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Forecasting models based on stepwise multiple linear regression (MLR) have been developed for Athens and
Helsinki. The predictor variables were the hourly concentrations of pollutants (NO, NO2, NOx, CO, O3, PM2.5

and PM10) and the meteorological variables (ambient temperature, wind speed/direction, and relative
humidity) and in case of Helsinki also Monin-Obukhov length and mixing height of the present day. The
variables to be forecasted are the maximum hourly concentrations of PM10 and NOx, and the daily average
PM10 concentrations of the next day. The meteorological pre-processing model MPP-FMI was used for
computing the Monin-Obukhov length and the mixing height. The limitations of such statistical models
include the persistence of both the meteorological and air quality situation; the model cannot account for
rapid changes (on a temporal scale of hours or less than a day) that are commonly associated, e.g., with
meteorological fronts, or episodes of a long-range transport origin. We have selected the input data for the
model from one urban background and one urban traffic station both in Athens and Helsinki, in 2005.We have
used various statistical evaluation parameters to analyze the performance of the models, and inter-compared
the performance of the predictions for both cities. Forecasts from theMLRmodel were also compared to those
from an Artificial Neural Network model (ANN) to investigate, if there are substantial gains that might justify
the additional computational effort. The best predictor variables for both cities were the concentrations of NOx

and PM10 during the evening hours as well as wind speed, and the Monin-Obukhov length. In Athens, the
index of agreement (IA) for NOx ranged from 0.77 to 0.84 and from 0.69 to 0.72, in the warm and cold periods
of the year. In Helsinki, the corresponding values of IA ranged from 0.32 to 0.82 and from 0.67 to 0.86 for the
warm and cold periods. In case of Helsinki the model accuracy was expectedly better on the average, when
Monin-Obukhov length and mixing height were included as predictor variables. The models provide better
forecasts of the daily average concentration, compared with themaximum hourly concentration for PM10. The
results derived by the ANN model where only slightly better than the ones derived by the MLR methodology.
The results therefore suggest that the MLR methodology is a useful and fairly accurate tool for regulatory
purposes.
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1. Introduction

Pollution caused by particulate matter and nitrogen oxides is an
issue of increasing public concern, due to its recognized adverse
effects on human health. Numerous epidemiological studies have
established the associations between the above-mentioned pollutants
and daily excess in mortality (e.g., Dockery and Pope, 1994) and
morbidity (e.g., Kassomenos et al., 2008). European Union (EU) has
therefore established air quality standards for PM10, involving an
annual mean limit value of 40 μg m−3 and a 24-hourly concentration
limit (50 μg m−3) that is not to be exceeded more than a specified
number of times in a year. The air quality standards for NO2 state that
the maximum daily value must not exceed 200 μg m−3 for more than
18 times a year.

High NOx and PM10 concentrations are commonly measured in
most European cities. The causes of these high values can be (a) local
pollution sources, such as intensive traffic and small-scale combus-
tion, (b) natural sources of particles (e.g., dust, sea salt and wild-land
fires) (c) inefficient local atmospheric dispersion conditions (e.g.,
calm conditions, temperature inversions, etc.), and (d) synoptic
weather conditions that favor the long-range transport of pollutants,
especially particles (e.g., Vardoulakis and Kassomenos, 2008; Sofiev
et al., 2009). An analysis of selected PM10 episodes in four European
cities (Oslo, Helsinki, London andMilan) was carried out by Kukkonen
et al. (2005). This article also presented a classification of European air
pollution episodes. The best meteorological prediction variables were
found to be the temporal evolution of the temperature inversions and
atmospheric stability and, in some of the cases, wind speed.

http://dx.doi.org/10.1016/j.scitotenv.2010.12.040
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Numerous statistical models have been developed for forecasting
urban air quality. The currently available statistical models are
commonly neither applicable for predicting spatial concentration
distributions in urban areas (except for some specific model types,
such as the land-use regression models), nor for evaluating air
pollution abatement scenarios for future years (Kukkonen et al.,
2003). Deterministic statistical models are therefore more suitable for
forecasting over extended areas such as major urban agglomerations
and regional air quality. However, such models require precise input
data, e.g., on the emissions and meteorological conditions.

