. 4): two particle sets represent the
interpenetrating continua, say water (blue particles denoted as a, b) and sand (black particles
denoted as i, j).

In SPH, the flow continuum is discretised by using particles. The particles,
which carry all necessary information about flow variables, can be thought of
as Lagrangian fluid elements. They undergo advection in physical space, are
assigned a volume, but are not deformable (contrary to the true fluid parcels).
The pressure and viscous forces are represented as particles interaction forces
(see below). Hence, for such a model of Lagrangian fluid element the problem
of distortion (that can become arbitrarily large with time) is avoided.

SPH approach, as its name indicates, makes use of smoothing in space
applied to variables related to particles. To explain this idea, consider a
function A(x); it can be approximated by an integral interpolant AI(x)

AI(x) =

∫
A(x′)W (x− x′, h) dx′ (6)
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where A(x′) are values of the function at points x′ and W is a weight-
ing function (a so-called kernel) with a parameter h that can be thought of
as a smoothing length. The approximation error is kernel-dependent, with
AI(x) − A(x) = O(h2∇2A). The kernel is usually chosen as a sufficiently
smooth function with compact support to limit the sum to neighbouring par-
ticles only. It satisfies the normalisation condition and in the limit of small h
tends to the Dirac delta; then, the approximation in Eq. (6) becomes exact.
Various proposals have been advanced in the literature: the Gaussian function,
regular or spline polynomials (the Wendland kernel is a popular choice [50]).

In particle methods, a fine-grained and differentiable representation of A
is introduced. The integral interpolant, Eq. (6), becomes then a discrete, or
summation, interpolant AS(x) defined by a sum over particles b located in a
certain neighbourhood of x, with the volume element expressed by the specific
volume (the inverse of the particle number density): dx′ → dm/ρ(x′). The
spatial derivatives are computed in a similar way

AS(x) =
∑
b

mb
Ab

ρb
W (x− xb, h) , ∇AS(x) =

∑
b

mb
Ab

ρb
∇W (x− xb, h) (7)

where the index b denotes the values at the locations xb, mb is the particle
mass, ρb is fluid density at particle location. The summation is limited to
neighbouring particles identified by the range of the kernel function (Fig. 1a).
It is a smooth function (hence the method’s name) of compact support whose
size, or length scale, roughly determines the spatial resolution of the approach.
Another length scale is determined by the mean interparticle distance ∆r. it
also affects the method’s accuracy and stability.

In mesh-based finite difference or finite volume spatial discretisations, var-
ious algebraic formulae are possible, of direct impact on the properties of the
resulting discrete spatial derivative operators. The same applies to SPH: the
formula for gradient provided by Eq. (7b) is not unique. As amply discussed
in the monographs of the subject, e.g. [39], symmetric and anti-symmetric
expressions can be derived for ∇AS ; the starting point is the identity ∇A =
∇ ((Aρm)(ρ−m)), where m is an integer, and the differentiation rule of the
product applied to this identity. A convenient discretisation of the pressure
gradient term in Eq. (2) is implemented in Eq. (8).

Using the above-presented formalism, the whole set of evolution equations
governing the flow are expressed in the SPH approach. In other words, the
dynamics of the system results from a certain form of particle interaction. For
viscous flows, the momentum equation in the SPH formalism writes

dua

dt
= ga −

∑
b

[
mb

(
pb
ρ2b

+
pa
ρ2a

)
∇aWab − Πab

]
(8)
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where ∇aWab = ∂W (xa − xb, h)/∂xa, xab = xa − xb, ga = g(xa), and Πab is
the viscous term

Πab = mb
(νaρa + νbρb)xab · ∇aWab

ρaρb(x2
ab + η2)

(ua − ub) (9)

see Morris et al. [51]. On the RHS of Eq. (8), the external force field and
particle interaction forces are distinguished. The system of governing equations
includes the advection formula and the SPH-discretised continuity equation,
Eq. (1)

dxa

dt
= ua (10)

dρa
dt

=
∑
b

mb (ua − ub)∇aWab . (11)

Another expression of mass conservation in SPH goes through a straightfor-
ward density computation applying Eq. (7a):

ρa =
∑
b

ρb
mb

ρb
Wab =

∑
b

mbWab . (12)

As pointed out by Vila [52], by differentiating this formula, Eq. (11) is
retrieved.

The system of governing equation may be complemented by an equation
of state. Even in (nearly) incompressible flows, the weak compressibility (WC)
approximation is often applied with Eq. (3) utilised as the equation of state.
It was also used (in a modified form) to model natural convection [53].

In incompressible flows, the role of the pressure is purely kinematic, not
thermodynamic. So, for truly incompressible approach (ISPH), an elliptic
pressure correction equation was proposed [54] to assure the zero-divergence
condition of the velocity field. However, in Lagrangian particle methods there
is no a priori guarantee that the density field (computed out of particle loca-
tions) will remain uniform. Consequently, it was proposed to solve two Poisson
equations for pressure corrections in order to preserve uniform density and
solenoidal velocity fields [55]. Incompressible SPH has been amply addressed
in [56, 57]. Using the ISPH approach with an appropriate form of particle
boundary conditions, viscous incompressible flow cases and flows with internal
interfaces have been computed.

At this point, let us reiterate that the SPH discretisation applies to the
fields of relevant variables. Therefore, when analysing the computation results,
the “fine-grained” structure of the solution should be understood and inter-
preted in terms of a (discrete) field. This is illustrated in Fig. 2 (the actual
flow case [58] will be introduced and detailed in Sec. 3.2): the deformed liquid
column, or filament, should rather be perceived as a smoothed solution (right
plot) without bothering too much about nicely-rendered particles (left). They



Springer Nature 2021 LATEX template

10 SPH modelling of multiphase flows

are assigned some volume (small spheres visible on the plot) but, actually, they
represent interpolation points.

Fig. 2 Multiphase SPH simulation
of the Rayleigh-Plateau instability.
Left picture: the positions of SPH
particles (only the liquid phase is
shown). Right picture: the liquid-
gas interface location corresponding
to the mid-isosurface of the phase
indicator (c = 0.5, interpolated
from particles on a uniform grid).
Reproduced from [58].

Following the brief overview of the SPH literature, let us tentatively
summarise the more important advantages and drawbacks of the approach.
Starting with the single-phase flows: the statement that SPH is self-adaptive,
or that “resolution follows matter” in strongly compressible systems, has rather
important consequences in astrophysics that go sometimes overlooked: exten-
sion to incompressible and weakly-compressible flows in bounded domains (for
many typical CFD problems) is by far not straightforward despite a conceptual
simplicity of the approach. In multiphase flow simulation using Lagrangian
SPH, an often reported advantage is no need for interface reconstruction
neither any special treatment of topological changes. Concerning the known
drawbacks of SPH, they refer to some rather fundamental properties of numeri-
cal methods: consistency [59], convergence [60], accuracy of the approach along
with its computational complexity as well as the numerical implementation
issues, and adaptive particle resolution (APR). In other words: the mesh-free
feature of SPH comes at a price of accuracy degradation, particle noise and
0th order consistency unless remedies are applied; an initially regular particle
distribution is sometimes advantageous, sometimes not [61], so a relaxation of
particle positions may be required.

