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In this paper we propose a methodology consisting of specific computational intelligence methods, i.e.
principal component analysis and artificial neural networks, in order to inter-compare air quality and
meteorological data, and to forecast the concentration levels for environmental parameters of interest (air
pollutants). We demonstrate these methods to data monitored in the urban areas of Thessaloniki and Helsinki
in Greece and Finland, respectively. For this purpose, we applied the principal component analysis method in
order to inter-compare the patterns of air pollution in the two selected cities. Then, we proceeded with the
development of air quality forecasting models for both studied areas. On this basis, we formulated and
employed a novel hybrid scheme in the selection process of input variables for the forecasting models,
involving a combination of linear regression and artificial neural networks (multi-layer perceptron) models.
The latter ones were used for the forecasting of the daily mean concentrations of PM10 and PM2.5 for the next
day. Results demonstrated an index of agreement between measured and modelled daily averaged PM10

concentrations, between 0.80 and 0.85, while the kappa index for the forecasting of the daily averaged PM10

concentrations reached 60% for both cities. Compared with previous corresponding studies, these statistical
parameters indicate an improved performance of air quality parameters forecasting. It was also found that the
performance of the models for the forecasting of the daily mean concentrations of PM10 was not substantially
different for both cities, despite the major differences of the two urban environments under consideration.
.
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1. Introduction

The issue of air quality (AQ) is ofmajor concern formany European
citizens and one of the areas in which the European Union has been
most active, in order to take preventive and regulatory measures. The
Clean Air For Europe (CAFE) initiative has led to a thematic strategy
setting out the objectives and measures for the next phase of
European AQ policy. The resulting Directive (CAFE Directive —

2008/50/EC) underlines the need for a common framework of
methods and criteria that will allow for a direct comparison of the
AQ in different member states, as well as the forecasting and
management of AQ. Moreover, the CAFE Directive includes mandates
for the provision of specific information to the public, concerning
concentrations of air pollutants, incidents of exceedances of atmo-
spheric quality criteria, and their predictions for the next day(s).
Given the aforementioned requirements, it is necessary to employ
methods and tools that both analyze and model air pollution while in
parallel they can extract knowledge in terms of similarities,
differences and interdependencies of the studied AQ parameters.

On this basis, we propose a methodology consisting of Computa-
tional Intelligence (CI) methods that can be applied to AQ and
meteorological data recorded in different cities, in order to identify
and compare the air pollution profiles of the urban environment
under consideration and to evaluate the potential for the forecasting
of certain parameters of interest. We demonstrate the capabilities and
the insight that the proposed methodology provides by considering
the case of two European cities that share certain similarities and
differences, i.e. Helsinki (in Finland) and Thessaloniki (in Greece).

The suitability of CI methods for the aforementioned tasks has
been suggested by their inherent characteristics. Among others, CI
methods: (i) are data-oriented, thus there is no need for strong
assumptions during the modelling process, (ii) are computationally
efficient, thus it is possible to handle huge amounts of data in little
time (iii) can be applied for different tasks such as knowledge
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Fig. 1. Location of the AQ and meteorological measurement sites in the Helsinki
Metropolitan Area (left) and in Thessaloniki (right). The sites of Helsinki–Vantaa,
Isosaari and Kivenlahti mast aremeteorological stations; the other ones are AQ stations.
Helsinki, Vantaa, Espoo and Kauniainen are cities. Furthermore, the AQ/MET stations of
Panorama, Kalamaria, AUTh, Kordelio and Sindos, as well as the AQ stations of Agias
Sofias and Pl. Dimokratias.
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extraction, forecasting, etc. and (iv) can be easily integrated into
existing information systems that could communicate useful infor-
mation to citizens.

Earlier researchwork has already dealt with CI methods within the
AQ domain, mainly for episode identification (Kolehmainen et al.,
2000) and incident, i.e. threshold value exceedances, via the
forecasting of target air pollutants such as O3 (Bordignon et al.,
2002; Barrero et al., 2006; Karatzas and Kaltsatos, 2007), NO2

(Kalapanidas and Avouris, 2001; Nagendra and Khare, 2006), and
PM10 (Slini et al., 2006; Niska et al., 2005; Kukkonen et al., 2003;
Zickus et al., 2002). Additional applications of CI methods for
knowledge extraction in the AQ domain have also appeared in
literature (Ibarra-Berastegi et al., 2009; Oanh et al., 2010). For the city
of Helsinki, Kukkonen et al. (2003) evaluated and inter-compared the
performance of five neural network models, a linear statistical model
and a deterministic modelling system for the prediction of urban NO2

and PM10 concentrations, measured at two stations in central
Helsinki. On the other hand, in Thessaloniki there have been studies
such as Slini et al. (2006) that made use of linear regression (LIN-REG)
models, classification and regression trees (CRTs) and artificial neural
networks (ANNs) in order to forecast PM10 concentrations, while
Tzima et al. (2007) have evaluated the performance of several
classifiers in forecasting hourly PM10 concentration values.

The methods selected for the present study are principal
component analysis (PCA) and artificial neural networks — multi-
layer perceptron (ANN-MLP). Although these methods have been
partially applied for similar purposes in Helsinki and Thessaloniki in
previous studies, the objectives now are fundamentally different:
(i) we consider these methods as parts of a structured framework that
can be applied to analyze and inter-compare the statistical inter-
dependencies of AQ and meteorological data measured in different
cities, in order to reveal the similarities and differences at the air
pollution profiles of the selected urban environments and associate
the corresponding results with the prevailing air pollution sources
and mechanisms of the cities. (ii) We apply a novel hybrid method in
order to optimize the input variables of the forecasting models. This
method is based on the evaluation of the actual performance (on the
basis of certain statistical indices) of linear regression (LIN-REG) and
ANN-MLP models. Such a method has not been previously presented
in literature. (iii) We evaluate the performance of the resulting,
optimized, ANN-based, AQ forecasting model mentioned above, both
in Helsinki and Thessaloniki, by using the same methodology.

An additional novelty of this study is that ANNs have not
previously been evaluated in different climatic and geographic
regions, based on their AQ modelling performance, and by using a
common framework and underlying methodology. We also aimed to
find out whether the mathematical analysis, including ANNs, could
result in new information concerning the source- and process-
oriented patterns of air pollution and the meteorology in the studied
cities. We addressed solely the forecasting of PM10 and PM2.5 (where
available) concentrations in this study, as those concentrations are
frequently high in both cities, compared with the national guidelines
and the EU limit values (Voutsa et al., 2002; Moussiopoulos et al.,
2009, Kukkonen et al., 2005, Kauhaniemi et al., 2008).

2. Materials and methods

2.1. The selected cities and their surrounding regions

The Helsinki Metropolitan Area and its surroundings are situated
on a fairly flat coastal region by the Baltic Sea at a latitude of 60.2°. The
Helsinki Metropolitan Area comprises of four cities (Helsinki, Espoo,
Vantaa and Kauniainen) with a total coverage of 743 km2 and a
population of approximately one million inhabitants. On the other
hand, Thessaloniki is the second largest city of Greece and one of the
most densely populated cities in Europe, accounting for approxi-
mately 16,000 inhabitants per km2. Located at a latitude of 40.4° the
city covers an area of approximately 18 km2, while the urban web of
the Greater Thessaloniki Area covers approximately 93 km2. It is
located in the inner part of the Thermaikos Gulf, surrounded in the
northerly and north-easterly directions by the Hortiatis mountain,
while numerous residential suburbs surround the city and an
extended industrial zone is situated to the north-west of its outskirts.
The studied areas as well as the location of the relevant AQmonitoring
sites are presented in Fig. 1.

2.2. The common characteristics and differences of the selected cities

In this study, we have addressed the AQ for the cities of Helsinki
and Thessaloniki, with the aim to investigate and inter-compare the
AQ characteristics of a northern and a southern coastal European city.
These cities have the following common characteristics: (a) they are
both comparable in terms of the amount of population, which is of the
order of magnitude of one million inhabitants for both urban regions;
(b) both of them are coastal cities, having the seafront to their south;
and (c) both of the selected urban regions represent a partly
maritime-influenced and partly continental climate.