Statistical models can establish relationships between input
variables (predictors) and output variables (predictants), without
detailing the causes of these relationships. Stochastic, multiple linear
regression (Cordelino et al., 2001; Paschalidou et al., 2009) and neural
network models (Kukkonen et al., 2003) have been established and
shown to predict air pollutant concentrations with remarkable
success. Multivariate statistical models for predicting daily concen-
trations of NOx and PM10 have been previously applied in urban areas
in several studies (Ping Shi and Harrison, 1997; Comrie and Diem,
1999; Abraham and Comrie, 2004; Chaloulakou et al., 2003, 2005;
Kukkonen et al., 2003; Basurko et al., 2006; Lykoudis et al., 2008). On
the other hand comparisons between multivariate statistical and
neural network models indicated that neither type provide significant
improvements of the forecasting ability (Comrie, 1997). Although in
previous research statistical models have been used to forecast air
pollution levels, these were not tested simultaneously in areas with
different environmental and climatic conditions.

The main aims of this work were to construct accurate statistical
models to forecast the concentrations of NOx and PM10 based on
meteorological and air quality data, and to critically evaluate the
performance of such models. We have constructed linear predictive
models, using stepwise multiple regression (MLR) for two European
cities, Athens and Helsinki, and in addition applied Artificial Neural
Network (ANN)models. Themain reason for using the ANNmodelswas
to get a better insight on the usefulness of theMLRmethods, i.e., to find
out whether significantly more accurate results could be obtained with
the substantially more complex statistical methods.

The two selected cities have substantially different characteristics.
They are located in different climate zones (Mediterranean and sub-
arctic), in different terrain (a basin surrounded bymountains, and fairly
flat terrain), andhave clearly differentpopulations (4 and1 million) and
population densities. This study therefore provides insight on howwell
such statistical models could perform in substantially different urban
environments and climatic conditions.Moreover significant parameters
are identified not only providing a first means for predicting pollution
levels, but also facilitating the development of more sophisticated tools
for assisting environmental management and planning of future
activities in the two areas.

2. Data and methods

2.1. Description of the two cities

Athens (37°58′N and 23°43′E) is a major urban agglomeration, with
almost 4 million inhabitants and severe air pollution problems. It has
been found out that insufficient city planning and the topographical
features of the region surrounding the city enhance these problems.
Athens is located in a basin having an extent of almost 450 km2. The
direction of the main axis of the basin is SSW–NNE. There are high
mountains on three sides and the sea on one side of the basin.

The climate of Athens is Mediterranean; characteristic features
include hot and dry summers and mild winters. The prevailing winds
are from the Northern directions. The geography of the area does not
therefore favor an efficient dispersion of air pollutants (Ziomas et al.,
1995). Most of the local emissions of NOx and PM10 originate from
vehicular transport and industry. Natural sources, such as dust
transportation from Sahara desert (Athanassiadou et al., 2006) and
wild-land fires (Liu et al., 2009) play an important role in the
determination of PM levels in Athens, especially during the warm
period. During the cold season of the year, there are periods with very
light winds and temperature inversions that do not have the forcing to
clean the Athens basin (Kassomenos et al., 1999). There is also a
period of consecutive days called “Halkyon days” in winter, with
prevailing sunny and calm conditions that are responsible for the
accumulation of air pollutants in the basin.

Helsinki Metropolitan Area (60°10′N and 25°0′E) and its surround-
ing region are situated on a fairly flat coastal area by the Baltic Sea at the
latitude of 60°N (Kukkonen et al., 2005); the geographic extent is
approximately 743 km2 and the population is about 1 million inhabi-
tants. Because of the warming effect of the Gulf Stream and the
prevailing global circulation, the climate is relatively milder, compared
to many other areas in the same latitudes (Kukkonen et al., 2005). The
concentrations of NOx and PM10 at street level are dominated by
combustion, non-combustion and suspension emissions originating
from vehicular traffic and long-range transport (in case of PM).

