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Conclusions 

•  Turbulence plays a critical role in engineering and in the 
physical sciences.  
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•  Turbulence plays a critical role in engineering and in the 
physical sciences.  

•  Eddy-resolving techniques are becoming the most 
complete, general methods to solve turbulent flow 
problems. 
□  Include more physics 
□  Are more accurate 
□  Are becoming more affordable 

Conclusions 
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Roadmap 
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•  Motivation  
•  Governing equations 

•  Boundary conditions 

•  Subfilter-scale modelling 

•  Validation of an LES 

•  Applications 

•  Challenges 

•  Conclusions and course roadmap 

Outline 



1.6 

Outline 

•  Motivation:  
□  What is turbulence? 
□  Review of turbulence physics 
□  Why simulations? 
□  Methodologies 
□  Resolution requirements 

•  Governing equations for LES 
•  Boundary conditions 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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Motivation 

• What is turbulence? 
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•  Turbulence is the chaotic state of fluid motion 
that occurs when convective effects are much 
larger than viscous effects.   
□  Ship:    Re = o(109) 
□  Ocean:   Re = o(109) 
□  Aircraft:   Re = o(108) 
□  Car:    Re = o(106) 
□  Golf ball:   Re = o(105) 
□  Artery:   Re = o(103) 

Motivation 
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Motivation 

•  Turbulence is the chaotic state of fluid motion that occurs 
when convective effects are much larger than viscous 
effects. 

•  Turbulence contains vorticity:   ω = ∇×V 
□  Coherent vortical motions ⇒ Eddies 
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Motivation 

•  Turbulence is the chaotic state of fluid motion that occurs 
when convective effects are much larger than viscous 
effects. 

•  Turbulence contains vorticity:   ω = ∇×V 
□  Coherent vortical motions ⇒ Eddies 
□  Deterministic but occur at random locations 
□  Turbulence is not a completely  

stochastic phenomenon 
□  Statistical descriptions are  

inadequate. 

Coherent eddies in turbulent channel flow 
(Bewley, Temam and Moin 2000). 
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Motivation 

•  Turbulence is the chaotic state of fluid motion that occurs 
when convective effects are much larger than viscous 
effects. 

•  Turbulence contains vorticity:   ω = ∇×V 
•  Turbulence is not a completely random phenomenon. 
•  Turbulence enhances mixing. 
•  Turbulence is the natural state of fluid motion. 
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Motivation 

•  Turbulence is all around us 
□  Engineering devices 
- Aerospace applications 

Flow over an F-16 
at 45o angle of attack  

Calculation by  
J. Forsythe 
(Cobalt) 



1.13 

Flow in a combustor 
Calculation by H. Pitsch 
(Stanford University) 

Motivation 

•  Turbulence is all around us 
□  Engineering devices 
- Aerospace applications 
- Naval applications 
- Vehicle aerodynamics  
- Combustion systems 
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•  Turbulence is all around us 
□  Engineering devices 
- Aerospace applications 
- Naval applications 
- Vehicle aerodynamics 
- Combustion systems 

□  Geophysical applications 
- Oceanography 

Frontal Features and Vortices 
in the Tidal Potomac 

Motivation 
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Motivation 

•  Turbulence is all around us 
□  Engineering devices 
- Aerospace applications 
- Naval applications 
- Vehicle aerodynamics 
- Combustion systems 

□  Geophysical applications 
- Oceanography 
- Meteorology and weather  

prediction 
- Environmental engineering 

□  Biological flows 
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•  Turbulence is all around us 
□  Engineering devices 
- Aerospace applications 
- Naval applications 
- Vehicle aerodynamics 
- Combustion systems 

□  Geophysical applications 
- Oceanography 
- Meteorology and weather prediction 
- Environmental engineering 

□  Biological flows 

⇒ It is critical to predict and analyse the effects of 
 turbulence on mass, momentum and energy transport 

Motivation 
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Outline 

•  Motivation:  
□  What is turbulence? 
□  Review of turbulence physics 
□  Why simulations? 
□  Methodologies 
□  Resolution requirements 

•  Governing equations for LES 
•  Boundary conditions 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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The Energy Cascade 

•  Consider a high-Reynolds-number turbulent flow. 
□  Length scale  
□  Velocity scale  
□  Reynolds number  

 

•  Turbulence made up of eddies of different sizes: 
□  Length-scale 
□  Velocity scale 
□  Time scale 
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•  Largest eddies:          
  ⇒  

 ⇒ Dissipation is unimportant  
 

•  Large eddies break up and transfer their energy to smaller 
eddies. 