However, these urban regions also possess substantial differences:
(a) the city of Thessaloniki is surrounded by mountainous areas that
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influence the mesoscale atmospheric circulation and the regional
characteristics of the climate. The Helsinki Metropolitan Area on the
other hand is surrounded by a flat terrain, with only moderately high
hills in the surrounding regions. (b) The climatic conditions for
Helsinki are mostly continental with maritime influences, while
relatively milder, compared to most other areas of the same latitude,
mainly because of the Gulf Stream and the prevailing global
atmospheric circulation. The climate of Thessaloniki is typically
Mediterranean: mild winters, and atmospheric circulation commonly
influenced by the sea breeze. (c) The density of population is
substantially higher in the central areas of Thessaloniki, compared
to those in Helsinki. Moreover, the percentage of open and green
spaces is less than 5 m2 per inhabitant for the Greater Thessaloniki
Area (Moussiopoulos and Nikolaou, 2008), in comparison to 134 m2

per inhabitant in Helsinki (City of Helsinki, 2007).
The aforementioned similarities and differences result in a distinct

AQ situation for each one of the cities. Clearly, the climatic
characteristics affect the prevailing air chemistry and atmospheric
diffusion processes. A good example is ozone: whereas it is a
prominent pollutant in Thessaloniki, it is of minor importance in
Helsinki. However, both cities are substantially influenced by the local
vehicular traffic, with the latter being responsible for high concentra-
tions of Particulate Matter (PM) and NOX that in some cases exceed
the limit values set by the regulatory framework. For the city of
Helsinki model computations suggest that approximately 80–95% of
the ground level NOX concentrations originated from traffic sources
(Karppinen et al., 2000a,b), while for the city centre of Thessaloniki
local vehicular traffic is identified to be the main source of PM
pollution (Manoli et al., 2002). The contribution of the paved-road
dust frommultiple sources to the overall PM emissions in Thessaloniki
was found to be of 28% for fine particles and 57% for coarse particles
(Manoli et al., 2002), thus suggesting that re-suspension is an
important contributor to high PM concentrations. On the other
hand, predicted contribution from long-range transport to the PM2.5

street level in Helsinki varied spatially from 40% in the most trafficked
areas to nearly 100% in the outskirts (Kauhaniemi et al., 2008).

2.3. The AQ and meteorological monitoring stations

For Helsinki, measurement data from the stations of Kallio and
Vallila have been used, while for Thessaloniki, data from the stations
of Sindos and Agias Sofias were selected. The aim was to identify two
stations per city, one influenced by traffic in the city centre (Vallila
and Agias Sofias for Helsinki and Thessaloniki, respectively), and an
urban background station (Kallio and Sindos for Helsinki and
Thessaloniki, respectively). The urban background sites are represen-
tative of the average exposure of urban population to pollution,
whereas the traffic sites represent the relatively more severely
polluted urban environments.

The measurement height at both stations in Helsinki is 4.0 m. The
station of Vallila is situated in a park at a distance of 14 m from the
edge of the Hämeentie road. The average weekday traffic volume of
Hämeentie was 13,000 vehicles/day in 2001. The heights of the
buildings in the vicinity of the station, at the other side of the
Hämeentie road and surrounding the park, range from 10 to 15 m. The
Hämeentie road is fairly wide; there are four lanes for cars and
additionally two lanes for trams.

The station of Kallio is located at the edge of a sports ground. The
busiest streets in the vicinity of the station are Helsinginkatu at a
distance of 80 m and Sturenkatu at a distance of 300 m. The average
weekday traffic volume of Helsinginkatu was 7800 vehicles/day in
2001.

The PM10 and PM2.5 concentrations in Helsinki were measured by
continuous analyzers (Eberline FH 62 I-R) using β-attenuation at both
AQ stations addressed in this study. Analyzers are manually calibrated
twice a year while they are monitored with regular automatic span
and zero check. This continuous method is not one of the official EU
reference methods, and therefore, results of the continuous method
have been compared with the results of Kleinfiltergerät that is one of
the EU reference methods. The comparison was conducted at the
station of Vallila from autumn 2000 to summer 2001 (Sillanpää et al.,
2002) and indicated a good agreement of the results, thus no
correction coefficients were required.

The Agias Sofias station in Thessaloniki is situated on a wide traffic
island between two roads formulating the Ermou Street in the centre
of Thessaloniki. The measuring height is 4 m, while the estimated
daily traffic volume in the city centre (in the nearby Egnatia Str, 150 m
from the monitoring site) is 60,000 vehicles/day (Assael et al., 2008).
The station is within a street canyon, with a horizontal distance of
15 m from buildings that are approx. 30 m high. On the contrary, the
station at Sindos is located in the premises of the higher technological
educational institute of Thessaloniki, in an open area, approx. 200 m
from a rural road, and 1.5 km away from a highway.

The PM10 concentrations in Thessaloniki were measured by
analyzers (Eberline FH 62 I-R) that use β-attenuation at both AQ
stations addressed in this study. All monitoring equipment is located
inside temperature and humidity-controlled shelters. The air samples
are analyzed on-line and in real-time and the data are collected
automatically every 1 min and stored in the data logger of each
station. Everyday an operator monitors the data flow frommonitoring
sites to a central data collecting point and takes care of data quality
issues. In order to ensure that the data produced are accurate and
reliable, strict maintenance, operational and quality assurance/control
procedures are carried out every month. These are followed to a
concrete protocol to allow comparability between monitoring sites.

In addition to AQ data, the meteorological data from the stations of
Helsinki–Vantaa (about 15 km north of central Helsinki) and
Helsinki–Isosaari (an island about 20 km south of central Helsinki)
were taken into account for the Helsinki Metropolitan Area. For the
Thessaloniki metropolitan area, meteorological data for the city centre
were only available (and used) coming from the AUTh station (approx
900 m from Agias Sofias station), while the station of Sindos also
monitors meteorological parameters, which were used in this study.

The monitoring stations in Helsinki are operated by the Helsinki
Metropolitan Area Council (YTV). For a detailed description of their
location, characteristics and instrumentation, the reader is referred to
www.ytv.fi/eng/airquality. The stations in Thessaloniki are operated
by the Prefecture of Central Macedonia, Environment Department.
More details are available at www.rcm.gr (in Greek) and reported by
Tzima et al. (2007).

Available atmospheric data included hourly measurements of
concentrations and meteorological parameters for the time period
2001–2003 (three years). It should be noted that more recent,
sufficiently comprehensive, properly quality assured and controlled
datasets were not available meanwhile for both cities. However, for
the main pollutants addressed (PM10 and PM2.5), there have been no
substantial trends since 2001 in terms of the percentages of
exceedances of guidelines and limit values (in case of PM10), or the
average concentrations (in case of both PM10 and PM2.5) for both cities
according to the official web sites of their AQ information systems
(www.airthess.gr for Thessaloniki and www.ytv.fi/eng/airquality for
Helsinki).

Table 1 presents the AQ and meteorological parameters used in
this study, as well as the percentage of incomplete data rows (defined
as the sets of data, for which at least one value is missing) per year.
The percentage of the latter ones has been overall low, with few
exceptions, e.g., time-series of 2001 for the Vallila station; however, it
should be noted that the minimum data capture criterion for PM10

data, i.e., more than 90% completeness within one year of data, was
fulfilled for all the years and stations under consideration, thus
fulfilling data quality criteria posed by the EU CAFE directive. In
addition, the availability of PM10 and PM2.5 for the case of Helsinki
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Table 1
AQ and meteorological parameters available for each station at Helsinki and
Thessaloniki. The column on the right-hand-side represents the percentages of the
incomplete data rows per year (2001, 2002 and 2003, respectively). The incomplete
data rows were defined as the sets of data, for which at least one value is missing from
at least one parameter. The AQ parameters in the table within brackets were calculated
on the basis of other parameters, i.e. CP=Coarse Particles=PM10−PM2.5, and
NO=Nitrogen Monoxide=NOX−NO2.