2.2. Air pollution and meteorological data

Hourly average concentrations of NO, NO2, NOx, CO, O3, PM2.5 and
PM10 in 2005 were obtained from four stations, two for each city. The
stations selected represent urban traffic and urban background
environments. Specifically, for Athens, we used the station of Marousi
(classification urban traffic, UT), which is located in the vicinity of an
avenue with very high traffic during all days during all seasons and the
station of Zografou (urban background, UB), which is located in the
center of Athens, in anarea that is not in a vicinity of any significant road.

For Helsinki we used and the stations of Vallila (UT) and Kallio (UB).
The station of Vallila is situated in a park at a distance of 14 m from the
edge of the Hämeentie road. The average weekday traffic volume of
Hämeentie was 13,000 vehicles/day in 2001. The heights of the
buildings in the vicinity of the station, at the other side of theHämeentie
road and surrounding the park, range from 10 to 15 m. The Hämeentie
road is fairly wide; there are four lanes for cars and additionally two
lanes for trams. The station of Kallio is located at the edge of a sports
ground. The busiest streets in the vicinity of the station are
Helsinginkatu at a distance of 80 m and Sturenkatu at a distance of
300 m. The average weekday traffic volume of Helsinginkatu was
7800 vehicles/day in 2001.

The meteorological parameters for Athens have been measured at
the station of the National Observatory of Athens (NOA), located on the
top of a hill (at a height of 107 m above the sea level), and have been
found to be representative of the central urban area of the city
(Kassomenos et al., 1998).

For Helsinki, the meteorological data were processed by the
meteorological pre-processing model MPP-FMI (Karppinen et al.,
2000a). The MPP-FMI model utilises meteorological synoptic and
sounding observations, and its output consists of estimates of the
relevant atmospheric turbulence parameters (the Monin-Obukhov
length scale, the friction velocity and the convective velocity scale)
and the boundary layer height. The meteorological data from the
stations of Helsinki-Vantaa (about 15 km north of central Helsinki),
Helsinki-Isosaari (an island about 20 km south of central Helsinki) and
Jokioinen observatory (sounding data, about 115 km northwest from
Helsinki) were taken into account. Unfortunately, it was not possible to
use the MPP-FMI model in Athens, due to missing input data.

Using modeled instead of measured meteorological data for the
location of central Helsinki was preferred, as it has previously been
shown to be the best representative dataset with regard to this urban
area. This dataset also contains relevant derived turbulence and
boundary layer parameters, such as the Monin-Obukhov length and
the mixing height (Karppinen et al., 2000a). The meteorological and air
quality monitoring stations for both cities are presented in Fig. 1 a–b.



Fig. 1. Location of the air quality monitoring stations in (a) Athens and (b) Helsinki. The
abbreviations UT and UB refer to air quality stations in urban traffic and urban
background environments, respectively. The sites of Helsinki-Vantaa, Isosaari and
Kivenlahti mast are meteorological stations; Helsinki, Vantaa, Espoo and Kauniainen
are cities.
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For Athens, to avoid the discontinuity that would be caused by
using wind direction (WD), expressed in degrees, we used the Wind
Direction Index (WDI) (Lalas et al., 1982; Ordieres et al., 2004):

WDI = 1 + sin WD +
π
4

� �
: ð1Þ

The quality of the datasets was first examined. We did not use data
rows, for which one or more of the model input variables were
missing; these were categorized as missing data. The fraction of
missing data ranged from 3.5% to 16.0% for Athens and from 1.1% to
4.1% for Helsinki, respectively (depending on the station). For
instance, in case of PM10, the entry/missing data are for the cold
period at Marousi 157/25, Zografou 169/13, Kallio 180/2 and Vallila
176/6. For the warm period the respective data are for Marousi 175/8,
Zografou 173/10, Kallio 181/2 and Vallila 174/9.

We separated the datasets into two periods: a) the so-called warm
period, i.e., the half yearly period from April to September, and b) the
cold period, i.e., the half yearly period from October to March;
excluding January 1st. We randomly selected 25% of the final data of
each period to be used for the independent evaluation of the model,
and used the remaining 75% of the data for the training of the model.