•  The process continues until the smallest eddies, whose Re 
is so small that dissipation becomes important. 

The Energy Cascade 
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The Integral Scale 

•  Typical length scale of the largest eddies is the integral 
scale L 

Lij =

Z 1

0
Rij(r)dr
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(Independent of ν) 

•  Energy  
□  Enters at the large scales (production likes anisotropy) 
□  Is progressively transferred to smaller scales 
□  Is dissipated by the smallest scales 

•  Dissipation 
□  Takes place at the smallest scales. 
□  Is determined by the production (largest scales). 
□  Energy                Time-scale 

The Energy Cascade 
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•  The large eddies are affected by the b.c.  
⇒  are anisotropic 

•  As they break up they lose memory of the b.c.s   
⇒  become more isotropic. 

•  Kolmogorov's hypothesis of local isotropy: 
□  At sufficiently high Reynolds number, the small-scale motions                        

         are statistically isotropic 

Local Isotropy 

` << `
o
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•  At small scales, ν is important, ε determines the rate of 
energy transfer. 

•  Kolmogorov's 1st similarity hypothesis: 
•  At sufficiently high Reynolds number, the statistics of the 

small-scale motions are uniquely determined by ε and ν. 
•  We can build length-,  time- and velocity scales using ε 

and ν: 
 
 
Kolmogorov scales 

� =
�
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The Kolmogorov Scales 
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•  At small scales, ν is important, ε determines the rate of 
energy transfer. 

•  Kolmogorov's 1st similarity hypothesis: 
•  At sufficiently high Reynolds number, the statistics of the 

small-scale motions are uniquely determined by ε and ν. 
•  We can build length-,  time- and velocity scales using ε 

and ν: 
 
 
Kolmogorov scales 

 
 

�/⇤o � Re�3/4

u�/uo � Re�1/4

⇥�/⇥o � Re�1/2

The Kolmogorov Scales 
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•  Intermediate range:   
•  Re >>1 
⇒  Viscous forces << inertia forces  
⇒  ν is unimportant. 

•  Kolmogorov's 2nd similarity hypothesis: 
•  At sufficiently high Reynolds number, the statistics of the 

motions of scale                       are uniquely determined by 
ε independent of  ν . 

             ⇓ 

     Inertial (sub)range of turbulence 

The Inertial Subrange 
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•  In the inertial subrange: 
 
 
 
 
 
 

•  Cκ is the Kolmogorov constant  

The Inertial Subrange 

Kolmogorov 
spectrum 

2⇥ TKE =

Z 1

0
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Experimental verification: 
Saddougui & Veeravalli (1994) 

Universal Scaling 
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 Increasing     

 Energy- 
 carrying  

range 
L 
 

Production 

     Inertial subrange 
 E ∝ κ-5/3 

 

Cascade 

 Increasing κ

Kolmogorov 
scales 
η

Dissipation 

Universal scaling 

The Energy Cascade 
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Reynolds Number Effects 
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•  Flows with non-zero mean-velocity gradient, and far from 
solid boundaries. 

•  Slow streamwise development: 
 
 
 

•  Self-similarity occurs:  a length-scale     and a velocity-
scale       can be found such that the normalized statistics 
depend on              and not on x and y. 