Station Air quality Meteorological % of incomplete
data rows
(per year)

Kallio
(urb./back.)

NO2, NOX, (NO), O3,
PM10, PM2.5, (CP)

Temperature, relative
humidity, wind direction,
wind speed

5.79
3.74
2.87

Vallila
(urb./traf.)

CO, NO2, NOX, (NO),
PM10, PM2.5, SO2,
(CP)

Temperature, relative
humidity, wind direction,
wind speed

43.01
2.33

18.28
Sindos
(urb./back.)

CO, NO2, O3, PM10,
SO2

Temperature, relative
humidity, wind direction,
wind speed

19.27
4.06

20.91
Agias Sofias
(urb./traf.)

CO, NO2, O3, PM10,
SO2

Temperature, relative
humidity, wind direction,
wind speed

13.16
8.44

31.31
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made possible the distinction between fine (PM2.5) and coarse
particles (PM10–PM2.5). This was appropriate, since these PM mass
fractions are commonly associated with different emission source
categories and atmospheric processes. It is therefore useful also in the
modelling to separate these particulate matter measures.

Furthermore, the sine and cosine transformation were employed
for theWind Direction, while for temporal parameters, such as Month
and Day of Week, similar transformations were used:

sin x = sinð2πðx−min xð Þ= max xð Þ–min xð Þð Þ

cos x = cosð2πðx−min xð Þ= max xð Þ–min xð Þð Þ:

In the above equations x is a temporal variable, and ‘sinx’ and ‘cosx’
the corresponding transformations (i.e. these are not equal to sin(x)
and cos(x)). Finally, incomplete data rows were excluded from the
data sets, as well as clearly erroneous values.

2.4. The principal component analysis (PCA) method

PCA is a CI method originating from multivariate statistical
analysis, which allows for the identification of the major factors
within a certain multidimensional dataset. It may also be applied for
expressing the data in a way proper for highlighting their similarities
and differences (Jolliffe, 2002). Although the capabilities of PCA are
limited, as it represents a linear combination of parameters, it has
been successfully applied for several tasks in the AQ domain during
the last decades (Smeyers-Verbeke et al., 1984; Chavent et al., 2008),
and is capable of identifying interrelations within the studied
parameters. For the purposes of this study, PCA was considered as a
tool capable of providing an overview of the interdependencies and
variability of data, thus allowing for extracting information on the AQ
mechanisms and for the comparison of the air pollution profiles of the
cities under consideration.

On this basis, we applied the PCA method for the data described in
Table 1, and resulted in a new set of uncorrelated variables, the
principal components (PCs). By selecting the most significant PCs, it is
possible to identify certain relationships between the parameters of
the dataset under consideration for both studied areas, and reach to
conclusions concerning AQ characteristics for each area, as well as the
possible emission sources for some of the pollutants under consid-
eration. PCA was combined with the parallel analysis criterion
(Franklin et al., 1995) in order to identify the number of significant
PCs, while the Varimax Rotation method (Lewis-Beck, 1994) was
applied in order to allow for an easier interpretation of the results.

2.5. The artificial neural networks — multi-layer perceptron (ANN-MLP)
models

ANN-MLP models are flexible capable of approximating any
smooth differentiable function, thus being particularly applicable
when modelling complex non-linear processes. ANN-MLP models
have been utilized for several tasks within the AQ domain, such as
forecasting, function approximation and pattern classification (e.g.,
Gardner and Dorling, 1999, Kukkonen et al., 2003).

2.5.1. Data preparation for the ANN-MLP training
In the current study, ANN-MLP models have been applied in order

to forecast daily mean concentrations of particulate matter in the
cities of Thessaloniki and Helsinki. Daily mean values are selected as
forecasted variables instead of hourly values, due to the requirements
issued by EU legislation (Directive 2008/50/EC). The dataset of daily
resolution is derived by the corresponding ones of hourly resolution
that was presented in Section 2.3. The variables evaluated as potential
inputs for the ANN-MLP models have been suggested by previous
studies (Kukkonen et al., 2003; Niska et al., 2005) and our
understanding of atmospheric processes, whereas data availability
limitations needed to be taken into account. On this basis, we have
evaluated (i) the concentration values of pollutants being monitored:
daily mean, minimum and maximum hourly averaged concentrations
at each station and (ii) the mean, minimum and maximum hourly
averagedmeteorological values of temperature, relative humidity and
wind speed, in a day. Two kinds of meteorological input values were
also used: values measured during the day when the forecast is
produced (denoted as T) and those on the next day (T+1). The latter
ones are used as proxy variables of the meteorological forecasts. In an
actual application of this method, one would use meteorological data
forecasted using a numerical weather prediction model (Niska et al.,
2005).

Furthermore, days with less than 12 h of recordings and 4
continuous hours of missing data are excluded from the training
and testing process of the ANNs. Then, the data are normalized by
applying variance scaling and are split into a training set (2 years of
data) and test set (1 year of data). In the next step, and for reasons of
completeness, all 3 possible data combinations are evaluated (i) Data
Set 1 — DS1: years 2002 and 2003 used for training and year 2001
used for testing; (ii) Data Set 2 — DS2: years 2001 and 2003 used for
training and year 2002 used for testing; (iii) Data Set 3 — DS3: years
2001 and 2002 used for training and year 2003 used for testing. The
ANN-MLP models were implemented by using the Neural Networks
toolbox for Matlab, as well as the Mtools for Matlab provided by the
Group of Environmental Informatics (Dept. of Environmental Science,
University of Eastern Finland).

2.5.2. Selection of input variables for the ANN-MLP models
The selection of input variables for an ANN-MLP forecasting model

is a key issue, as irrelevant or noisy variables may have negative
effects on the training process, resulting to an unnecessarily complex
model structure and poor generalization power. In earlier studies,
several different input selection algorithms have been applied
(Eleuteri et al., 2005; Kohavi and John, 1997; Niska et al., 2006).
Moreover, sensitivity analysis, correlation analysis, multi-objective
genetic algorithms and information geometric approaches have been
applied in order to identify the optimal set of model inputs. However,
these methods have their own advantages and disadvantages,
therefore suitability should be carried out in case-specific analysis.
In the current paper, the selection process of the input variables was
based on the performance of actual regression models (linear and
ANN regression models).
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More specifically, the possible input variables of themodels are the
ones described in Section 2.5.1. The final selection is based on a novel
hybrid optimization procedure followed in this study that involved a
grid search algorithm and the actual performance (Index of
Agreement, IA, see Appendix A) of LIN-REG and ANN-MLP models
used as the objective function. During the selection process a large
number of models are being developed, each one using different input
variables, where all variable combinations are tested. The comparison
between models performance is based on the 95% confidence
intervals of the IA that results from 1000 repetitions of the calculation
procedure via 1000 bootstrap samplings. Bootstrapping is a method
which can be applied in order to determine whether we can trust the
validity indicators, especially when using ANNs, where the output
depends on the random initializations of weights. Furthermore, the
bootstrapping is a non-parametric method and does not require any
strong assumptions about the process or modelling problem (Efron
and Tibshirani, 1993).

The selection process can be separated into two phases. During the
first one, the objective function used for themodel selection is derived
by the performance of LIN-REG models. The search for potential input
variables identifies the best possible predictors; however, due to the
limited capability of an LIN-REGmodel to simulate complex processes
the selection is probably not the optimum one. Therefore, during the
second phase we make use of ANN-MLP models in order to evaluate
the selection made during the first phase, and improve it if possible by
further introducing input variables to the model.

On this basis, not only all available parameters were tested as
candidates for becoming the input parameters of the ANNmodels, but
this test was repeated for a large number of times in order to assure
that their selection was not biased. Furthermore, we experimented
with various ANN-MLP architectures by running the selection process
with different number of neurons (from N/2−2 up to N/2+2, where
N is the number of input variables), although we restricted the
number of hidden layers to one. Finally, the selection process was
repeated for all three datasets (DS1, DS2 and DS3), and the input
variables resulting to best performing models were included at the
final models.