2.3. Multiple linear regression analysis

Multiple linear regression analysis has been used in the field of air
pollution by several authors (Comrie and Diem, 1999; Barcenas et al.,
2005; Basurko et al., 2006; Kolehmainen et al., 2001). The general
form of multiple linear regression analysis is the following:

Yi = β0 + β1X1ι + β2X2ι + ::: + βpXpi + εi ð2Þ

where Y is the dependent variable (predictant), β0 is a constant
coefficient, β1, β2,….βp are the regression coefficients of the
independent variables X1, X2,…Xp (predictors) and ε is the residual
error (difference between observations and predicted values).

The assumptions required to apply multiple linear regression are:
(i) the predictor variables must be independent and (ii) the residual
errors εi must be independent and they have to be normally
distributed, with a vanishing mean and a constant variance (σ2).
The least squares method is a simple and widely preferred procedure
for the estimation of the parameters β1, β2,…βp.

We have employed a stepwise regression procedure to select the
independent variables that would result in the best possible model,
while at the same time ensuring statistical significance of the results.
In this method the best predictor variables, according to some
statistical criterion, are entered into the prediction equation, one after
the other in successive steps, until no other predictor variable meets
the criterion. At each step the variables already entered into the
equation are checked; i.e., if they still satisfy the statistical criterion.

In this specific case, the predictors entering the model were
selected to be the ones with the largest partial correlation with the
dependent variable. This procedure controls the selection of the
predictors in the regression model. In addition, the partial regression
coefficient of a predictor must be significant at the 0.05 level, and at
least 0.01% of its variance has to be independent of the other predictor
variables (tolerance value) in order to be selected (SPSS Inc., 2000).

In all cases, the distribution of residuals (e.g., the differences
between the observed and computed values of the dependent
variable) is normal. Normal probability plot is used to determine
whether the distribution of residuals matches a specified, in this case
normal, distribution.

In this study, regression models were developed for the maximum
hourly PM10 and NOx concentrations, as well as for the daily average
PM10 concentrations of the next day, separately for the cold andwarm
periods of the year. We used as independent variables the hourly
values of the various meteorological parameters and pollutants of the
present day. For instance, the independent variables representing
PM10 comprised of H0PM10, H1PM10,…,H23PM10, where the nota-
tions H0, H1,…H24 refer to the hour of the present day.

We performed the regression model computations for Helsinki in
two ways using, apart from the pollutant concentrations, (i) only the
measured meteorological variables, namely temperature, relative
humidity, and wind speed and direction (denoted as Case A) and
(ii) using also the selected turbulence and boundary layer parameters,
namely the Monin-Obukhov length and the mixing height, computed
using the MPP-FMI model (Case B).

In order to examine the results obtained by the MLR, we compared
them with already available results obtained by an Artificial Neural
Network (ANN)model. This ANNmodel (multi-layer perceptron) uses
the BFGS quasi-Newton algorithm (Dennis and Schnabel, 1983) for
training purposes. It uses 65% of thewhole dataset as a training set, and
10% as a testing set, in the training procedure. The trained model was
subsequently evaluated by an independent dataset, characterized as a
validation test; this data consistedof 25%of the overall dataset. Such an
evaluation against independent data was performed for both the MLR



1562 A. Vlachogianni et al. / Science of the Total Environment 409 (2011) 1559–1571
and the ANNmodels. The comparison of the results of the twomodels
(MLR and ANN) will be presented in the evaluation of the model
performance section, by means of Pearson correlation coefficients.

2.4. Evaluation of the methods

To evaluate the models we used a data processing program, which
is included in the Model Validation Kit (Basurko et al., 2006; Niska et
al., 2004, 2005). This includes several model performance measures
such as the R (Pearson correlation coefficient), NMSE (normalized
mean square error), FA2 (factor of two), FB (fractional bias) and FV
(fractional variance) (Basurko et al., 2006). We also used other
statistical model performance measures such as the MBE (mean bias
error), MAE (mean absolute error), RMSE (root mean square error),
and IA (index of agreement). These have been discussed, e.g. by
Willmott (1981) and Karppinen et al. (2000b).