Free-Shear Flows 
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Free-Shear Flows 

•  Three typical cases: 
 
□  Wake 

 
 
 

□  Jet 
 
 
 
 

□  Mixing layer 
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Wakes 

•  Most studied cases:  
□  Cylinder 
□  Sphere 

•  Low Reynolds number: 
□  Vortex shedding (Kármán street) 
□  Three-dimensionality (rib vortices) 

•  Laminar boundary layer:  
□  Subcritical 
□  Early separation 
□  Transition takes place in the shear layer 
□  Well-defined vortex shedding 

•  Turbulent boundary layer 
□  Supercritical 
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•  Most studied cases:  
□  Cylinder 
□  Sphere 

•  Low Reynolds number: 
•  Laminar boundary layer:  
□  Subcritical 
□  Early separation 
□  Transition takes place in the  

shear layer 
□  Fairly well-defined vortex shedding 

•  Turbulent boundary layer 

Wakes 
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Wakes 

•  Most studied cases:  
□  Cylinder 
□  Sphere 

•  Low Reynolds number 
•  Laminar boundary layer 
•  Turbulent boundary layer 
□  Coherent eddies are less evident but still exist 
□  Delayed separation on body gives lower drag. 
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•  Self-similarity exists far downstream (80-150 D) with 
 
 
 

•  Spreading rate for  
similarity: 
 
 

•  Velocity deficit decay  
rate for similarity: 
 
 
 

Mean velocity 
profile in a  

cylinder wake 

Wakes 

�U ⇠ x

�1/2

`r = Distance where U = Uc +�U/2
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•  The jet has excess  momentum and spreads outwards. 
•  Instabilities in the near-jet result in vortex rings. 
•  At high Re the rings rapidly break down. 

Round Jet 
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•  Similarity with  
Mean velocity 

profile in a  
round jet 

Round Jet 
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Mixing Layer 

•  The inflectional instability results in the formation of 
spanwise rollers that pair and grow. 
 
 
 
 

•  Three-dimensionalities develop between  
the rollers 
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•  The inflectional instability results in the formation of 
spanwise rollers that pair and grow. 
 
 
 
 

•  Three-dimensionalities develop between  
the rollers 

•  The flow eventually 
transition to  
turbulence 

Mixing Layer 
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Mixing Layer!

•  Self-similarity is observed with  

Mean velocity 
profile in a  

mixing layer 

`r ⇠ x
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•  Very common in engineering applications. 
□  Pipes and ducts. 
□  External aerodynamics. 
□  Meteorology. 
□  Internal combustion engines. 

Wall-Bounded Flows 
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•  Four regions of the flow, different physics 

log y/`

U/Uref

Wall-Bounded Flows 
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•  Reynolds shear stress                     is small. 
•  τ is due to viscous contribution only. 
•  Length and velocity scales should be obtained using only 

the wall stress τw, ρ and ν. 

Viscous Sublayer 
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Linear behaviour 
for y+<5 

Viscous Sublayer 
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•  Reynolds stresses >> viscous stresses. 
•  The flow is unaffected by the outer flow. 
•  All turbulence should depend on τw  and distance from the 

wall:                   
 
 
 
 
    is a constant (von Kármán constant). 

•  Integrating... 

Logarithmic Layer 

dU
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Logarithmic Layer 

Logarithmic behaviour 
for y+>25 
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●  Viscous sublayer: Alternating 
regions of high and low velocity 
(streaks). 

Wall-Layer Eddies 
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•  Regions of the 
flow in which 
some variable is 
correlated with 
itself. 

•  Quasi-streamwise 
vortices (viscous 
sublayer). 

•  Hairpins 
(logarithmic 
layer). 

Wall-Layer Eddies 
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DNS of transition in a flat-plate boundary layer (Wu & Moin, 2009) 
Turbulent eddies are visualized by the second invariant  

of the velocity gradient tensor and coloured base on the local  
value of the streamwise velocity. 

transitional region turbulent region transitional region turbulent region 

Wall-Layer Eddies 
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•  Motivation:  
□  What is turbulence? 
□  Review of turbulence physics 
□  Why simulations? 
□  Methodologies 
□  Resolution requirements 

•  Governing equations for LES 
•  Boundary conditions 
•  Subgrid-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 

Outline 
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•  Prediction and design tools are required 
•  Theory: infeasible 
□  Governing equations (Navier-Stokes equations) are highly non-linear. 

 
 
 
 
 
 
 
 
 
 

⇒ Exact solutions cannot be found 

Why Simulations? 

Conservation of mass 
Conservation of momentum 

Conservation of energy 
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Why Simulations?!