Concerning the most computation-greedy part of the SPH algorithm, i.e.
the sums involving loops over particles, an efficient identification/sorting of
neighbours in particle-particle interaction terms, see Eqs. (8) and (10)–(12), is
crucial. The structure of so-called linked lists has proven very useful [62]. For
recent improvements on neighbour lists for GPU computing, see [63].

Boundary conditions (BC) in SPH can be formulated in terms of particles
(see Fig. 3 for two of the BC variants): for boundaries limited to plane walls,
the so-called mirror (or ghost) particles may be used. The idea is to ascribe
respective quantities to such particles so that the imposed boundary condition
(in terms of a value or gradient) is approximately satisfied at the wall (when
computed from the summation interpolant). In practice, referring to the left
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Fig. 3 Some variants of boundary conditions formulated in SPH: a) using ghost (mirror)
particles: the positions of SPH particles (•) and ghost ones (◦); b) using dummy particles
(blue colour) that correspond to a wall.

panel of Fig. 3, for a no-slip wall moving with velocity uw (in particular, zero),
the velocity of each ghost particle is readily determined from u′

b = 2uw − ub.
Such “ghosts” (see again particles b′ in the figure) take part in the summations
but are not evolved; as a matter of fact they are not stored in memory but con-
tribute “on the fly” to the computation of the RHS of Eqs. (8)ff. and other sums
[54, 55]. This type of BC has recently been applied also to study wetting phe-
nomena [64]. It can be extended to handle right-angled boundaries (corners)
[57], or cuboid domains in more general terms, which is sufficient for a num-
ber of geometrical setups but definitely not general. A rather universal class of
BC, i.e. able to simulate even complex geometries, are expressed through fixed
layer of boundary particles (called dummies or again “ghosts” in a number of
papers), see particles coloured in blue in the right panel of Fig. 3; the pres-
sure and velocity of these wall particles are suitably set to simulate/respect
the imposed boundary condition [51, 65]. Another category are the so-called
wall particles: a single layer of them is located exactly on the boundary [39]
to exert a repulsive force on the “true” particles that are evolved. A fairly
recent implementation of BC in terms of SPH are the so-called unified semi-
analytical wall (USAW) boundary conditions that, exploiting the incomplete
kernel properties and the resulting relationships, are suitable for boundaries
represented by line sections [66]. The USAW type of BC has also been applied
to turbulent [67] and multiphase flows [40]. For an SPH implementation of
open BC, see [68].

As the bottom line on particle boundary conditions: the meshless nature
of SPH is sometimes invoked as advantageous for the treatment of complex
geometries; however, the proper BC statement in a general case is not evident.
The issue remains open and has been identified as one of the Grand Challenges
by the SPH research community [69].

Concerning the adaptive particle refinement (APR), or variable resolution
in space, this is another one of the Grand Challenges. SPH is not naturally
suited for APR, contrary to the adaptive grid techniques (adaptive mesh refine-
ment) that are well mastered for Eulerian solvers. Over the years, several
variants have been proposed. In the astrophysical origins of SPH, with the
“resolution follows matter” motto, the kernel size dependence of h = h(ρ) was
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a natural way to deal with adaptivity. The SPH equations needed to be com-
plemented with terms involving ∇h(x). With the advent of SPH applications
in fluid dynamics, including (nearly) incompressible flows, the ideas appeared
of either increased resolution is some predetermined areas or of a truly adap-
tive (dynamic) one, i.e.: (i) particle splitting (fission) in regions of interest for
locally-increased accuracy and (ii) their coalescence (fusion) when no longer
needed (for the sake of computing time and memory constraints), see [70–78].
Generally, the APR involves considerable programming complexity and, in
some variants, it is applied on a case-per-case basis. A development of a mul-
tilevel APR was recently published in [78]. To complete the picture, we need
to mention earlier techniques of remeshing of particle distribution [79] that
aimed to reduce the solution errors induced by Lagrangian particle advection,
in high-shear zones in particular.

Let us note that another Lagrangian meshless approach, closely related to
SPH yet probably less popular, is the so-called moving particle semi-implicit
(MPS) method, originally developed for incompressible, free surface flows. In
MPS, gradients are computed using a finite difference formulae representation
and the kernels (not the kernel gradients, unlike in SPH). Moreover, kernels
are singular at the origin, which helps to preserve particles from clustering.
A variety of technical developments for multiphase flows in MPS have been
made recently, see for example [80–84]. For an overview of MPS, the reader
may refer to [85] and bibliography therein; for a selection of recent works on
MPS for coastal engineering, see [21, 33, 86].

2.3 SPH model of interfacial flows

In its basic variant considered here, SPH is Lagrangian in nature. As already
mentioned, its advantage over Eulerian approaches for multiphase flow com-
putations lies in the fact that free-surfaces (or two-phase interfaces) are dealt
with in a rather straightforward manner [31]. More precisely, the shape of the
interphasial surface can be determined explicitly from positions of the particles
of different phases.

Separated two-phase flows may feature considerable differences in the mate-
rial properties of the phases, such as density or viscosity, across the interface.
At the discrete level, steep gradients may result. Generally, high density ratios
may be a challenge for multiphase methods (PFM for example); attention
is also needed in SPH [77, 87]. Free-surface flows may not be straightfor-
ward to handle either. In particular, referring to the SPH method, Eq. (12)
is not suitable for computations of the free-surface flows, as the straightfor-
ward summation formula would lead to underestimation of the density in the
kernel-range vicinity of the surface. Concerning interfacial flows, this formula
would result in the undesired smoothing of density on the interface. To preserve
sharp gradients there, Hu and Adams [49] applied the summation formula for
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density computation in the form

ρa = ma

∑
b

Wab . (13)

Consequently, the density field is represented by the spatial distribution of
particles and not by their masses: near the interface, the density computation
in one phase is not affected by the density (or respective particle masses) of
the other phase. However, this formula is suitable for interfaces and not for a
free surface as it is based on a (nearly) uniform distribution of particles within
the kernel range.

The pioneering works in multiphase SPH include [49, 88–90]. Concerning
simplified two-phase flow modelling at the mixture level (no account for the
very structure of the phases in terms of interphasial surfaces), the first attempt,
again in the context of astrophysics, dates back to Monaghan and Kocharyan
[91, 92].

A physically-sound account on surface tension forces is of paramount
importance in modelling of multiphase flows. At the microscopic level, surface
tension results form molecular forces, so the idea appears to propose a repre-
sentation of particle-particle interactions in the SPH formalism (J.-P. Minier,
priv. comm.). A cohesive pressure term to model surface tension effect was
advanced by Nugent and Posch [90] and the pairwise force model by Tar-
takovsky and coworkers [93–96]. A difficulty with such a meso-scale approach
is the calibration of the coefficients in the formulae for repulsive-attractive
forces so that they would correspond to a given surface tension coefficient σ
at the macroscopic level.

