LARGE-EDDY SIMULATIONS AND

RELATED TECHNIQUES

UGO PIOMELLI

Department of Mechanical and Materials Engineering Queen's University Kingston, Ontario CANADA

MAY 18-22, 2015

 Turbulence plays a critical role in engineering and in the physical sciences.

- Turbulence plays a critical role in engineering and in the physical sciences.
- Eddy-resolving techniques are becoming the most complete, general methods to solve turbulent flow problems.
 - □ Include more physics
 - □ Are more accurate
 - □ Are becoming more affordable

ROADMAP

OUTLINE

- Motivation
- Governing equations
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions and course roadmap

Motivation:

- □ What is turbulence?
- □ *Review of turbulence physics*
- □ Why simulations?
- □ Methodologies
- Resolution requirements
- Governing equations for LES
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

• What is turbulence?

- Turbulence is the chaotic state of fluid motion that occurs when convective effects are much larger than viscous effects.
 - $\Box Ship: \qquad Re = o(10^9)$
 - $\Box Ocean: \qquad Re = o(10^9)$
 - $\Box Aircraft: \qquad Re = o(10^8)$
 - $\Box Car: \qquad Re = o(10^6)$
 - □ Golf ball: $Re = o(10^5)$ □ Artery: $Re = o(10^3)$

- Turbulence is the chaotic state of fluid motion that occurs when convective effects are much larger than viscous effects.
- Turbulence contains vorticity: $\omega = \nabla \times V$

 \Box Coherent vortical motions \Rightarrow Eddies

- Turbulence is the chaotic state of fluid motion that occurs when convective effects are much larger than viscous effects.
- Turbulence contains vorticity: $\omega = \nabla \times V$
 - \Box Coherent vortical motions \Rightarrow Eddies
 - Deterministic but occur at random locations
 - Turbulence is not a completely stochastic phenomenon
 - Statistical descriptions are inadequate.

Coherent eddies in turbulent channel flow (Bewley, Temam and Moin 2000).

- Turbulence is the chaotic state of fluid motion that occurs when convective effects are much larger than viscous effects.
- Turbulence contains vorticity: $\omega = \nabla \times V$
- Turbulence is not a completely random phenomenon.
- Turbulence enhances mixing.
- Turbulence is the natural state of fluid motion.

• Turbulence is all around us

Engineering devices

-Aerospace applications

Flow over an F-16 at 45° angle of attack

Calculation by J. Forsythe (Cobalt)

- Turbulence is all around us
 - Engineering devices
 - -Aerospace applications
 - Naval applications
 - -Vehicle aerodynamics
 - Combustion systems

Flow in a combustor Calculation by H. Pitsch (Stanford University)

Turbulence is all around us

- Engineering devices
 - -Aerospace applications
 - Naval applications
 - -Vehicle aerodynamics
 - Combustion systems
- Geophysical applications
 - -Oceanography

Frontal Features and Vortices in the Tidal Potomac

- Turbulence is all around us
 - Engineering devices
 - -Aerospace applications
 - Naval applications
 - -Vehicle aerodynamics
 - Combustion systems
 - Geophysical applications
 - Oceanography
 - Meteorology and weather prediction
 - Environmental engineering
 - Biological flows

Turbulence is all around us

- Engineering devices
 - Aerospace applications
 - Naval applications
 - -Vehicle aerodynamics
 - Combustion systems
- Geophysical applications
 - Oceanography
 - Meteorology and weather prediction
 - Environmental engineering
- Biological flows

 \Rightarrow It is critical to predict and analyse the effects of turbulence on mass, momentum and energy transport

Motivation:

- □ What is turbulence?
- **Review of turbulence physics**
- □ Why simulations?
- Methodologies
- Resolution requirements
- Governing equations for LES
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

- Consider a high-Reynolds-number turbulent flow.
 - \Box Length scale L
 - \Box Velocity scale U
 - \square Reynolds number UL/ν
- Turbulence made up of eddies of different sizes:
 - \Box Length-scale ℓ
 - \Box Velocity scale $u(\ell)$
 - \Box Time scale $au(\ell)$

• Largest eddies: $\ell_o \sim L$; $u_o \sim U$ $\Rightarrow Re_o = \frac{u_o \ell_o}{\nu} = o(Re) >> 1$

⇒ Dissipation is unimportant

- Large eddies break up and transfer their energy to smaller eddies.
- The process continues until the smallest eddies, whose Re is so small that dissipation becomes important.