•  Prediction and design tools are required 
•  Theory: infeasible 
•  Experiments 
□  Empirical design rules 
□  Building and testing of prototypes  
□  Iterative improvement of design 
□  Issues: time, cost, accessibility of conditions, limited exploration 
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Why Simulations?!

•  Prediction tools are required 
•  Theory: infeasible 
•  Experiments: costly, incomplete 
•  Numerical methods: 
□  Predict performance of proposed designs 
□  Advantages: speed, novel designs, optimization 
□  Issues: accuracy, reliability, level of description, cost 
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Why Simulations?!

•  Prediction tools are required 
•  Theory: infeasible 
•  Experiments: costly, incomplete 
•  Numerical methods: possible but difficult 

 
•  Trend: more use of computation, less testing. 
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•  Motivation:  
□  What is turbulence? 
□  Review of turbulence physics 
□  Why simulations? 
□  Methodologies 
□  Resolution requirements 

•  Governing equations for LES 
•  Boundary conditions 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 

Outline 
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•  Turbulent transport is due to the vortical motions (eddies). 

High 
speed 

Low 
speed 

Simulation Methodologies 
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Simulation Methodologies!

•  Turbulent transport is due to the vortical motions (eddies). 
•  Solution methodologies: 
□  Full description of all eddies 
⇒  Direct Numerical Simulation (DNS) 

High 
speed 

Low 
speed 
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Simulation Methodologies!

•  Turbulent transport is due to the vortical motions (eddies). 
•  Solution methodologies: 
□  Full description of all eddies (DNS) 
□  Statistical description of all eddies  
⇒  Solution of the Reynolds-Averaged Navier-Stokes  
  (RANS)  equations 

High 
speed 

Low 
speed 
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Simulation Methodologies!

•  Turbulent transport is due to the vortical motions (eddies). 
•  Solution methodologies: 
□  Full description of all eddies (DNS) 
□  Statistical description of all eddies (RANS) 
□  Partial description of the eddies  
⇒  Large-Eddy Simulation (LES) 

High 
speed 

Low 
speed 
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Direct Numerical Simulation 

 
Navier-Stokes 

Equations  
 

 
DNS 

Solver 
 

Vorticity contours, Channel flow, Re=7000 
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Large-Eddy Simulation 

 
Navier-Stokes 

Equations  
 

 
LES 

Solver 
 

Vorticity contours, Channel flow, Re=7000 

 

Spatial 
  filtering               

Over  
                               L >> � >> ⌘
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Unsteady Reynolds-Averaged 
NS Simulation 

 
Navier-Stokes 

Equations  
 

 
URANS 
Solver 

 

 

Time  
Averaging 

Over  
               LETOT 

  

Vorticity contours, Channel flow, Re=7000 

T >>
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Unsteady Reynolds-Averaged 
NS Simulation 

 
Navier-Stokes 

Equations  
 

 
URANS 
Solver 

 

 

Time  
Averaging 

Over  
                
  

T ! 1

Vorticity contours, Channel flow, Re=7000 



1.64 

Why LES and DNS? 

•  Multi-point, non invasive information. 
•  Frequency and wave-number information. 
•  Little modelling ⇒ increased accuracy 
•  More faithful reproduction of the flow physics. 
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Benefits of  
eddy-resolving methods 

•  Eddy-resolving methods for the numerical simulation of turbulent flows have 
resulted in 

□  Improved understanding of the flow physics 

□  Novel flow-control ideas 

•  Direct Numerical Simulations (DNS): 

□  No empiricism, Low Re, physics, simple geometry. 

•  Large-Eddy Simulations (LES): 

□  Little empiricism, medium Re, physics. 

•  Hybrid RANS/LES: 

□  Stronger empiricism, high Re, physics and design, complex geometry. 

•  These methods cover the full spectrum of fluid-dynamical applications. 
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Benefits of eddy-resolving 
methods!
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Benefits of eddy-resolving 
methods!

•  Range of scales: 1010 ⇒ DNS is infeasible. 

•  Wall effects are negligible  
⇒ LES can be cost-effective at high Re 

•  Interaction of large-scale rotation with turbulent eddies. 

•  Lorentz forces are an additional mechanism that affects the 
turbulence dynamics. 
□  Stiffness 
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Benefits of eddy-resolving 
methods!