The surface tension term appearing in Eq. (2) has been regularised in
SPH by Morris [89] who adopted the Continuum Surface Force method (CSF)
originally proposed by Brackbill et al. [97]. The surface tension forces fs (per
unit area) are converted into a force per unit volume fst = fsδS where δS is a
suitably chosen surface delta function and fs = σκn̂ is the surface force, n̂ is
the unit vector normal to the interface and κ = −∇· n̂ is the local curvature of
the interface; σ is the surface tension coefficient. Using the so-called colour, or
phase indicator, function c (c = 0 for the first phase and c = 1 for the second
one), n̂ is found from

n̂ =
n

|n|
=

∇c

|∇c|
. (14)

In the SPH formalism:

na =
∑
b

(cb − ca)∇WabΩb (15)

and
κa =

∑
b

(n̂b − n̂a)∇WabΩb . (16)
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A macroscopic formulation alternative to CSF exploits the concept of
continuous surface stress (CSS) [98].

A simple benchmark to test the implementation of surface tension forces
in terms of the CSF model is the spherical droplet (or circle in 2D). The nor-
mal vectors and the local curvature can also be computed by using in Eq.
(15) a smoothed field c̃ of the phase indicator [89]. It is clearly seen from Fig.
4 (left panel) that the procedure of colour smoothing has a direct impact on
the velocity magnitude level, in particular at the interface, which manifests
itself through the so-called parasitic currents (still of concern in numerical
approaches, including in SPH [99]). The pressure profile across the droplet
is shown in the same figure (right panel) as rather well represented. The
additional smoothing of the colour function naturally makes the intrephasial
transition region thicker. However, the effect of extra smoothing is not always
so beneficial. Considering a system of two neighbouring droplets (Fig. 5): spu-
rious coalescence will set in when the initial distance of two droplets (precisely,
the size of the gap between them) becomes smaller than the kernel size or
twice this value when the smoothed colour c̃ is used in Eq. (15).

Fig. 4 A circular (2D) drop at equilibrium. Velocity magnitude with and without color
function smoothing (left, half/half). Pressure profile over a droplet cross-section, normalised
by the Young-Laplace jump at the interface (right).

The spurious micromixing, noticed also in Fig. 6 (upper plots), is due to
the Lagrangian nature of the SPH approach where particles are not a priori
prevented from wandering off into the bulk of the other phase. The spurious
fragmentation of the interface was observed in the simulations of bubbles rising
in liquids with a low surface tension coefficient. The idea elaborated by Szewc
et al. [100] was to introduce a corrective (repulsive) force on the interface which
had similar structure to the surface tension force in CSF model:

Ξa =
ϵ

ma

∑
b

cb ̸=ca

(
1

θa
+

1

θb

)
∇aWab(h) (17)
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Fig. 5 Two droplets in a side-by-side arrangement: spurious coalescence due to smoothed
phase indicator in SPH (left plots), no coalescence (right plots).

Fig. 6 Oscillating droplet, two time instants: impact of the interface correction procedure.
Upper plots: no correction (micromixing visible). Lower plots: correction applied.

where ϵ = ϵ(h) is the interface correction coefficient; ϵ was shown in [100]
to scale as h−1. Please note that the sum in Eq. (17) extends only over the
particles of the other phase (not that of particle a). The force term Ξ is added
to the RHS of the discretised momentum equation, along with the surface
force term fs. As noticed in the benchmark of oscillated droplet, Fig. 6 (lower
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plots), the computations with the correction applied (ϵ = 0.1) do not exhibit
now the artifact of micromixing.

A selection of benchmarks and applications in 2D and 3D have been
considered using the multiphase SPH formalism, including the Rayleigh-
Taylor instability, rising bubbles (single ones and coalescing pairs) or droplet
collisions, see, e.g. [49, 88, 101–108].

A separate category are free-surface flows when the presence of the second,
lighter phase (usually gas) can be neglected because of the insignificant influ-
ence on the flow dynamics, at the same time reducing the computational effort.
In SPH simulations of this flow category, a particular attention is needed close
to the free surface to remedy for the incomplete particle sums within the ker-
nel range. The so-called Shepard kernel [109] has been a popular choice. Other
specific features of SPH applied to such flows are detection of free surface and
surface tension modelling (when necessary) [30, 31, 76, 110–112]. Judging on
the literature published to date, free surface flows in the environmental context
have been a rich field for SPH applications.

The idea of the so-called δ-SPH model [113, 114] has been to add a numer-
ical diffusion term to the RHS of the continuity equation, Eq. (11). In the
simplest form, it writes:

2δhcs
∑
b

(ρb − ρa)
rba · ∇aWab

r2ba

mb

ρb
(18)

where δ is a numerical parameter, often taken as O(10−1). It is applied in
the WC formulation to alleviate the resulting numerical noise in the pressure
field due to the non-uniform distribution of particles (hence, the density); see
also Fig. 18 in Sec. 4. The δ-SPH continues to be worked on and applied or
extended in many ways, see [115–121].

The “continuum level equivalent” of the δ-correction, Eq. (18), is the pres-
ence in Eq. (1) of the extra term (δhcs)∇2ρ where the diffusion coefficient is
proportional to hcs. Interestingly, referring to physical description (and not
just to numerical remedies), the presence of a diffusion term in the continu-
ity equation has been an issue in the literature and a few attempts have been
put forward for variable-density viscous flows, see [122] (and the references
therein) for a recent discussion, and a WC model proposal utilising the mass
diffusion formulation [123].

2.4 SPH model of dispersed flows (two-fluid approach)

We present the SPH implementation of the two-fluid model where the carrier
phase and the dispersed particles are treated as two interpenetrating continua
(Sec. 2.1.2). Again, such models appeared first in astrophysics to handle gas-
dust systems [92, 124]; more recent works are [125, 126]. The general concept
of the present implementation relies on the introduction of two separate sets
of SPH particles for the fluid and disperse phases (Fig. 1b); though, in the
work of Shi et al. [28] only one set of particles was used. We note in passing
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that dense suspensions [127, 128] or granular flows [24, 129] call for a different
description.