• Typical length scale of the largest eddies is the integral scale L

$$L_{ij} = \int_0^\infty R_{ij}(r)dr$$

Energy

- □ Enters at the large scales (production likes anisotropy)
- □ Is progressively transferred to smaller scales
- □ Is dissipated by the smallest scales
- Dissipation
 - □ Takes place at the smallest scales.
 - □ Is determined by the production (largest scales). □ Energy $\propto u_o^2$ Time-scale $\propto \ell_o/u_o$

$$\Rightarrow \varepsilon \propto \frac{u_o^3}{\ell_o}$$

(Independent of v)

- The large eddies are affected by the b.c.
 ⇒ are anisotropic
- As they break up they lose memory of the b.c.s
 ⇒ become more isotropic.
- Kolmogorov's hypothesis of local isotropy:
 - □ At sufficiently high Reynolds number, the small-scale motions $\ell << \ell_o$ are statistically isotropic

- At small scales, v is important, ε determines the rate of energy transfer.
- Kolmogorov's 1st similarity hypothesis:
- At sufficiently high Reynolds number, the statistics of the small-scale motions are uniquely determined by ε and v.
- We can build length-, time- and velocity scales using ε and ν:

Kolmogorov scales

$$\eta = (\nu^3 / \varepsilon)^{1/4}$$
$$u_{\eta} = (\nu \varepsilon)^{1/4}$$
$$\tau_{\eta} = (\nu / \varepsilon)^{1/2}$$

- At small scales, v is important, ε determines the rate of energy transfer.
- Kolmogorov's 1st similarity hypothesis:
- At sufficiently high Reynolds number, the statistics of the small-scale motions are uniquely determined by ε and v.
- We can build length-, time- and velocity scales using ε and ν:

Kolmogorov scales

$$\eta/\ell_o \sim Re^{-3/4}$$
$$u_{\eta}/u_o \sim Re^{-1/4}$$
$$\tau_{\eta}/\tau_o \sim Re^{-1/2}$$

- Intermediate range: $\eta << \ell << \ell_o$
- *Re* >>1
 - \Rightarrow Viscous forces << inertia forces
 - \Rightarrow v is unimportant.
- Kolmogorov's 2nd similarity hypothesis:
- At sufficiently high Reynolds number, the statistics of the motions of scale $\eta << \ell << \ell_o$ are uniquely determined by ε independent of ν .

Inertial (sub)range of turbulence

• In the inertial subrange:

$$2 \times \mathsf{TKE} = \int_0^\infty E(\kappa) d\kappa; \quad E(\kappa) = f(\kappa, \varepsilon)$$
$$\Rightarrow E(\kappa) = C_K \varepsilon^{2/3} \kappa^{-5/3}$$

• C_{κ} is the Kolmogorov constant

Kolmogorov spectrum

UNIVERSAL SCALING

REYNOLDS NUMBER EFFECTS

- Flows with non-zero mean-velocity gradient, and far from solid boundaries.
- Slow streamwise development:

$$\frac{\partial}{\partial x} << \frac{\partial}{\partial y}, \frac{\partial}{\partial r}$$

• Self-similarity occurs: a length-scale ℓ_r and a velocityscale U_r can be found such that the normalized statistics depend on $\eta = y/\ell_r$ and not on x and y.

FREE-SHEAR FLOWS

• Three typical cases:

 \square Wake

 \Box Jet

□ *Mixing layer*

- Most studied cases:
 - □ Cylinder
 - □ Sphere
- Low Reynolds number:
 - Vortex shedding (Kármán street)
 Three-dimensionality (rib vortices)
- Laminar boundary layer:
 - Subcritical
 - Early separation
 - □ *Transition takes place in the shear layer*
 - Well-defined vortex shedding
- Turbulent boundary layer
 - Supercritical

WAKES

- Most studied cases:
 - □ Cylinder
 - □ Sphere
- Low Reynolds number:
- Laminar boundary layer:
 - Subcritical
 - Early separation
 - Transition takes place in the shear layer
 - □ Fairly well-defined vortex shedding
- Turbulent boundary layer

- Most studied cases:
 - □ Cylinder
 - □ Sphere
- Low Reynolds number
- Laminar boundary layer
- Turbulent boundary layer
 - □ Coherent eddies are less evident but still exist
 - Delayed separation on body gives lower drag.

WAKES

• Self-similarity exists far downstream (80-150 D) with

$$U_r = \Delta U = U_\infty - U_c$$

$$\ell_r = \text{Distance where } U = U_c + \Delta U/2$$

• Spreading rate for similarity:

$$\ell \sim x^{1/2}$$

• Velocity deficit decay rate for similarity:

$$\Delta U \sim x^{-1/2}$$

ROUND JET

- The jet has excess momentum and spreads outwards.
- Instabilities in the near-jet result in vortex rings.
- At high *Re* the rings rapidly break down.