This approach does not mathematically prove that the final ANN-
MLP models constructed are the ones with the best performance, i.e.
correspond to the global minimum of the error surface. Nevertheless,
the developed hybrid method (being a mixture of linear and non-
Table 2
Basic statistics for the AQ and meteorological parameters available for each station at Helsi

Helsinki, Kallio 2001–2003 (data rows: 26,233)

Pollutant Min Max Mean Std

NO2 (μg/m3) 0 143.0 24.3 15.7
NOX (μg/m3) 0 397.0 34.7 32.6
O3 (μg/m3) 0 156.0 46.8 23.8
PM10 (μg/m3) 0 157.2 16.3 12.8
PM2.5 (μg/m3) 0 81.3 8.5 6.9
Temp (°C) −31.0 30.5 5.6 10.2
RH (%) 17.0 100.0 76.0 17.8
WS (m/s) 1.0 15.4 4.4 2.1

Helsinki, Vallila 2001–2003 (data rows: 26,228)

Pollutant Min Max Mean Std

CO (mg/m3) 0 1.7 0.3 0.2
NO2 (μg/m3) 0 137.1 28.1 17.5
NOX (μg/m3) 0.8 618.0 50.6 50.5
PM10 (μg/m3) 0 191.0 20.0 16.0
PM2.5 (μg/m3) 0 91.6 9.6 7.8
SO2 (μg/m3) 0 59.0 4.1 5.3
Temp (°C) −31.0 30.5 5.6 10.2
RH (%) 17.0 100.0 76.0 17.8
WS (m/s) 1.0 15.4 4.4 2.1
linear models), suggests an automated computational procedure, i.e.
an algorithm, that certainly leads to quantifiable better results in
terms of the performance evaluation of ANN_MLP models. This is
supported by the fact that the performance of the resulting models is
among the best ones reported in literature for daily averaged PM
concentrations forecasting with the aid of CI methods.
2.5.3. ANN-MLP specifications and evaluation
Concerning the ANN-MLP model specifications and the way that

their results are evaluated, it should be mentioned that the training
process of the ANN-MLP models was based on the resilient back-
propagation algorithm. Furthermore, the hyperbolic tangent sigmoid
transfer functionwas used for the hidden layer and the linear function
for the output layer. The evaluation of the final forecastingmodels was
based on statistical indices, such as the IA, correlation coefficient (R),
root mean square error (RMSE) and the Cohen's kappa (Cohen, 1960),
also known as KI. For the latter index the forecasted concentrations
(numerical) were transformed into a binary variable indicating
exceedances (0: no, 1: yes) of the PM limit values. More details
about the statistical indices are included in the Appendix A.
3. Results and discussion

3.1. Data presentation

The data used in this study corresponded to the time period 2001–
2003. Table 2 presents basic statistics about the parameters studied at
both cities.

The urban traffic stations demonstrated higher concentrations of
pollutants, with the exception of O3, for which concentrations were
found to be higher at the urban background stations. Low concentra-
tions of O3 at the roadside stations were caused by the depletion of
ozone in the oxidation of traffic-originated nitrogen oxides. The PM10

concentrations at the stations in Thessaloniki were much higher
compared to those at the stations in Helsinki; mean values were found
to be 2–3 times higher in Thessaloniki, while the ratio of the mean
value to standard deviation was similar in both cities. Fig. 2 presents
the hourly concentrations of PM10 at the selected urban traffic stations
in Helsinki and Thessaloniki, i.e. Vallila and Agias Sofias, respectively.
nki and Thessaloniki.

Thessaloniki, Ag. Sofias 2001–2003 (data rows: 26,269)

Pollutant Min Max Mean Std

NO2 (μg/m3) 0 232.0 48.7 28.5
CO (mg/m3) 0 12.3 1.6 1.1
O3 (μg/m3) 0 200.0 40.9 32.8
PM10 (μg/m3) 1.0 431.0 65.9 40.3
SO2 (μg/m3) 0 234.0 25.5 24.3
Temp (°C) −6.2 37.8 16.9 8.4
RH (%) 16.0 103.0 61.8 17.4
WS (m/s) 0 9.8 2.0 1.4

Thessaloniki, Sindos 2001–2003 (data rows: 26,243)

Pollutant Min Max Mean Std

CO (mg/m3) 0 2.2 0.4 0.2
NO2 (μg/m3) 0 163.0 18.5 15.5
O3 (μg/m3) 0 173.0 59.5 39.3
PM10 (μg/m3) 1.1 379.0 50.0 32.0
SO2 (μg/m3) 0 187.0 11.6 16.0
Temp (°C) −12.1 36.3 15.4 8.6
RH (%) 15.0 105.0 74.7 23.1
WS (m/s) 0 11.5 2.3 1.7
– – – – –



Fig. 2. Hourly PM10 concentrations (μg/m3) for the traffic stations of Vallila in Helsinki (left) and Agias Sofias in Thessaloniki (right) during the time period 2001–2003.
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3.2. Inter-comparison of the air pollution for Helsinki and Thessaloniki

PCA was applied to the data recorded at each one of the stations
under consideration. In all cases, 4 PCs were identified by the parallel
analysis criterion to correspond to non-random variation. The results
of PCA are summarized in Table 3, where only the most significant PC
contributions (PC coefficientsN0.2) are presented. The contribution of
a variable to a PC can be either positive or negative, depending on the
sign of the corresponding PC coefficient.

The first PC (PC1) is similar for all stations, corresponding to 20%–
26% of the overall data variations. PC-1 consists of positive contribu-
tions of AQ parameters associated with traffic-originated emissions
(CO, NO2, PM10, PM2.5 and SO2), and negative contributions of O3

(which is consumed during the oxidation of traffic-originated NO)
and wind speed. Furthermore, the percentage of the overall data
variation explained by this PC is higher for the traffic stations (Vallila
and Ag. Sofias) and smaller for the urban background stations (Kallio
and Sindos), indicating that the data variations expressed by this PC
can be attributed mainly to Local Traffic, which may thus be identified
as the major local pollution source category in both cities.
Table 3
PCA results for the stations in Helsinki (Kallio and Vallila) and Thessaloniki (Sindos and Ag. S
as the overall data variation percentage explained by the particular PC. The percentages wit
(available only for the PCs that remained unchanged for the seasonal subsets).

PC1 PC

Kallio % 20.39 (21.09–25.70) 19
(+) NO2, CP, PM2.5 CP

(−) O3, WS RH
Vallila % 24.12 (21.26–28.84) 14

(+) CO, NO2, CP, PM2.5, SO2 CP

(−) WS RH

Sindos % 21.58 (16.78–23.73) 19
(+) CO, NO2, PM10, SO2 O3

(−) O3, WS SO

Ag. Sofias % 26.14 (24.02–31.66) 16
(+) CO, NO2, PM10, SO2 O3

(−) O3, WS SO

Comments
on PCs

Positive contribution of all air quality parameters correlated with
local traffic and negative contributions from O3 and wind speed

Pos
neg
The second PC is characterized mostly by positive contributions of
O3, coarse particles (for the stations in Helsinki) and temperature, as
well as negative contributions of relative humidity and SO2 (for the
stations in Thessaloniki). The percentages of data variation explained
by this PC ranges from 15% for traffic stations up to 20% for urban
background stations. The contributions of the variables on the
particular PC, indicate the influence of the O3 formation mechanism
(mostly for Thessaloniki), and the importance of re-suspended coarse
particles (for Helsinki), while the contribution of SO2 concentrations
can be attributed to central heating (for Thessaloniki). The high
concentrations of re-suspended coarse particles from street and road
surfaces in Helsinki occur mainly in spring and summer; this explains
the correlations with temperature (at both stations) and partly with
O3 concentrations that are commonly higher in spring and summer.
Thus, this PC expresses the specific seasonal characteristics within the
data.