The two-fluid system is governed by the continuity equations formulated
in terms of the volume (bulk) densities of the phases, ρ̂f and ρ̂d, and the
momentum equations coupled due to the drag force interaction terms, Eqs. (4)–
(5), limited to fairly dilute suspensions. The equations are suitably discretised
in the WC-SPH setting using two particle classes [26, 40, 130]. We keep the
original notation of Monaghan and Kocharyan [92]: the particles representing
the carrier fluid will be denoted with indices a and b, while i and j will be used
for the SPH particles representing the disperse phase. We recall that the latter
particles are understood here as parts of a continuum, and not the real physical
entities (like single grains of sand). Since free-surface flows are involved here,
the SPH formalism proposed by Colagrossi and Landrini [88] is applied

dρ̂a
dt

= −ρ̂a
∑
b

mb

ρ̂b
uab∇aWab (19)

dρ̂i
dt

= −ρ̂i
∑
j

mj

ρ̂j
uij∇iWij (20)

dua

dt
= g +

∑
b

mb

(
θapa + θbpb

ρ̂aρ̂b
+ Πab

)
∇aWab

−
∑
j

mj

(
θjpa
ρ̂aρ̂j

)
∇aWaj −D

∑
j

mj
Kaj

ρ̂aρ̂j
(uaj · r̂aj) r̂ajWaj (21)

dui

dt
= g +

∑
j

mj

(
θipi + θjpj

ρ̂iρ̂j

)
∇iWij

−
∑
b

mb

(
θipb
ρ̂iρ̂b

)
∇iWib −D

∑
b

mb
Kib

ρ̂iρ̂b
(uib · r̂ib) r̂ibWib (22)

where uab = ua−ub, etc., and r̂ are unit vectors of relative positions; Π is the
viscous stress tensor of the carrier phase and D (2 or 3) is the dimensionality
of the problem. The momentum coupling term is readily identified by the pairs
of indices referring to different phases. as in Kaj and Kib. For the actual form
of the drag coupling term, a specific double-hump kernel used to compute the
interphase couplings (Waj , Wib in the discrete notation), the equation of state
applied and further details, see [130]. Please note that Fig. 1b is incomplete
for the sake is readability: there is one kernel range centred at particle a of
the carrier phase: it involves the sums over (a, b) and (a, j) contributions;
there should be another kernel range plotted there, centred at particle i of the
disperse phase to involve the sums (i, j) and (i, b).

The system of Eqs. (19)–(22) is supplemented with the respective advection
formulae for the two particle classes, a and i, cf. Eq. (10). Unlike in Sec. 2.1.2,
in the present Lagrangian approach there is no risk of ambiguity in the symbol
d/dt as it stands now for the ordinary (time) derivative of particle variables.
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The quantities of interest are the fields of velocities and the volume fractions
of the phases. The discrete equations are solved in the usual way, with an
artificial equation of state for the carrier phase.

3 SPH of interfacial flows: selected results

3.1 Interfacial area estimation

To identify and discern among flow regimes, as in a two-phase pipe/channel
flow, and also to model them at the averaged level of description, the interfa-
cial area density ([m2/m3]) is a useful quantity. As it transpires from Fig. 7,
for the same volume fraction of a phase, the flow structure may differ. Also,
a transition from one flow regime to another may occur in the simulation,
depending on flow conditions. In particular, the transition from slug to churn
flow will occur with the increase of superficial velocities of the phases.

Fig. 7 Gas-liquid flow patterns in a channel, SPH simulation: slug (left), churn (right).

Here we recall a convenient technique within SPH to follow the evolution of
the interface area (in 3D, or interface length in 2D simulations) [131]; it is used
next in Sec. 3.3. The interface area S in a domain Ω can be expressed through
the surface delta function δS(x). The formula and its SPH approximation read:

S =

∫
Ω

δS(x)dΩ , S ≈
∑
a

|na|
ma

ρa
(23)

where the surface delta function has been represented by |n|, i.e. the length of
a normal vector (like used in the CSF model of the surface tension); it attains
a maximum at the interface. The expression (23), computed in a SPH code at
virtually no extra cost, allows one to estimate the interfacial area S for any
topology of the interface.

As an illustration, a simple benchmark case is the deformation of a liquid
cube, subject to surface tension forces. In the course of time, the surface of the
“droplet” will evolve (not shown, except for the initial and final stages seen in
Fig. 8). The process is illustrated in the same figure (right panel). The surface
area, suitably normalised, is then checked against the analytical value at the
steady state (a sphere) [131, 132]. For L3 being the domain size and a cube of
edge l = 0.6L, the surface of the resulting sphere will be S = (36π)1/3l2. It is
noticed that the computation error stays at a few-percent level.
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Fig. 8 Cube-to-sphere deformation. Initial configuration (left); final configuration (mid-
dle); only SPH particles of liquid are shown. Evolution of the interface relative area (right);
three different resolutions, solid line denotes the analytical value [131].

3.2 Liquid column disintegration

The Rayleigh-Plateau (RP) instability is a convenient benchmark case for
two-phase flow computations to observe a topological change due to the dis-
integration of a liquid column. In Lagrangian meshless methods, in particular
SPH, the rupture (break-up) or coalescence are dealt with using particles
with no specific treatment, unlike in some Eulerian methods where a break-up
criterion is imposed beforehand to stop the adaptive grid refinement.

Fig. 9 Multiphase SPH simulation of the Rayleigh-Plateau
instability. Evolution of the interface shape: snapshots at
t+ = 0, 1.49, 3.23, 4.49, 6.49 (from top to bottom, left plot).
The disturbance growth (upper plot, the relative maximum
radius of the liquid column): results compared with the VOF
of Dai and Schmidt [133]. Reproduced from [58].
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The computed evolution of the liquid filament is shown in Fig. 9; multi-
phase SPH has been applied in 3D [58]. The SPH results are demonstrated
to rather correctly predict the time record of the maximum thickness of the
filament (right panel of the figure), as well as the time instant of the column
disintegration (Fig. 10) in comparison to the VOF reference computation [133].
The very break-up time is estimated from the phase indicator (colour function)
profile c(x) computed at the symmetry axis. It is taken as a time instant when
the value of c(x) drops to 1/2 at some location. However, a detailed 2D study
(not shown) has confirmed the need of a finer resolution, or (even better) the
adaptive particle refinement, for the accurate prediction.

Fig. 10 Multiphase SPH simulation of the Rayleigh-Plateau instability: estimating the
break-up time. The interface shape at some time instant (left plot) and the phase indicator
profile along the symmetry axis of the liquid filament (right plot). Reproduced from [58].

3.3 Gas-liquid flow patterns in channel

The analysis of flow structures in internal flows is of importance to predict
hydraulic losses (and a necessary pumping power), as well as heat transfer
(where relevant). Such studies are of direct interest for transportation systems
of crude oil (with presence of water and gas in pipelines); they can also be
motivated by thermal-hydraulic problems in nuclear engineering. We obtained
first, rather qualitative SPH results [131] for a 2D liquid-gas system (the den-
sity ratio of 1000) at coarse resolution using the simplest, periodic boundary
conditions at the channel inlet and outlet. Then, another 2D analysis was per-
formed in [134]; it concerned a gravity-affected, two-phase flow (the density
ratio was equal to 5) in horizontal pipes with inlet and outlet conditions. In
their comprehensive study, the Authors reproduced four different flow regimes
(mist, dispersed, intermittent and stratified) as well as the transition processes
from one flow pattern to another.