11 

•  Eddy-resolving methods can account directly for 
□  Large-scale mixing  
□  Stratification 
□  Rotation effects 

•  Possible applications: 
□  Sediment transport 
□  Coastal oceanography 
□  Pollutant dispersion 
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Benefits of eddy-resolving 
methods!

•  More accurate calculation of non-equilibrium turbulence: 
□  Transitional and re-laminarizing flows 
□  Separation 
□  3D mean flows 

•  RANS solns  
insufficient  
if noise or  
unsteady  
aerodynamic 
forces are important.  
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Benefits of eddy-resolving 
methods!

•  Moderate Re, complex 
geometries 

•  Highly 3D, unsteady, 
transitional flows. 
□  RANS methods inaccurate 

•  Oscillating mean flows 
□  Alternating favorable and 

adverse ∇P  
⇒ Relaminarization and 
transition 

•  Fluid-structure 
interactions may be 
important 
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Benefits of eddy-resolving 
methods!

•  Ideal method to test theories 
□  Controlled boundary and initial conditions. 
□  Possibility to conduct innovative thought experiments 

•  Data can be used to test lower-level models 
□  Understanding of the physical phenomena involved 
□  Determination of constants 
□  Term-by-term model evaluation 



1.72 

Outline 

•  Motivation:  
□  What is turbulence? 
□  Review of turbulence physics 
□  Why simulations? 
□  Methodologies 
□  Resolution requirements 

•  Governing equations for LES 
•  Boundary conditions 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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Resolution Requirements 
(DNS) 

•  The computational domain  
size is of the order of the  
integral scale L.  

•  The grid size must be of the  
order of the Kolmogorov length η 
 

η

L 

N
x

N
y

N
z

⇠ (L/⌘)3 ⇠ Re9/4
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•  The computational domain  
size is of the order of the  
integral scale L.  

•  The grid size must be of the  
order of the Kolmogorov length η 
    
  

•  The equations must be integrated for a time of the order of 
the integral time scale T. 

•  The time-step ΔT ∝ the grid size (CFL condition) or 
         ∝ the Kolmogorov time scale τη  
 

η

L 

Resolution Requirements 
(DNS) 

N
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N
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Resolution Requirements 
(DNS)!

•  Cost 

•  Re = 104 ⇒ o(103) CPU hours, Gflop machine 

•  Re = 109 ⇒ o(1011) CPU hours, Tflop machine 

Large (integral) scale L 

Small (Kolmogorov) scales η

N
x

N
y

N
z

⇥N
t

⇠ Re11/4 ! Re3
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•  Velocity decomposed into large-scale (resolved) and 
subfilter-scale (unresolved) parts. 
□  The large scales (∼ Integral scale, L), which depend on the boundary 

conditions (i.e., are flow dependent) are computed.  
□  The small scales , which are more universal (less dependent on 

boundary conditions) are modelled. 
□  Large scales contribute most of the Reynolds stresses. 

Resolution Requirements 
(LES) 
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Resolution Requirements 
(LES)!

•  Only resolve the integral length scale (energy-containing 
eddies) 

•  The integral scale varies with Re. 
•  Cost scales with the Reynolds number 

  
    ⇒ High Re calculations are possible. 
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•  Outer layer: 
□  Need 20-30 points in each direction to resolve an integral scale δ. 
□  Cover the body of dimensions L2 with a layer of cubes of side δ. 

Resolution Requirements 
(Wall-bounded flows) 
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Low Re 

High Re 

Resolution Requirements 
(Wall-bounded flows)!

•  Outer layer: 
□  L/δ varies with Re 
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Resolution Requirements 
(Wall-bounded flows)!

•  Outer layer: 
□  L/δ varies with Re slowly (generally ∼ Re0.2) 

 
 
 
 
 

□  Total cost of the calculation: 
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Near-wall eddies ∝ν/uτ 

•  Outer layer: only scales of order δ must be resolved. 
 ⇒ Cost ∼  Re0.6 

•  Inner layer: near-wall eddies must be resolved. 