Although, the 3rd and 4th PCs indicated some similarities, they
cannot be directly associated to a particular atmospheric mechanism
or emission source category, with the exception of the 4th PC for the
Sindos station, where SO2 concentrations are associated with certain
ofias). Contributions (positive or negative) are indicated for each PC and station, as well
hin the brackets correspond to the yearly variations of the aforementioned percentage

2 PC3 PC4

.80 (13.24–19.76) 14.69 13.90
,O3, Temp PM2.5, O3,

Temp
NO2, PM2.5, CP,
sinWD, WS

cosWD Temp
.68 (13.20–19.06) 13.14 12.27
, Temp CO, CP,

cosWD,
WS

PM2.5, SO2,
sinWD

PM2.5,
Temp

.13 (15.72–31.25) 22.48 11.02
, Temp CO, NO2,

RH
SO2, sinWD

2, RH, cosWD O3, Temp,
WS

.73 (13.18–23.31) 16.12 18.32
, Temp O3, Temp O3, WS
2, RH, WS, cosWD sinWD,

cosWD
RH, sinWD

itive contributions of CP, O3 and Temperature —

ative contributions SO2 and wind directions
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wind direction, a fact that can be attributed to emissions originating
from the industrial area located to the North of Sindos, thus indicating
pollution transportation at local scale.

Additionally, PCA was applied to subsets of the initial data separated
by season of the year (spring, summer, autumn andwinter). Throughout
this process it becameevident that thefirst twoPCs couldbe identified in
all subsets, indicating the same contributions (and underlying atmo-
spheric and emission mechanisms) of air pollution and meteorological
parameters for all seasons of the year. Table 3 presents the variation of
the percentage explained by each PC (indicated within brackets). The
first PC, related to local traffic, indicated theminimumpercentageduring
summers and themaximumduringwinters, a fact thatwas expecteddue
to (i) the more unfavourable dispersion conditions in winter and (ii)
overall slightly smaller amount of the traffic during the summer periods,
compared to winter ones. During the summer period, the frequency of
long-range PM transported episodes (that tend to statistically reduce the
percentage contribution of local pollution) is higher both in Greece, due
to long-range transported dust and wild-land fire plumes (Lazaridis
et al., 2008; Kaskaoutisa et al., 2008), aswell as in Finland, mainly due to
wild-land fire plumes (Sofiev et al., 2009).

The second PC (PC-2), characterized by specific seasonal char-
acteristics, demonstrated a minimum percentage during the winter
period and a maximum percentage during summer, a fact that can be
attributed to two seasonal AQ profiles: the increased O3 formation
during the summer period (mostly for Thessaloniki) and the release of
re-suspended coarse particles especially in spring (for Helsinki). The
yearly variations of percentages explained by each PC reinforce the
initial characterization of the PCs as Local Traffic (PC-1) and Specific
Seasonal Characteristics (PC-2).
Table 4
Sets of input variables that were selected for the ANN-MLP models for the forecasting of PM
minimum and maximum hourly averaged values in a day, while sin and cos refer to the sine
meteorological input values are used: values measured during the day, when the forecast i

Station Pollutant Input variables selected

TIME AQ

Kallio PM10 Month (sin, cos)
Weekday (sin, cos)

NO2 (min)
NO (mean, m
O3 (max)
PM10 (mean

Kallio PM2.5 NO2 (min)
O3 (mean, m
PM10 (min)
PM2.5 (mean

Kallio CP Month (sin, cos)
Weekday (sin)

NO2 (mean)
O3 (max)
PM2.5 (min)
CP (mean, m

Vallila PM10 Month (cos)
Weekday (sin, cos)

CO (mean)
NO2 (min)
NO (mean)
PM10 (mean

Vallila PM2.5 Month (sin) CO (mean)
NO2 (mean,
NO (max)
PM10 (min)
PM2.5 (mean
SO2 (min, m

Vallila CP Month (sin, cos)
Weekday (sin, cos)

CO (min, ma
NO2 (max)
NO (mean, m
CP (mean)

Sindos PM10 Month (cos)
Weekday (sin, cos)

CO (mean, m
NO2 (min, m
O3 (mean)
PM10 (mean
SO2 (mean,

Ag. Sofias PM10 Month (cos)
Weekday (sin)

NO2 (min, m
O3 (max)
PM10 (mean
The overall percentage of the data variations that PCA identified as
non-random, ranged from 65% to 75%, expressed by 4 PCs. Local Traffic
was found to be responsible for approximately 25% of the data
variations for both cities, while 15–20% was characterized as Specific
Seasonal Characteristics, consisting of different mechanisms and
sources for each city.

However, a significant percentage of the data variations (PC-3 and
PC-4) could not be associated to certain air emission source categories
or air pollution processes, while 25%–35% of the data variations were
identified by PCA as random. These findings suggest that a significant
amount of the data variations requires additional analysis, in order to
reveal the importance and relative influence of each parameter to the
AQ characteristics of the studied areas.

A major limitation of the PCA method is that it is not capable of
resolving strongly non-linear relationships. Clearly, some physical
interpretation of the PCs is also required, and it is not in all cases a
straightforward task to associate these reliably with specific source
categories or processes. We have therefore continued the analysis of
the AQ andmeteorological datasets by applying ANNmodels, with the
additional aim of developing efficient operational AQ forecasting
models for PM10 and PM2.5 (wherever the latter being available).

3.3. Forecasting of PM10 and PM2.5 using the ANN-MLP models

3.3.1. Selection of input variables for the ANN-MLP models
On the basis of the procedure presented in Section 2.5.2, the most

appropriate input variables, i.e., the ones leading to the best
performing ANN-MLP forecasting models, were selected. The number
of the input variables during the first phase (LIN-REG) of the selection
concentrations at Helsinki and Thessaloniki. The mean, min and max refer to the mean,
and cosine transformations of the corresponding variables (Section 2.1). Two kinds of

s produced (denoted as T) and those of the next day (T+1).

Total

MET (T) MET (T+1)

in, max)

, max)

RH (min)
WS (mean, max)
WD (sin, cos)

RH (T+1)
WS (T+1)

18

in)

)

Temp (mean)
RH (mean, max)
WS (max)
WD (cos)

Temp (T+1)
WS(T+1)

12

in, max)

RH (mean, max) Temp (T+1)
RH(T+1)

13

)

Temp (max)
RH (min)
WS (max)

RH (T+1)
WS (T+1)t

12

max)

, min)
ax)

WD (cos) WS (T+1) 12

x)

ax)

Temp (mean)
RH (max)
WD (sin)

RH (T+1)
WS(T+1)

15

ax)
ax)

, min)
max)

Temp (mean)
RH (min)
WS (max)

Temp (T+1)
RH(T+1)
WS (T+1)

18

ax)

)

Temp (min)
RH (mean)
WS (min, max)

Temp (T+1)
WS (T+1)

12
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process ranged from 5 to 7, whereas during the second phase the
input variables were increased to 12–18 (ANN-MLP), depending on
the station and PM mass fraction to be forecasted. These results
suggest that the use of ANN-MLP models in the selection process,
improved the performance of themodels, by introducing further input
variables. The latter ones had been evaluated by LIN-REG models
without any improvement in terms of performance. The results are
presented in Table 4.

The differences at the input variables provide with further insight
concerning the mechanisms responsible for PM concentrations. In
particular, the number of input variables required for the forecasting
of daily mean PM10 concentrations at the urban background stations
(Kallio and Sindos) is larger than the ones required for urban traffic
stations (Vallila and Agias Sofias), while there are six common input
variables in all four cases: NO2min (minimum hourly averaged NO2

concentration in a day), PM10mean (mean PM10 concentration in a
day), WSmax (maximum hourly averaged wind speed in a day),
WSmean(T+1) (mean daily wind speed during the day for which the
forecasting is produced), cosMonth, sinWeekday. It is evident that this
suggests the forecasting of PM10 being closely associated with local
vehicular traffic. This mechanism is more evident for the traffic
stations, where PM10 are produced, compared to the urban back-
ground stations, and could explain the difference at the required input
variables.