Using the technique of interface area (or length) tracking in SPH, see Sec.
3.1, we are able to track the changes in flow patterns or regimes in a vertical
channel flow (no stratification due to gravity). Also, in the course of SPH
simulation we checked whether a statistically steady state was reached for
a given flow pattern (slug, annular and churn, see the left part of Fig. 11)
without a need to recourse to graphical representation of phase distribution in
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Fig. 11 Gas-liquid flow patterns in chan-
nel (left panel): slug (top), annular (centre),
churn (bottom). Right panel: flow regimes
obtained from SPH simulation (symbols)
in superficial velocities coordinates. Lines
and letters mark generalized flow map from
Berna et al. [135]; B - bubbly, DB - dis-
persed bubbly, S - slug, C - churn, A -
annular. Reproduced from [131].

Fig. 12 Liquid phase distribution in SPH simulation of annular flow, impact of micromixing
correction: not applied (top), and with ϵ = 0.5 (bottom); liquid particles are in blue, gas
particles omitted for clarity; Reg = 100,Rel = 1000.

the flow domain. Finally, this technique has allowed us to plot the flow regime
maps out of SPH computations [131]. As seen in Fig. 11 (right panel), the
agreement with a reference (experimental) map [135] is quite good for slug and
churn regimes, less so for annular flow. The latter discrepancy is probably due
to a rather coarse SPH resolution, 2D simulations only, and surface tension
model imperfection. A natural development direction for this kind of analysis
would be to go for a higher resolution simulations in 3D (computer resources
permitting), yet keeping in mind the constraints imposed by the fully-resolved
simulation.

Following this experience, an additional study was performed of annular
flow with a higher gas volume fraction and initial conditions chosen specifi-
cally for this regime. The SPH computation resulted in a qualitatively correct
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Fig. 13 SPH simulation of annular flow, droplet entrainment mechanisms: roll wave (left),
liquid impingement (right). Liquid droplets in blue, gas particles are omitted for clarity.

Fig. 14 Instantaneous film thickness obtained from 2D SPH simulations of annular flow
compared to the experimental correlation of Henstock and Hanratty [137] (black line). The
micromixing correction parameters: ϵ = 0 (left graph) and ϵ = 0.5 (right graph).

prediction of the so-called roll wave and liquid impingement mechanisms [136],
leading to entrainment of teared-off droplet into the core of the flow, see Fig.
12 and zoomed-in sequences from the solution, Fig. 13.

To validate the SPH simulations of annular flow against experimental
data, the liquid film thickness δ along the walls (normalised by the plane
channel hydraulic diameter D) was computed and compared with some exper-
imental correlation. The one of Henstock and Hanratty [137], in the form
δ/D = f(ρg, ρl, µg, µl,Reg,Rel), was established for gas-liquid (g-l) flow in a
pipe. The outcome is shown in Fig. 14 and the agreement is, a bit surprisingly,
better for the simulation with no micromixing correction. This may suggest
that more insight is needed or even some reformulation of the correction.

3.4 Wetting phenomena

To account for the presence of a third phase in interfacial flows, be it another
immiscible fluid or a solid surface of predetermined wettability, and the result-
ing triple points (lines) and contact angles, the surface tension modelling needs
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to be suitably extended [138–141]. An SPH model for wetting proposed in [64]
bears some similarity to the one developed by Breinlinger et al. [139]; another
recent proposal [142] has been successfully implemented in the context of free-
surface SPH. However, because of the liquid droplet interaction with a gas
flow, we rather opted for a multi-phase formulation. The main idea was to
apply the CSF model of the surface tension term with a modification in the
triple point region.

Fig. 15 Sessile droplet on a solid substrate: shape dependence on the contact angle θD.
Left panel: hydrophilic cases, right panel: hydrophobic ones.

As the first results, the droplet shapes on a surface were reported depending
on the contact angle θD that, grosso modo, determines the substrate wettabil-
ity, see Fig. 15. A quantitative outcome of SPH simulations of sessile droplets
is presented in terms of their height H and the size w of contact with the wall
(the droplet spreading area in 3D). Both quantities can be analytically deter-
mined in function of the initial radius R0 of the semi-spherical droplet placed
on the wall, the ratio of the gravitational to capillary forces expressed in terms
of the Eötvös number Eö = ρgR2

0/σ, and the contact angle θD. The results
are shown in Fig. 16 to agree with the asymptotic limit H∞ of droplet height
in no gravity case and with the analytical solution for w and H, respectively.

The model elaborated in [64] produced accurate results for the shape of
a sessile droplet on a horizontal surface for a wide range of imposed contact
angles (from 15◦ up to 135◦), both with and without gravity. Some modification
of the CSF model, meant to smooth the field of colour gradient, allowed us for
a more accurate representation of the normal vectors to the interface in the
vicinity of the triple point. Given this encouraging outcome on the one hand,
and a rather high computational cost overall on the other hand, SPH may be
exploited in microfluidics where wettability effects and free surface meniscus
govern the low-Re flow in minichannels, as in the lab-on-a-chip devices [143].

Finally in Fig. 17, results are reported from the multiphase SPH simulation
of a gas flow-driven droplet motion on a surface. They illustrate qualitative
differences between hydrophilic surfaces (the contact angle θD = 30◦) and
hydrophobic ones (θD = 120◦).
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Fig. 16 Sessile droplet shape: comparison of the SPH results (symbols) with analytical
solution (lines), 2D case. Left plot: surface tension and gravity dominated regimes for θD =
50◦. Right plot: no gravity case (Eö = 0). Reproduced from [64].

Fig. 17 SPH computation of droplet motion, driven by air flow, on a solid substrate. Left
panel: initial configuration (passive tracer stripes added to better illustrate the process).
Right panel: zoomed snapshots at a later time instant; smearing out (θD = 30◦ hydrophilic
case, upper plot) or rolling (θD = 120◦ hydrophobic case, lower plot). Reproduced from [64].

4 SPH of dispersed flows

As already discussed in Secs. 2.1.2 and 2.4, dispersed flows are only considered
here in the two-fluid approach. As a side remark: basically, the trajectory mod-
els could also be coupled to the carrier phase velocity field computed in SPH.
However, to the best of our knowledge no simulations of this kind have been
reported in the literature, in particular with the two-way momentum coupling.
Moreover, there is a priori no clear advantage of such an approach except, per-
haps, when point-particles of the disperse phase would originate from single
SPH particles (or small clusters of them) that left their bulk phase, as in the
annular flow case for example (Fig. 14, upper graphs); see also discussion in
Sec. 5.