ROUND JET

• The inflectional instability results in the formation of spanwise rollers that pair and grow.

100

80

60

40

X

20

0

-20

-40

• The inflectional instability results in the formation of spanwise rollers that pair and grow.

Three-dimensionalities develop between the rollers
 The flow eventually 20 transition to turbulence

50

-20

MIXING LAYER

• Self-similarity is observed with $\ell_r \sim x$

- Very common in engineering applications.
 - \square Pipes and ducts.
 - □ External aerodynamics.
 - □ *Meteorology*.
 - □ Internal combustion engines.

• Four regions of the flow, different physics

- Reynolds shear stress $-\langle u'v'\rangle \propto y^3$ is small.
- τ is due to viscous contribution only.
- Length and velocity scales should be obtained using only the wall stress $\tau_{w},\,\rho$ and $\nu.$

$$u_{\tau} = \left(\frac{\tau_w}{\rho}\right)^{1/2} \quad \text{and} \quad y_f = \frac{\mu}{(\rho \tau_w)^{1/2}} = \frac{\nu}{u_{\tau}}$$
$$u^+ = y^+$$

VISCOUS SUBLAYER

- Reynolds stresses >> viscous stresses.
- The flow is unaffected by the outer flow.
- All turbulence should depend on τ_{w} and distance from the wall:

$$\frac{dU}{dy} = \frac{u_{\tau}}{\kappa y}$$
$$-\langle u'v' \rangle = \tau_w$$

 κ is a constant (von Kármán constant).

• Integrating...

$$u^+ = \frac{1}{\kappa} \log y^+ + B$$

x

WALL-LAYER EDDIES

 Viscous sublayer: Alternating regions of high and low velocity (streaks).

Low-speed streaks, scale λ^+

- Regions of the flow in which some variable is correlated with itself.
- Quasi-streamwise vortices (viscous sublayer).
- Hairpins (logarithmic layer).

WALL-LAYER EDDIES

turbulent region

transitional region

DNS of transition in a flat-plate boundary layer (Wu & Moin, 2009) Turbulent eddies are visualized by the second invariant of the velocity gradient tensor and coloured base on the local value of the streamwise velocity.

Motivation:

- □ What is turbulence?
- **Review of turbulence physics**
- □ Why simulations?
- Methodologies
- Resolution requirements
- Governing equations for LES
- Boundary conditions
- Subgrid-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

- Prediction and design tools are required
- Theory: infeasible
 - □ Governing equations (Navier-Stokes equations) are highly non-linear.

 \Rightarrow *Exact solutions cannot be found*

- Prediction and design tools are required
- Theory: infeasible
- Experiments
 - Empirical design rules
 - □ Building and testing of prototypes
 - Iterative improvement of design
 - □ Issues: time, cost, accessibility of conditions, limited exploration

- Prediction tools are required
- Theory: infeasible
- Experiments: costly, incomplete
- Numerical methods:
 - □ Predict performance of proposed designs
 - □ Advantages: speed, novel designs, optimization
 - □ Issues: accuracy, reliability, level of description, cost

- Prediction tools are required
- Theory: infeasible
- Experiments: costly, incomplete
- Numerical methods: **possible but difficult**
- Trend: more use of computation, less testing.

Motivation:

- □ What is turbulence?
- **Review of turbulence physics**
- □ Why simulations?
- Methodologies
- Resolution requirements
- Governing equations for LES
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

SIMULATION METHODOLOGIES

• Turbulent transport is due to the vortical motions (eddies).

- Turbulent transport is due to the vortical motions (eddies).
- Solution methodologies:
 - □ Full description of all eddies
 - ⇒ Direct Numerical Simulation (DNS)

- Turbulent transport is due to the vortical motions (eddies).
- Solution methodologies:
 - □ Full description of all eddies (DNS)
 - □ Statistical description of all eddies
 - ⇒ Solution of the Reynolds-Averaged Navier-Stokes (RANS) equations

- Turbulent transport is due to the vortical motions (eddies).
- Solution methodologies:
 - □ Full description of all eddies (DNS)
 - □ Statistical description of all eddies (RANS)
 - Partial description of the eddies
 Large-Eddy Simulation (LES)

DIRECT NUMERICAL SIMULATION

Vorticity contours, Channel flow, Re=7000

LARGE-EDDY SIMULATION

- Multi-point, non invasive information.
- Frequency and wave-number information.
- Little modelling ⇒ increased accuracy
- More faithful reproduction of the flow physics.