Furthermore, for the stations in Helsinki for which separate
measurements of fine (PM2.5) and coarse (PM10–PM2.5) particles
were available, it became evident that the forecasting of coarse
particles (CPs) depends on input variables associated with the time of
the year and week (sinMonth, cosMonth, sinWeekday and cosWeek-
day), while this is not the case for PM2.5 forecasting. A physical
interpretation for this is that most of the PM2.5 concentrations are of a
long-range transported origin in the Helsinki Metropolitan Area
(Kauhaniemi et al., 2008), while coarse PM is mostly originated from
local vehicular traffic, and to the particle re-suspension of car tyre
origination. The highest concentrations of coarse particles (and PM10)
in Finland commonly occur in spring, mainly due to the suspension of
particulate matter from road and street surfaces, after snow has
melted and roads have dried up (e.g., Kukkonen et al., 2005).

3.3.2. Models for the forecasting of PM10 and PM2.5

The performance details of the final ANN-MLP models (IA and KI)
are presented in Table 5. Furthermore, the performance of LIN-REG
models, i.e. the reference models that make use of the same input
variables as the corresponding ANN-MLP ones, are presented in
Table 6. It should be noted that the IA is a parameter that varies from
0.0 (theoretical minimum) to 1.0 (perfect agreement between the
observed and predicted values). However, Karppinen et al. (2000b)
evaluated for comparison purposes the values of the IA assuming that
the predicted values correspond to a random number distribution,
with the same mean and the same overall variability as those of the
Table 5
Index of agreement and kappa index for the best performing MLP models for the forecastin

Model Index of agreement

DS1 DS2 DS3

Kallio (PM10) 0.818 0.837 0.870
Kallio (PM2.5) 0.837 0.820 0.870
Kallio (C.P.) 0.800 0.810 0.850
Vallila (PM10) 0.782 0.853 0.891
Vallila (PM2.5) 0.781 0.808 0.865
Vallila (C.P.) 0.737 0.840 0.866
Sindos (PM10) 0.856 0.882 0.817
Ag. Sofias
(PM10)

0.876 0.877 0.792

a Based on the current limit value (25 μg/m3).
b Based on the new limit value (20 μg/m3).
measured data. In such a case, the IA varied from 0.39 to 0.41. This
implies that for an extremely poor model (that predicts almost totally
random values) the IA is not equal to 0.0, but approximately 0.4.

The results presented in Tables 5 and 6 indicate that ANN-MLP
models outperform the corresponding LIN-REGmodels. However, it is
evident that the performance of the models, in both cases, also
depends on the dataset used, a fact that may be partly attributed to
the quality of the data, especially to the percentage of missing values
of the test set (see Table 1). Furthermore, the IA for models
corresponding to the urban background stations is not substantially
better compared to those of the traffic stations. In addition, the model
performance was not found to be systematically better for either city.
However, models for the forecasting of PM2.5 concentrations indicated
better performances compared to models for the forecasting of coarse
particles at the station of Kallio; nevertheless, therewas no substantial
difference in this respect at the station of Vallila. On the other hand,
the KI demonstrated a better model performance for Thessaloniki in
comparison to Helsinki; it should be mentioned, however, that the
value for the KI for Helsinki is not statistically reliable due to the small
number of exceedances (1 and 2 during the years 2001 and 2003
respectively).

The results presented in Tables 5 and 6 indicated that the ANN-
MLP models can be more successful for the forecasting of PM10 and
PM2.5, compared to LIN-REGmodels, since the statistical indices of the
first ones were systematically better compared to the ones of the
reference models. Furthermore, the performance of the ANN-MLP
models is very satisfactory and thus they can be considered for
operational use.

Concerning Thessaloniki, the models developed by Slini et al.
(2006) for the simulation of daily PM10 concentrations at Thessalo-
niki city centre (urban traffic station), indicated an IA equal to 0.574
for classification and regression tree models, and equal to 0.515 for an
ANN model, while in our paper the IA of the ANN model and for the
specific station reached 0.877. Concerning Helsinki, the model
performance parameters of the present study cannot be directly
compared with those achieved by Kukkonen et al. (2005). There are
several reasons for this: Firstly, the model evaluation work by
Kukkonen et al. (2005) considered the agreement of the sequential
hourly concentration time series of PM10, and not daily averaged PM10

concentrations as in the present study. Secondly, the input data used
for the ANN models was different: solely the meteorological data for
the next day (T+1) were used as input, and the set of meteorological
variables was substantially more extensive, compared to the present
study. Similar reasons also prohibit a direct comparison with the
results of Niska et al. (2005).

Coming to the values of the KI in AQ forecasting, it should be noted
that they are usually below 50% (Athanasiadis et al., 2005). On this
basis, the results obtained in the current paper indicate a better
overall performance than those in most of the previous published
studies. In particular, the comparison of the results obtained here with
g of mean daily concentrations of particulate matter.

Kappa index

DS1 DS2 DS3

0.000 0.564 1
0.000a/0.355b 0.418a/0.577b 0.279a/0.500b

0.665 0.495 0.614
0.000a/0.560b 0.685a/0.526b 0.454a/0.711b

0.579 0.621 0.590
0.509 0.541 0.528



Table 6
Index of agreement and kappa index for LIN-REG models (reference models) for the forecasting of mean daily concentrations of particulate matter, using the same input variables as
the corresponding ones of Table 5.

Model Index of agreement Kappa index

DS1 DS2 DS3 DS1 DS2 DS3

Kallio (PM10) 0.808 0.816 0.858 0.000 0.000 0.000
Kallio (PM2.5) 0.809 0.801 0.849 0.000a/0.000b 0.453a/0.577b 0.000a/0.324b

Kallio (C.P.) 0.782 0.771 0.815 – – –

Vallila (PM10) 0.756 0.832 0.865 0.665 0.426 0.319
Vallila (PM2.5) 0.764 0.794 0.851 0.000a/0.000b 0.460a/0.449b 0.451a/0.711
Vallila (C.P.) 0.729 0.812 0.833 – – –

Sindos (PM10) 0.805 0.816 0.858 0.504 0.501 0.480
Ag. Sofias
(PM10)

0.829 0.842 0.747 0.348 0.474 0.465

a Based on the current limit value (25 μg/m3).
b Based on the new limit value (20 μg/m3).

1274 D. Voukantsis et al. / Science of the Total Environment 409 (2011) 1266–1276
those of other models applied for the same areas (Tzima et al., 2009,
for Thessaloniki and Zickus et al., 2002, for Helsinki), demonstrated
that the KI achieved is the highest among the above mentioned
studies. This is expected to be mainly attributed to the novel input
parameter selection procedure.

Thus, for Thessaloniki, Tzima et al. (2009), applied a number of CI
and Machine Learning methods, including ANN-MLP, for the estima-
Fig. 3. ANN-predicted versus observed values of PM10 (μg/m3) for DS3, i.e. forecasting of the
line to the least-square fit.
tion of mean daily PM10 concentration levels. Their analysis covered a
different location and a longer time interval, in comparison to the
current study; however, it addressed a data set with a similar number
of exceedances per year as in our paper. The highest performances, in
terms of the KI, were obtained with ANN-MLP and Support Vector
Machine models (KI: 0.49 and 0.51, respectively), whereas in the
present study the best performance of the ANN-MLP model reached a
data for the year 2003. The dashed line corresponds to perfect fit (y=x), while the solid

image of Fig.�3
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KI equal to 0.62, although this result was achieved on the basis of a
data set that was smaller, and thus there were less exceedances, in
comparison to the data used by Tzima et al. (2009). The latter authors
improved the performance of their models by applying a weighted KI
scheme, thus suggesting a direction of future research.