The numerical modelling and simulation of sediment transport, often done
using the two-fluid models, remains a subject of active research. It is of partic-
ular interest in environmental hydraulics and hydro-engineering. A practically
important application is the prediction of sand deposition or sea-bed scour in
coastal areas, accounting for the interactions with surface waves. As an alter-
native to better established grid-based approaches [144], there have been a
number of SPH applications to date [21, 26–29, 145]; another one [130, 146, 147]
is reported here.
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The first case studied was a continuous discharge of sediment into a static
water tank. The SPH simulation setup was 2D and the initial condition is
illustrated in Fig. 18 (the upper left panel); the sediment phase (black) enters
at the free surface. At a later time instant, the carrier phase velocity (shown
in the upper right panel) features characteristic vortical structures due to the
flow entrainment by falling sediment. The disperse phase at the same instant
(lower plots) is shown together with the water velocity magnitude, juxtaposed
with the pressure distribution; only one-half of the computational domain is
shown because of the solution symmetry. Although the first simulation results
[130] showed a qualitative agreement with experimental data, some issues of
the two-fluid SPH formulation were identified. The biggest one was the sta-
bility loss over long periods of time and an excessive numerical noise in the
pressure field. It was significantly reduced by utilising the δ-SPH model (Sec.
2) which consists in adding a diffusive term to the continuity equation of the
carrier phase [113]. In the improved formulation, the pressure noise effect has
been mitigated [146, 147] as seen in Fig. 18 (bottom right panel). Moreover, a
reasonable similarity was noticed (not shown) between predicted and observed
in experiment vortical structures driven by the falling sand and the water-sand
interplay.

Fig. 18 The SPH simulation of sand discharge into a water tank. Upper left panel: the
initial condition. Upper right panel: vortical structures of sand-induced water flow. In the
left half of the bottom plots, sand particles are coloured in black and water particles are
coloured with their velocity magnitude. In the right half of the plots, water particles are
coloured with the hydrostatic pressure value assigned to them. Left bottom panel: basic SPH
variant, right bottom panel: δ-SPH model applied [146].

The second problem studied was sediment transport in an oscillatory flow
in a wave flume. In the SPH simulation, a generic wave-maker was used, i.e. the
moving wall block on the right side of the domain. The flow was generated over
a flat and wavy (rippled) bed while sediment was continuously poured through
the free surface as in the previous case. The outcome of the two-fluid SPH
computation of sediment dispersion driven by the wavy free surface in a water
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flume is shown in Fig. 19; the sediment is black and the water SPH particles
are coloured with their velocity magnitude. For testing purposes, the material
density ratio was ρd/ρf = 1.1. Only fairly dilute suspensions were considered
(θd < 2%). The intended goal was to compare SPH computational results with
experimental findings on sediment concentration, near-bed transport velocities
and deposition patterns. The possibility of coupling the two-fluid SPH frame-
work for sediment-laden flows with a suitable model of deformable granular
bed [24] remains to be considered.

Fig. 19 SPH simulation of sand dumping into a wave flume. The notional sand particles
are coloured in black and the water particles are coloured with the value of their velocity
magnitude. Arguably, the increase of the sand settling speed drives the local motion of water;
this causes a ”necking” effect on the sand column which then widens due to the interaction
with the bottom. The green/greenish/blue solid block of SPH particles (in predetermined
motion) plays the role of a generic wave-maker.

5 Discussion: challenges in multiphase SPH

Phase changes represent an issue specific for multiphase flows. Basically,
numerical approach to it goes through a solution of the energy equation (we
have not detailed it here) with the latent heat term. Often, it is formulated
in terms of enthalpy that reflects the progress of phase transition (melting,
boiling, etc.); the temperature needs to be supplemented by the respective
phase fraction variable to uniquely define the state of the process. How-
ever, the particle nature of SPH causes a major problem for liquid-vapour
(and vice versa) phase change due to considerable change in density, typi-
cally for water ρl/ρv = O(103). Consequently, the mass or volume of an SPH
particle undergoing the phase change would evolve by this factor. The sit-
uation is generally better in solid-liquid phase transitions where, typically,
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ρs/ρl = O(1). Sometimes, the density variation upon solidification or melting
may even be neglected. Possible difficulties with this kind of processes come
from physics, including the onset of natural convection in liquid upon melting,
the formation of mushy zones (in particular for metal alloys), thermodynamic
non-equilibrium, mesoscopic-scale phenomena, discontinuity of material prop-
erties at the front of phase transition, etc. An early work on freezing in SPH is
due to Monaghan et al. [148] (no fluid motion, heat conduction only); Cleary
[149] modelled die casting processes; recent applications include drop impact
with icing [150, 151]. Some very recent papers on solid-liquid phase tran-
sition modelling are [73, 152–155]. Regarding the liquid-vapour transitions,
inherently difficult to handle, recent attempts have been reported for boiling
[156, 157] and cavitation [158].

Another challenge for multiphase SPH, already mentioned in the paper
(Sec. 2.3), is the spurious fragmentation of the interface. Then, the presence
of parasitic (spurious currents) is an issue also in the Eulerian approaches to
interfacial flows. In some of those methods (LS, PFM) appears also the problem
of phase mass loss. In SPH with predetermined masses of particles belonging to
individual phases, there is no such concern. However, in specific flow conditions
such as annular flow with droplets being teared off the wall film (Sec. 3.3,
Figs. 11 and 12), the small clusters or even single SPH particles detached
from their mother phase are no longer physically meaningful [175]. For violent
impact flows such as the dam break benchmark, such particles may appear but
are rather insignificant for the overall flow picture. Considering the internal
flows, in particular with periodic inlet/outlet, disperse-annular flow regimes
may feature many such particles present in the system for a long time. A set
of single SPH particles in a 2D pipe flow case has been identified as the mist
phase [134] but the authors (rightly) labeled it non-realistic. In our opinion,
a physically-sound SPH simulation of a disperse-annular flow should rather
accomodate the idea of point particles, otherwise well-known in the modelling
of turbulent dispersed flows [6]. Such particles would no longer be governed
by the SPH-type evolution equations; also, their deposition in the liquid film
and re-entrainment into the gas core would call for specific submodels.

Let us continue with some general remarks, not restricted to multiphase
flows only. Turbulence modelling and computation still remains a challenge. In
the realm of Eulerian approaches, the DNS (fully resolved simulations, no tur-
bulence model) is now well mastered as a tool. From the practical standpoint,
the insight offered by DNS remains limited by the problem size and computer
resources available. As the numerical methods used for DNS need to be of
high order for overall efficiency, the Lagrangian particle methods do not seem
to be a good choice here. There have been a few papers reporting turbulence
simulations using SPH [30, 67, 121, 159] but in several other works tackling
high-Re flows the turbulent regime is not explicitly addressed by a model;
instead, rather heuristic numerical diffusion terms are applied for a stable com-
putation. In our opinion, this merits more attention. The computational cost
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could be reduced by employing the LES approach (see [160] for a rough esti-
mate); however, as shown in [67], LES is problematic within SPH framework.
Notwithstanding this caveat, some recent works on LES were reported [161].

On a path to increase computational efficiency, GPU computations and
adaptive particle resolution are welcome by practitioners [81, 162, 163]. The
latter remains a challenge in SPH although recent progress has been reported;
see Sec. 2.2.