- Eddy-resolving methods for the numerical simulation of turbulent flows have resulted in
 - Improved understanding of the flow physics
 - Novel flow-control ideas
- Direct Numerical Simulations (DNS):
 - □ No empiricism, Low Re, physics, simple geometry.
- Large-Eddy Simulations (LES):
 - □ Little empiricism, medium Re, physics.
- Hybrid RANS/LES:
 - □ Stronger empiricism, high Re, physics and design, complex geometry.
- These methods cover the full spectrum of fluid-dynamical applications.

Astrophysics

- Range of scales: $10^{10} \Rightarrow DNS$ is infeasible.
- Wall effects are negligible External aerodynamic \Rightarrow LES can be cost-effective at high *Re*
- Interaction of large-scale rotation with turbulent eddies.
- Lorentz forces are an additional mechanism that affects the turbulence dynamics.

Eddy-resolving methods can account directly for

External aerodynamics

- More accurate calculation of non-equilibrium turbulence:
 - Transitional and re-laminarizing flows
 Environmental and geophysical flows
 - Separation
 3D mean flows

 RANS solns Internal flows insufficient if noise or unsteady aerodynamic forces are important. LES (free shear) LES RANS/LES (wall bounded) < DNS ▶ WMLES Re Moderate High Low

- Ideal method to test theories
 - Controlled boundary and initial conditions.
 - Possibility to conduct innovative thought experiments
- Data can be used to test lower-level models
 - □ Understanding of the physical phenomena involved
 - Determination of constants
 - □ *Term-by-term model evaluation*

Motivation:

- □ What is turbulence?
- □ *Review of turbulence physics*
- □ Why simulations?
- Methodologies
- **Resolution requirements**
- Governing equations for LES
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

RESOLUTION REQUIREMENTS (DNS)

• The computational domain size is of the order of the integral scale *L*.

The grid size must be of the order of the Kolmogorov length η

$$N_x N_y N_z \sim (L/\eta)^3 \sim Re^{9/4}$$

RESOLUTION REQUIREMENTS (DNS)

• The computational domain size is of the order of the integral scale *L*.

The grid size must be of the order of the Kolmogorov length η

$$N_x N_y N_z \sim (L/\eta)^3 \sim Re^{9/4}$$

- The equations must be integrated for a time of the order of the integral time scale *T*.
- The time-step $\Delta T \propto$ the grid size (CFL condition) or \propto the Kolmogorov time scale τ_{η}

$$N_t \sim T/\Delta t \sim L/\eta \sim Re^{3/4} \qquad N_t \sim T/\tau \sim Re^{1/2}$$
$$\Rightarrow N_x N_y N_z \times N_t \sim Re^{11/4} \to Re^3$$

RESOLUTION REQUIREMENTS (DNS)

- Cost $N_x N_y N_z \times N_t \sim Re^{11/4} \to Re^3$
- $Re = 10^4 \Rightarrow o(10^3)$ CPU hours, Gflop machine
- $Re = 10^9 \Rightarrow o(10^{11})$ CPU hours, Tflop machine

- Velocity decomposed into large-scale (resolved) and subfilter-scale (unresolved) parts.
 - □ The large scales (~ Integral scale, L), which depend on the boundary conditions (i.e., are flow dependent) are computed.
 - The small scales, which are more universal (less dependent on boundary conditions) are modelled.
 - □ Large scales contribute most of the Reynolds stresses.

- Only resolve the integral length scale (energy-containing eddies)
- The integral scale varies with *Re*.
- Cost scales with the Reynolds number

⇒ High *Re* calculations are possible.

• Outer layer:

 \square Need 20-30 points in each direction to resolve an integral scale δ .

 \Box Cover the body of dimensions L^2 with a layer of cubes of side δ .

 $N_x N_y N_z \sim N_{cubes} \sim (L/\delta)^2$

- Outer layer:
 - \Box *L*/ δ varies with *Re*

• Outer layer:

 \Box L/ δ varies with Re slowly (generally ~ Re^{0.2})

$$N_x N_y N_z \sim N_{cubes} \sim (L/\delta)^2 \sim Re^{0.4}$$

□ *Total cost of the calculation:*

$$N_x N_y N_z \times N_t \sim Re^{0.6}$$

- Outer layer: only scales of order δ must be resolved. \Rightarrow Cost ~ $Re^{0.6}$
- Inner layer: near-wall eddies must be resolved.