Concerning Helsinki, Zickus et al. (2002), estimated the perfor-
mance of four Machine Learning Algorithms in the Helsinki area for
the estimation of mean daily PM10 concentration levels. Their analysis
covered different locations and time intervals in comparison to the
current study, and addressed a data set with a larger number of
exceedances (10) in comparison to the ones addressed in the present
paper (3). Their estimated equivalent of the KI (called in their paper
the Index of Success), ranged between 0.38 and 0.43 for ANN models,
while the best performance that they were able to achieve was an
index equal to 0.47 corresponding to the multiple adaptive regression
splines method (MARS). This performance was equivalent to the one
achieved in the current study, although the latter one was obtained
with the data that contained a substantially lower number of actual
exceedances. This indicates that the methodology applied in this
study results in a relatively better performance.

Fig. 3 presents the predicted versus the observed concentration
values for the PM10models for the year 2003. In the case of Helsinki,
the PM10 values are much lower compared to those of Thessaloniki;
this also contributes to overall lower values of RMSE in case of
Helsinki. The forecasting models corresponding to the urban/traffic
stations (Vallila and Agias Sofias) of the two cities indicate wider
distribution of the predicted PM10 concentrations. The concentra-
tions of certain episodic days for the case of Thessaloniki are not
properly forecasted. These days correspond to high PM10 concen-
trations (N180 μg/m3) in the Metropolitan Area of Thessaloniki, in
April 2003, probably due to long range transport, as the specific
pollutant demonstrates high values in other monitoring sites of the
area. The data-driven model used in this case is not capable of
properly forecasting long range transported episodes, as the latter
require additional parameters, not available in the frame of our
study.

4. Conclusions

On the basis of the requirements issued by the European directive
(CAFE — 2008/50/EC), concerning the need for a common framework
of methods and criteria that will allow for a direct comparison of the
AQ in different member states, we have proposed a data-driven
methodology consisting of CI methods in order to inter-compare and
forecast AQ parameters. We have applied this method for the case of
two European cities located in the northern and southern parts of
Europe, i.e., Helsinki, Finland and Thessaloniki, Greece, respectively.
The CI methods chosen for the aforementioned tasks were PCA and
ANNs. Additionally, we have implemented a novel hybrid method for
selecting the input variables of the ANN-MLP models. The latter one
was based on the evaluation of actual performance of ANN-MLP
models and contrary to some previous published studies, not on any
empirical criteria, that could possibly not be valid, e.g., due to data
quality issues.

The inter-comparison part of our paper was carried out by PCA,
and resulted in the calculation of two significant PCs and their
association with certain air emission source categories and air
pollution processes at each studied area. The first PC for both Helsinki
and Thessaloniki was identified to express data variations that
indicated mainly the influence of local vehicular traffic, similarly for
both cities, thus explaining approximately 25% of the overall data
variability. On the other hand, the second PC indicated major
differences between the two cities, in terms of air pollution
mechanisms and emission source categories affecting the quality of
breathed air. These mechanisms were mostly related with seasonal
effects, such as the formation and depletion of ozone during the
summer period in Thessaloniki, and the re-suspension of coarse
particles especially in spring in Helsinki. With the aid of this second
PC, half of the overall data variability could be satisfactorily explained
in both cities. The rest of the data variability could not be addressed
using this method, due to the complicated nature of the atmospheric
phenomena and their non-linear characteristics. A further research
step should therefore include tools capable of modelling more
complex and strongly non-linear processes.

The forecasting of distinct PM mass fractions was carried out by
ANN-MLP models. The input variables for the latter ones were
selectedwith the aid of a novel hybrid scheme-method, involving LIN-
REG and ANN-MLP models, aiming at the optimization of statistical
indices of the model performance, such as the IA and the KI. This
process resulted to optimized models indicating satisfactory perfor-
mances. The IA ranged from 0.73 to 0.89, depending mainly on the
quality and completeness of the datasets, while the KI for PM10 in both
cities reached 60%, indicating an outstanding operational level of AQ
forecasting. The latter result outperforms the corresponding results
obtained by some previous studies for the same areas, even if those
previous studies were based on more extensive data sets.

Although the mechanisms responsible for high PM concentrations
are different for the two cities under consideration, the performance of
themodels was unexpectedly similar and can be considered to be good,
based on the examination of various statistical model performance
measures. This is probably attributed mainly to the fact that the hybrid
scheme applied for the feature selection of the ANN model led to an
improved performance. Moreover, the application of a non linear
algorithm such as the ANN-MLP, and the multi-fold training and
validation scheme adopted, improved the accuracy of the forecasting
model, by covering a substantial part of the non-linearmechanisms and
factors influencing air pollution. As the next step, it may be even more
efficient to employ non-linear and self-trained methods for data
investigation, that may improve the results received with PCA, whereas
for the forecasting part it may be advantageous to investigate a hybrid,
multi-algorithm approach, that learns and adapts to the data set of the
AQ observations.
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Appendix A. Statistical indices

Model validation and performance is based on the following
statistical measures. pi refers to predicted values and ai to actual
(observed) ones, while with p and a are denoted the average of the
predicted and observed data, respectively.

Correlation coefficient: is a dimensionless indicator ranging from
−1 to 1, indicating linear correlation between the observed and
predicted values. The correlation coefficient is calculated by the
following equation

r =
SPAffiffiffiffiffiffiffiffiffiffi
SPSA

p

where SPA =
∑
i
ðpi−pÞ ai−að Þ

n−1
, SP =

∑
i
ðpi−pÞ2
n−1

and SA =
∑
i
ðai−aÞ2
n−1

:

The square of the correlation coefficient, also referred as coefficient
of determination (R2), is a statistical indicator usually used to maintain
compatibility with other studies. It is limited to the range [0,1].
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Root mean squared error (RMSE): is among the most commonly
used indicators when evaluating the performance of ANNs. It is
calculated by the following equation

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1−a1ð Þ2 + … + pn−anð Þ2

n

s
:

The RMSE preserves the units of the target variable; however
extreme error values have more effect than small errors, due to the
exponentiation.

Index of agreement (IA): is a dimensionless statistical indicator
calculated by the following equation

IA = 1−
∑
i
jpi−ai j2

∑
i

jpi−Pa j + jai−Pa jð Þ2 :

The IA expresses the difference between the predicted and
observed values. It is limited to the range 0...1, with high values
indicating good agreement between observations and predictions.

Kappa index (Cohen's kappa): is a statistical measure of inter-rater
agreement for qualitative (categorical) items, calculatedby the equation

k = Po−Peð Þ= 1−Peð Þ

where

Po = PFF + PTT

Pe = PFF + PTFð Þ⋅ PFF + PFTð Þ + PFT + PTTð Þ⋅ PTF + PTTð Þ

PTT the probability of predicting an episode, while there is an

episode.

PFF the probability not predicting an episode, while there is no
episode.

PFT the probability of predicting an episode, while there is no
episode.

PTF the probability of not predicting an episode, while there is
an episode.

Values of Cohen's kappa closer to 1 indicate good agreement,
between predicted and observed episodes.

References

Assael MJ, Delaki M, Kakosimos KE. Applying the OSPMmodel to the calculation of PM10

concentration levels in the historical centre of the city of Thessaloniki. Atmos
Environ 2008;42:65–77.

Athanasiadis I, Karatzas K, Mitkas P. Contemporary air quality forecasting methods: a
comparative analysis between statistical methods and classification algorithms. In
5th int'l conference on urban air quality measurement, modelling and manage-
ment, Valencia, Spain; 2005.

Barrero MA, Grimalt JO, Canto'n L. Prediction of daily ozone concentration maxima in
the urban atmosphere. Chemom Intell Lab Syst 2006;80:67–76.

Bordignon S, Gaetan C, Lisi F. Nonlinear models for groundlevel ozone forecasting. Stat
Meth Appl 2002;11:227–46.

Chavent M, Guιgan H, Kuentz V, Patouille B, Saracco J. PCA- and PMF-based
methodology for air pollution sources identification and apportionment. Environ-
metrics 2008;20(8):928–42.

City of Helsinki. Achievements and challenges of sustainable development in Helsinki;
2007 www.hel.fi. last visited 9 August 2010.