Concerning theoretical aspects of the SPH method, Hopkins [164] listed
a number of fundamental and general concerns (related to WCSPH as well):
suppression of certain fluid-mixing instabilities, appearance of high numerical
viscosity in nominally inviscid flows, introduction of noise in otherwise smooth
fields, and very slow numerical convergence. He then put forward a new pro-
posal based on a kernel discretisation of volume. Partly following these ideas,
Kajzer [165, 166] considered a more general class of particle weighted methods
[52, 164] and addressed some inherent limitations of the approach in terms of
its consistency and accuracy with respect to weakly-compressible models.

Recalling the famous statement of John Argyris (and a lecture title, back to
1965): “Computer shapes the theory”, this has also been seen in the develop-
ment of SPH, one of the reasons being its rather high computational cost. The
SPH approach, in particular in the WC variant, readily lends itself to a mas-
sive parallelisation because of explicit time advancement, no elliptic problems
to be solved, and independent loops over particles. The advent of Graphics
Processing units (GPUs) seemed to promise a breakthrough in this respect.
Although very useful, the (multi)GPU architecture faces a major difficulty
because of the SPH accuracy needs: many particle-particle interactions are
necessary within the kernel range as compared to the stencil size in the Eule-
rian methods. Inter-thread communication (low-bandwidth memory) is one of
the factors behind the SPH simulations still being computationally expensive
in general, when judged on the problems that can also be tackled using the
Eulerian methods. Moreover, large computational “stencils” are needed for
more accurate Lagrangian SPH, so the computations may be poorly scalable
in comparison to mesh-based methods.

The following table (Tab. 1) is intended to synthetically recall the mile-
stones in multiphase SPH formulation, already mentioned in Sec. 2, and to
tentatively identify the major challenges specific to such flows. The table is
by no means exhaustive (it may even lack proper credits and precedence) and
reflects a personal perspective of the authors.

Switching to a more optimistic note: over the years, many in-house SPH
solvers have been created, some of them as a result of collaborative research
work. There are a few that evolved into larger, multipurpose software pack-
ages for a broader users’ community. We briefly introduce a selection of them,
both open-source and commercial. A recent example of the former category
is an SPH-based multiphysics and multiresolution library SPHinXsys [167].
Among the first solvers to run entirely on graphic cards with CUDA plat-
form was GPUSPH; many references to papers reporting applications of this
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Table 1 SPH of multiphase flows: accomplishments and challenges.

Aspect treated description & reference(s)

consistent formulation discrete eqs.: continuity, momentum etc. [39, 49, 88]

weak compressibility sound speed of the phases (consistency) [88, 105]
noisy pressure field: δ-SPH [114–117, 120]

free surface flow general formulation [31, 76, 110]
surface detection & curvature [78, 111, 112]

surface tension modelling van der Waals [90], CSF [89], CSS [49, 89, 98]
pairwise forces [93, 94, 96]

micromixing artifact repulsive force at the interface [88, 100, 175]

wettability effects contact angle modelling [64, 90, 138, 139, 141]
dynamic phenomena (needs work) [94, 142]

phase transitions melting/freezing [148–151]
boiling/condensation (needs work) [156–158]

dispersed flow two-fluid model [26, 27, 40, 92, 110, 125, 130, 188]

other challenges boundary conditions [40, 51, 54, 57, 65–67]
(as in general SPH) adaptive particle resolution [61, 69–78]

software are provided on the website (gpusph.org). Another popular soft-
ware package, well suited for free-surface flows, is DualSPHysics [168, 169]
(website: dual.sphysics.org). PySPH is a recent, Python-based solver (web-
site: pythonhosted.org/PySPH), see [170, 171] and references therein; it is
unlike the previous ones that are written in intermediate-level programming
languages (such as C or C++). Python is a high level, versatile script lan-
guage of increasing popularity and PySPH is an open source framework for
SPH that supports parallelisation and dynamic load balancing. A very recent,
general-purpose oriented solver using WC-SPH is SPHydro [172]; it has been
reported in ocean engineering applications, in particular in the FSI con-
text (wave-structure interaction). As this is a rapidly changing field, other
solvers appear. An updated (for some time to come, hopefully), yet a non-
exhaustive list, is available on the webpage of the SPHERIC community
(www.spheric-sph.org/sph-projects-and-codes).

In the framework of weakly compressible approaches to fluid dynamics,
Clausen [173] put forward the entropically-damped artificial compressibility
(EDAC) method. It consists in solving a suitably formulated pressure evolution
equation (featuring a diffusive term that significantly damps the oscillations in
the pressure field) instead of finding it from the density through an artificial
(and usually stiff) equation of state. Let us note in passing that, unlike in the
classical AC methods, where the velocity becomes solenoidal upon convergence
at each time step (also in unsteady problems), the velocity field in EDAC is
not divergence-free. Therefore, as argued in [174], EDAC (notwithstanding the
acronym) belongs in fact to the class of WC methods. The EDAC model has
been successfully applied to wall-bounded turbulent flow computation [174]:
due to the purely parabolic (non-elliptic) type of the governing equations and
explicit integration schemes, it readily lends itself to parallelisation, including
on GPUs, resulting in a very good computational efficiency. The EDAC method
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was adopted in SPH by Ramachandran and Puri [171] and implemented in the
PySPH package; promising results were reported as compared to the standard
WCSPH model.

SPH is a particle approach, hence the problems appear of non-uniformities
of the density field computed out of particle positions (which effectively define
the particle volumes). Also the artifact of tensile instability manifests itself,
in particular in WC SPH, and various remedies to it have been put forward,
e.g. [117]. Still due to its particle nature, a specific feature of the multiphase
SPH is that, close to the interphasial surface, some particles of one phase may
migrate into the other phase. This was also observed in simulations of annular
flow where the droplets became teared off from the liquid-gas interface [132].
Single SPH particles do not seem to be physically meaningful [175, 176]. It is
a standard practice in SPH to ignore such (small clusters of) particles, which
results in a mass loss and inadequate treatment of the flow physics. In our opin-
ion, further work is warranted to possibly model these particles as Lagrangian
objects that would move, according to their equation of motion, in the bulk of
the other phase. In this context, let us note a recent work on the Eulerian-VOF
method coupled to the Lagrangian tracking of droplets or bubbles produced
from interface breakup, together with a “transition algorithm” to re-integrate
those elements into their mother phase [177].

Referring to specific application areas, we are of the opinion that fluid-
structure interaction (FSI) problems conveniently lend themselves to modelling
that would involve SPH [178] (at least as one part of the solver), both in the
context of rigid bodies as well as deformable ones. As an example of such com-
putation, Ulrich et al. [74] reported a comparison of multiresolution SPH and
VOF simulations of a rigid cube plunging into water, so necessarily involving
a free surface (Fig. 20). Clearly, there is a reasonable agreement of the two
numerical approaches, also with the experimental evidence.