- Outer layer: only scales of order δ must be resolved. \Rightarrow Cost ~ $Re^{0.6}$
- Inner layer: near-wall eddies must be resolved.
 - Grid must scale in wall units
 - $\Box N_x N_y N_z \propto Re^{1.8}$

- Small scales need to be resolved ⇒ fine grid.
- Averaging of the results, not of the equations
 ⇒ long integration times.
- Vortex dynamics are important, vortex stretching must be accounted for ⇒ always 3D.

⇒ Require large computational resources

- Motivation:
- Simulation methodologies
- Governing equations
- Numerical methods
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

- Motivation:
- Simulation methodologies
- Governing equations
 - □ Filtering
 - □ Filtered Navier-Stokes equations
- Numerical methods
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions

• Conservation of mass, momentum and energy

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(2S_{ij} - \frac{2}{3} \delta_{ij} S_{kk} \right) \right]$$

$$\frac{\partial e}{\partial t} + \frac{\partial}{\partial x_j} (u_j e) = \frac{\partial Q}{\partial t} - \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right),$$

• Where:

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
$$e = c_v T + \rho u_i u_i$$
$$\kappa = \alpha / \rho c_p$$

Strain-rate tensor

Total energy Diffusivity

CONSERVATION EQUATIONS (INCOMPRESSIBLE FLOW)

• If ρ = constant

$$\begin{aligned} \frac{\partial u_j}{\partial x_j} &= 0 \\ \frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} u_i u_j &= -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i \\ \frac{\partial T}{\partial t} + \frac{\partial}{\partial x_j} u_j T &= \kappa \nabla^2 T \end{aligned}$$

- Velocity decomposed into large-scale (resolved) and subfilter-scale (unresolved) parts.
 - □ *The large scales (~ Integral scale, L), which depend on the boundary conditions (i.e., are flow dependent) are computed.*
 - The small scales, which are more universal (less dependent on boundary conditions) are modelled.
 - □ Large scales contribute most of the Reynolds stresses.

The large and small scales are separated by the filtering operation

$$\overline{f}(\mathbf{x}) = \int_D f(\mathbf{x}') G(\mathbf{x}, \mathbf{x}', \overline{\Delta}) d\mathbf{x}'$$

- Filtering is a local spatial averaging over the filter width Δ that smooths out fluctuations whose scale is > Δ .
- Filtering in general is **not** a Reynolds operator:

 $\overline{f'} \neq 0; \quad \overline{\overline{f}} \neq \overline{f}$

- The filtering operation can be applied to the NS equations $\int_{D} [\text{Navier-Stokes Eqns}] G(\mathbf{x}, \mathbf{x}', \overline{\Delta}) d\mathbf{x}'$ to yield the filtered NS equations $\frac{\partial \overline{u}_i}{\partial x_i} = 0$ $\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_i} \left(\overline{u}_i \overline{u}_j \right) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_i \partial x_i}$ $\frac{\partial \overline{T}}{\partial t} + \frac{\partial}{\partial x_i} \overline{u}_j \overline{T} = -\frac{\partial Q_j}{\partial x_i} + \kappa \nabla^2 \overline{T}$
- Unresolved stresses and heat flux appear:

$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j \qquad Q_j = \overline{u_j T} - \overline{u}_j \overline{T}$$

- The unresolved stresses are known as Subgrid-Scale (SGS) stressess or (better) as SubFilter-Scale (SFS) stresses.
- They must be expressed in terms of filtered variables (SFS model) $\tau_{ij} = f(\overline{u}_i, \overline{S}_{ij}, ...)$
 - The small scales, which are more universal (less dependent on boundary conditions) are modelled.
- The large scales, which depend on the boundary conditions(i.e., are flow dependent) are computed.

THE FILTERING OPERATION

- Filtering is a local spatial averaging over the filter width Δ.
- Increasing Δ removes more and more scales from the velocity field \Rightarrow the contribution of τ_{ij} increases.

• Fundamental assumption in LES:

The energy-carrying eddies are resolved, only the small scales are modelled

• Implication:

The filter-width must be smaller than the local integral scale, *L*

• Practice:

The filter width Δ is proportional to the grid size h

- If Δ is proportional to *h*:
 - □ *The ratio between filter-width and integral scale varies*
 - Suboptimal grids (that are not refined when the integral scale decreases) may have unexpectedly large errors
 - □ *Rapid variations of the grid size are reflected in the eddy viscosity*
 - Unphysical discontinuities in the SFS contribution to the transport can occur.
 - ⇒ Numerical and commutation errors may be significant.
 - □ Grid convergence studies are difficult.

- Motivation:
- Simulation methodologies
- Governing equations
- Boundary conditions
- Subfilter-scale modelling
- Validation of an LES
- Applications
- Challenges
- Conclusions