Cohen J. A coefficient of agreement for nominal scales. Educ PsycholMeas 1960;20(1):37–46.
Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman and Hall; 1993.
Eleuteri A, Tagliaferri R, Milano L. A novel information geometric approach to variable

selection in MLP networks. Neural Netw 2005;18(10):1309–18.
Franklin SB, Gibson DJ, Robertson PA, Pohlmann JT, Fralish JS. Parallel analysis: a

method for determining significant principal components. J Veg Sci 1995;6:99-106.
Gardner MW, Dorling SR. Neural network modelling and prediction of hourly NOx an

NO2 concentrations in urban air in London. Atmos Environ 1999;31:709–19.
Ibarra-Berastegi G, Sáenz J, Ezcurra A, Ganzedo U, de Argandoña JD, Errasti I, et al.

Assessing spatial variability of SO2 field as detected by an air quality network using
self-organizing maps, cluster, and principal component analysis. Atmos Environ
2009;43(25):3829–36.

Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer; 2002.
Kalapanidas E, Avouris N. Short-term air quality prediction using a case-based classifier.

Environ Modell Softw 2001;16:263–72.
Karatzas K, Kaltsatos S. Air pollution modelling with the aid of computational

intelligence methods in Thessaloniki, Greece. Simul Model Pract Theory 2007;15
(10):1310–9.

Karppinen A, Kukkonen J, Elolähde T, Konttinen M, Koskentalo T, Rantakrans E. A
modelling system for predicting urban air pollution, model description and
applications in the Helsinki metropolitan area. Atmos Environ 2000a;34(22):
3723–33.

Karppinen A, Kukkonen J, Elolähde T, Konttinen M, Koskentalo T. A modelling system
for predicting urban air pollution, comparison of model predictions with the data of
an urban measurement network. Atmos Environ 2000b;34(22):3735–43.

Kaskaoutisa DG, Kambezidisa HD, Nastos PT, Kosmopoulos PG. Study on an intense dust
storm over Greece. Atmos Environ 2008;42(29):6884–96.

Kauhaniemi M, Karppinen A, Härkönen J, Kousa A, Alaviippola B, Koskentalo T, et al.
Evaluation of a modelling system for predicting the concentrations of PM2.5 in an
urban area. Atmos Environ 2008;42(19):4517–29.

Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97:273–324.
Kolehmainen M, Martikainen H, Hiltunen T, Ruuskanen J. Forecasting air quality

parameters using hybrid neural network modeling. Environ Monit Assess 2000;65:
277–86.

Kukkonen J, Partanen L, Karppinen A, Ruuskanen J, Junninen H, Kolehmainen M, et al.
Extensive evaluation of neural network models for the prediction of NO2 and PM10

concentrations, compared with a deterministic modelling system and measure-
ments in central Helsinki. Atmos Environ 2003;37(32):4539–50.

Kukkonen J, Pohjola M, Sokhi SR, Luhana L, Kitwiroon N, Fragkou L, et al. Analysis and
evaluation of selected local-scale PM10 air pollution episodes in four European
cities: Helsinki, London, Milan and Oslo. Atmos Environ 2005;39(15):2759–73.

Lazaridis M, LatosM, Aleksandropoulou V, Hov Ø, Papayannis A, Tørseth K. Contribution
of forest fire emissions to atmospheric pollution in Greece. Air Qual Atmos Health
2008;1(3):143–58.

Lewis-Beck MS. Factor analysis and related techniques. London: Sage; 1994.
Manoli E, Voutsa D, Samara C. Chemical characterization and source identification/

apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos
Environ 2002;36:949–61.

Moussiopoulos N, Nikolaou K. Environment and sustainability indicators for Thessa-
loniki, Organisation for the Master Plan and Environmental Protection of
Thessaloniki978-960-98642-0-6; 2008.

Moussiopoulos N, Vlachokostas C, Tsilingiridis G, Douros I, Hourdakis E, Naneris C, et al.
Air quality status in Greater Thessaloniki Area and the emission reductions needed
for attaining the EU air quality legislation. Sci Total Environ 2009;407(4):1268–85.

Nagendra SM, Khare M. Artificial neural network approach for modelling nitrogen
dioxide dispersion from vehicular exhaust emissions. Ecol Modell 2006;190:
99-115.

Niska H, Rantamäki M, Hiltunen T, Karppinen A, Kukkonen J, Ruuskanen J, et al.
Evaluation of an integrated modelling system containing a multi-layer perceptron
model and the numerical weather prediction model HIRLAM for the forecasting of
urban airborne pollutant concentrations. Atmos Environ 2005;39:6524–36.

Niska H, Heikkinen M, Kolehmainen M. Genetic algorithms and sensivity analysis
applied to select inputs of a multi-layer perceptron for the prediction of air
pollutant time-series. Lect Notes Comput Sci 2006;4224:224–31.

Oanh NTK, Thiansathit W, Bond T, Subramanian R, Winijkul E. Compositional
characterization of PM2.5 emitted from in-use diesel vehicles. Atmos Environ
2010;44(1):15–22.

Sillanpää M, Saarikoski S, Koskentalo T, Hillamo R, Kerminen V-M. PM10 monitoring
and inter-comparison with the reference sampler in Helsinki, report 2002. 14+11
pp., available at Finnish Meteorological Institute and Helsinki Metropolitan Area
Council; 2002 www.fmi.fi/kuvat/FINal_PM_Report.pdf.

Slini T, Kaprara A, Karatzas K, Moussiopoulos N. PM10 forecasting for Thessaloniki,
Greece. Environ Modell Softw 2006;21:559–65.

Smeyers-Verbeke J, Den Hartog JC, Dehker WH, Coomans D, Buydens L, Massart DL. The
use of principal components analysis for the investigation of an organic air
pollutants data set. Atmos Environ 1984;18(11):2471–8.

Sofiev M, Vankevich R, Lotjonen M, Prank M, Petukhov V, Ermakova T, et al. An
operational system for the assimilation of satellite information on wild-land fires
for the needs of air quality modelling and forecasting. Atmos Chem Phys 2009;9:
6483–513.

Tzima F, Karatzas K, Mitkas P, Karathanasis S. Using data-mining techniques for PM10
forecasting in the metropolitan area of Thessaloniki, Greece. Proc of the 20th int
joint conf on neural networks, Orlando; 2007. p. 2752–7.

Tzima F, Niska H, Kolehmainen M, Karatzas K, Mitkas P. An experimental evaluation of
ZCS-DM for the prediction of urban air quality, in information technologies in
environmental engineering. Proc of the 4th international ICSC symposium on
information technologies in environmental engineering, Thessaloniki; 2009.
p. 291–304.

Voutsa D, Samara C, Kouimtzis T, Ochsenkuhn K. Elemental composition of airborne
particulate matter in the multi-impacted urban area of Thessaloniki, Greece. Atmos
Environ 2002;36:4453–62.

Zickus M, Greig AJ, Niranjan M. Comparison of four machine learning methods for
predicting PM10 concentration in Helsinki, Finland. Water Air Soil Pollut 2002;2:
717–29.

http://www.hel.fi
http://www.fmi.fi/kuvat/FINal_PM_Report.pdf

	Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki
	Introduction
	Materials and methods
	The selected cities and their surrounding regions
	The common characteristics and differences of the selected cities
	The AQ and meteorological monitoring stations
	The principal component analysis (PCA) method
	The artificial neural networks — multi-layer perceptron (ANN-MLP) models
	Data preparation for the ANN-MLP training
	Selection of input variables for the ANN-MLP models
	ANN-MLP specifications and evaluation


	Results and discussion
	Data presentation
	Inter-comparison of the air pollution for Helsinki and Thessaloniki
	Forecasting of PM10 and PM2.5 using the ANN-MLP models
	Selection of input variables for the ANN-MLP models
	Models for the forecasting of PM10 and PM2.5


	Conclusions
	Acknowledgements
	Statistical indices
	References