Among diverse application fields of SPH, the environmental, hydraulic
and ocean engineering [172] appear to be important, due to the free sur-
face feature often combined with violent impact flows and dynamic pressure
loads, FSI problems, and multiphysics aspects. A tentative list includes ship
hydrodynamics (ship launching, moonpools, sloshing [179–183], green water
on decks [184]), wave patterns, breakwaters [121, 185], wave impact on bodies,
water entry dynamics (aircraft digging, projectiles etc.) [120, 163, 186], devices
(hydrokinetic turbines, energy converters [187], spillways [188], soil excava-
tion [189], cavitating flows [158]), and natural phenomena (floods, inundations,
tsunami waves [190], ice floe melting [152]). Applications from the area of pro-
duction and process engineering include additive manufacturing [73], welding
[153], gearbox lubrication [191], atomisation [192–194] and aerosol mechanics
[195], two-phase flow and structures in pipes [134] (see also Sec. 3.1). At last,
examples are provided related to biomechanics [47, 196–198] and multiphysics
phenomena such as electro-coalescence [199], mesoscopic systems, surfactants.
Arguably, other multiphysics problems are among the potential applications of
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particle-based methods, along with a growing world apart: the one of computer
animation, e.g. [200].

In the context of the two-fluid approach, sediment transport modelling in
environmental flows remains a subject of active research and practical signif-
icance, including sediment interaction with surface waves and sea currents,
its deposition, and the sea-bed scour. In Sec. 4 we recalled some 2D, coarse-
resolution results on sediment dynamics in the bulk of water as a first step
towards building a comprehensive model of the phenomena involved. As dis-
cussed in [147], this may be attempted by coupling the two-fluid SPH model (a
mixture with different velocities of the sand and water phases) for sediment-
laden flows with another SPH model of deformable granular bed with a specific
rheology [25]. Notwithstanding the caveats recalled earlier in this Section, the
idea of building a comprehensive, “all inclusive” physical model of the sedi-
ment dynamics remains alluring, even though some aspects of such a model,
for example the account of sediment resuspension, seem challenging. The bed
particle entrainment has been reviewed and analysed in detail [201]; some
works were published regarding the particle hybrid approaches, such as the
SPH or MPS methods coupled to DEM (discrete/distinct element model)
[21, 22, 86, 202].

Fig. 20 A cube plunging in a water bassin: SPH simulation (left), experiment (centre),
VOF simulation (right). Experimental study of M. Kraskowski (CTO Gdańsk, Poland).
Reproduced from the work of Ulrich et al. [74].

To conclude this section: because of the limited scope of the present
overview, we have not mentioned several significant developments in the
methodology of the SPH approach such as (listed in a rather disordered
manner): Riemann solvers, transport velocity concept, arbitrary Lagrangian-
Eulerian (ALE) formulations, particle shifting techniques, or symplectic
integrators for time-reversible simulations, see [32, 46, 203–211] and references
therein.
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6 Conclusion

In the present paper, we provided an overview of SPH as an alternative
modelling approach for multiphase (also free-surface) flows. The method is
definitely less elaborated than the better-established Eulerian approaches: its
very first applications to multiphase systems in the fluid-mechanical context
date back to the 1990s. There remain some rather fundamental concerns about
SPH referring to its convergence and accuracy; nevertheless, a growing body
of literature reports successful applications of the method, within intended
or attainable accuracy, to engineering problems involving complex flows or
multiphysics problems.

We have briefly recalled the basis of the multiphase SPH formalism, such as
the density and pressure computation, the account for surface tension forces,
including in the presence of solid walls (wettability effects), and illustrated
them with examples of results coming (mostly) from our research group. Some
major challenges and difficulties were discussed, as the applicability of SPH
has, arguably, its limitations.

Although SPH is not as mature as its Eulerian counterparts, it is
worth to note continuous and focused efforts of SPHERIC group (Webpage:
spheric.org). The group of dedicated researchers forms a relatively large com-
munity which identifies and tackles the most important challenges in SPH as
well as environmental and industrial applications. A rather optimistic outlook
on further development transpires from their collective, ongoing work.
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R., Godoy, M.J., Silva-Casarin, R.: Tsunami hydrodynamic force on a
building using a SPH real-scale numerical simulation. Nat. Hazards 100,
89–109 (2020)

[191] Ji, Z., Stanic, M., Hartono, E.A., Chernoray, V.: Numerical simulations
of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH)
method. Tribology Int. 127, 47–58 (2018)

[192] Koch, R., Braun, S., Wieth, L., Chaussonnet, G., Dauch, T., Bauer,
H.-J.: Prediction of primary atomization using Smoothed Particle Hydro-
dynamics. Eur. J. Mech. B–Fluids 61, 271–278 (2017)

[193] Ates, C., Gundonglu, C., Okraschevski, M., Bürkle, N., Koch, R.:
Characterization of flow-blurring atomization with Smoothed Particle
Hydrodynamics (SPH).

[194] Okraschevski, M., Mesquita, L.C.C., Koch, R., Mastorakos, E., Bauer,
H.J.: A numerical study of aero engine sub-idle operation: From a realistic
representation of spray injection to detailed chemistry LES–CMC. Flow
Turb. Combust. 111, 493–530 (2023)

[195] Khorasanizade, S., Sousa, J.M.M.: Using a fully-Lagrangian meshless
method for the study of aerosol dispersion and deposition. Aerosol Sci.
Techn. 50, 926–936 (2016)

[196] Kajtar, J.B., Monaghan, J.J.: On the swimming of fish like bodies near
free and fixed boundaries. Eur. J. Mech. B–Fluids 33, 1–13 (2012)



Springer Nature 2021 LATEX template

46 SPH modelling of multiphase flows

[197] Zhang, L.W., Ademiloye, A.S., Liew, K.M.: Meshfree and particle meth-
ods in biomechanics: Prospects and challenges. Arch. Comp. Meth. Eng.
26, 1547–1576 (2019)

[198] Monteleone, A., Viola, A., Napoli, E., Burriesci, G.: Modelling of throm-
bus formation using smoothed particle hydrodynamics method. PLoS
ONE 18, e0281424 (2023)

[199] Rahmat, A., Yildiz, M.: A multiphase ISPH method for simulation of
droplet coalescence and electro-coalescence. Int. J. Multiphase Flow 105,
32–44 (2018)

[200] Akhunov, R., Winchenbach, R., Kolb, A.: Evaluation of particle-based
smoothed particle hydrodynamics boundary handling approaches in com-
puter animation. Comp. Anim. Virtual Worlds (in press), 2138 (2023),
https://doi.org/10.1002/cav.2138

[201] Dey, S., Ali, S.Z.: Advances in modeling of bed particle entrainment
sheared by turbulent flow. Phys. Fluids 30, 061301 (2018)

[202] Kwon, J.: Three-dimensional simulation of a solid-liquid flow by the
DEM–SPH method. J. Comput. Phys. 248, 147–176 (2013)

[203] Puri, K., Ramachandran, P.: Approximate Riemann solvers for the
Godunov SPH (GSPH). J. Comput. Phys. 270, 432–458 (2014)
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