Resolution Requirements 
(Wall-bounded flows) 
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•  Outer layer: only scales of order δ must be resolved. 
 ⇒ Cost ∼  Re0.6 

•  Inner layer: near-wall eddies must be resolved. 
□  Grid must scale in  

wall units 
□  Nx Ny Nz ∝ Re1.8 

⇒ Cost ∝ Re 2.4 

Resolution Requirements 
(Wall-bounded flows) 
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Resolution Requirements 
(Wall-bounded flows)!
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Resolution Requirements 
(Wall-bounded flows)!
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Resolution Requirements 
(Wall-bounded flows)!

At high Re, throughput times are too 
long for design applications  ⇒ 



1.86 

Why Not LES and DNS? 

•  Small scales need to be resolved  
 ⇒  fine grid. 

•  Averaging of the results, not of the equations  
 ⇒  long integration times.  

•  Vortex dynamics are important, vortex stretching must be 
accounted for  
 ⇒  always 3D. 
 
 
 ⇒  Require large computational resources 



1.87 

Outline 

•  Motivation:  
•  Simulation methodologies 
•  Governing equations 
•  Numerical methods 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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Outline 

•  Motivation:  
•  Simulation methodologies 
•  Governing equations 
□  Filtering 
□  Filtered Navier-Stokes equations 

•  Numerical methods 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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•  Conservation of mass, momentum and energy 
 
 
 
 
 
 

•  Where: 
 
                                        Strain-rate tensor 
 
                                        Total energy 
 

                                        Diffusivity 

Conservation equations 
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Conservation equations 
(Incompressible flow) 

•  If ρ = constant 
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Governing equations 

•  Velocity decomposed into large-scale (resolved) and 
subfilter-scale (unresolved) parts. 
□  The large scales (∼ Integral scale, L), which depend on the boundary 

conditions (i.e., are flow dependent) are computed.  
□  The small scales , which are more universal (less dependent on 

boundary conditions) are modelled. 
□  Large scales contribute most of the Reynolds stresses. 
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Governing equations 

•  The large and small scales are separated by the filtering 
operation 
 
 

•  Filtering is a local spatial averaging over the filter width Δ 
that smooths out fluctuations whose scale is >Δ. 

•  Filtering in general is not a Reynolds operator:  
 

f(x) =

Z

D
f(x0)G(x,x0,�)dx0

f 0 6= 0; f 6= f
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•  The filtering operation can be applied to the NS equations  
 
 
to yield the filtered NS equations 
 
 
 
 
 
 
 

•  Unresolved stresses and heat flux appear: 

Governing equations 
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D
[Navier-Stokes Eqns]G(x,x0,�)dx0
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Governing equations 

•  The unresolved stresses are known as Subgrid-Scale 
(SGS) stressess or (better) as SubFilter-Scale (SFS) 
stresses. 

•  They must be expressed in terms of filtered variables (SFS 
model) 
 
□  The small scales, which are more universal (less dependent on 

boundary conditions) are modelled.  
 

•  The large scales, which depend on the boundary 
conditions(i.e., are flow dependent) are computed.  

⌧ij = f(ui, Sij , . . . )
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The filtering operation 

•  Filtering is a local 
spatial averaging 
over the filter width 
∆. 

•  Increasing ∆ 
removes more and 
more scales from the 
velocity field ⇒ the 
contribution of τij 
increases. 
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Filtering considerations 

•  Fundamental assumption in LES: 
The energy-carrying eddies are resolved,  

only the small scales are modelled 
•  Implication: 

  The filter-width must be smaller 
than the local integral scale, L 

•  Practice: 
The filter width Δ is proportional  

to the grid size h            
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Filtering considerations 

•  If Δ is proportional to h: 
□  The ratio between filter-width and integral scale varies 

ð Suboptimal grids (that are not refined when the integral scale decreases) 
may have unexpectedly large errors 

□  Rapid variations of the grid size are reflected in the eddy viscosity 
ð Unphysical discontinuities in the SFS contribution to the transport can 

occur. 
ð Numerical and commutation errors may be significant. 

□  Grid convergence studies are difficult. 
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Outline 

•  Motivation:  
•  Simulation methodologies 
•  Governing equations 
•  Boundary conditions 
•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 