Letting Oi be the observed and Pi the forecasted values, σCo
and σcp

are the respective standard deviations and O and P are the respective
means. The definitions of the statistical measures of the goodness of fit
used herein are the following:

ðiÞMBE = P−P ð3Þ

ðiiÞMAE =
∑
i
jOi−Pi j
N

ð4Þ

ðiiiÞRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i
ðOi−PiÞ2

N

vuuut
ð5Þ

ðivÞIA = 1−
∑
N

i
ðOi−PiÞ2

∑
N

i
ð jPi−O j + jOi−O j Þ2

ð6Þ

ðvÞR =
ðOi−Oi Þ:ðPi−Pi Þ

σPi
:σPo

ð7Þ

ðviÞNMSE =
ðPi−OiÞ2

OiPi
ð8Þ

ðviiÞFA2 =
∑
ι
ki

N
; ki =

1; ::if :::0:5≤ Pi
Oi

≤ 2

0; else
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ð9Þ

ðviiiÞFV =
σCo

−σCp

1
2 σCo

+ σCp

� � ð10Þ

ðixÞFB =
2 Pi−Oi

� �

Pi−Oi

: ð11Þ

Mean Biased Error (MBE) indicates the degree of overprediction
(MBEN0) or underprediction (MBEb0) of the observed concentra-
tions (Comrie, 1997). The observed σCo

andmodeled σcp concentration
standard deviations quantify the amount of the observed variance
captured by the model. The two commonly reported measures of
residual error, MAE and RMSE, summarise the difference between the
observed and modeled concentrations. Due to the power term in the
RMSE calculation, it is more sensitive to extreme values than MAE
(Gardner and Dorling, 2000).

IA is a relative and bounded measure that allows for cross-
comparisons between models, and is limited to the range of 0–1
(Lu, 2003).
The Pearson correlation coefficient between Pi and Oi, R, quantifies
the overall performance of the model (R), the coefficient of
determination (R2) and IA are measures that indicate similarity
between the model tendency and the observed one (Pastor-Barcenas
et al., 2005).

The Normalized Mean Square Error, NMSE, is an estimator of the
overall deviations between observed and predicted concentrations.
NMSE generally shows the most striking differences among the
models. If a model has a lowNMSE, then it performswell. On the other
hand, high NMSE values do not necessarily mean that the model is
completely wrong. The differences of peak values have a higher
weight on NMSE than the differences of other values (Willmott,1981).

The factor of two, FA2, gives the percentage of cases, in which the
values of the ratio Oi/Pi are in the range [0.5, 2] (Basurko et al., 2006).
Finally, the Fractional Variance, FV, is a normalized measure that
allows the comparison of differences between the predicted variance
and the observed variance. A model with FV=0 is a model whose
variance is equal to the variance of the observed values (Basurko et
al., 2006).

3. Results and discussion

We have first presented and interpreted physically the temporal
variations of the measured concentrations at the stations considered,
as part of the QA/QC of the data, and for understanding better the
behavior of the datasets that will be used as model input.

3.1. The diurnal and seasonal variation of the measured concentrations

3.1.1. Athens
The main sources of PM10 and NOx in Athens are the emissions of

2.5 million vehicles registered in the area, whereas domestic heating
in winter and light industrial activities in the southwestern parts of
the city are secondary sources. The most important sources of PM10

are local vehicular traffic, particulate matter from wild-land fires (Liu
et al., 2009), desert dust and sea salt.

The diurnal and seasonal variations ofmeasured NOx concentrations
in 2005 for cold and warm seasons are presented in Fig. 2 a–b for both
stations (urban traffic and urban background) in case of Athens. The
diurnal variation was presented as an average over the warm and cold
periods, respectively, including both weekdays and weekends. The
diurnal variation in the two stations reproduces the concentration peaks
in the morning and in the evening: these were found previously by
Kassomenos (2005). The evening peak occurs late (themaximum value
at 23:00), comparedwith the correspondingpeak inmostmajor cities in
Central and Northern Europe. The main explanation is associated to the
social and economic lifestyles, e.g., after 19:00hourpeople are returning
home after the commercial stores close for the night, while some other
people are going out for recreational purposes.

In case of Athens, there is no seasonal variability of the NOx

concentrations at the urban background station. On the contrary, at
the urban traffic station, there is an intensive seasonal variability, with
higher concentrations in winter and lower ones in summer. The latter
is due to both the reduction of the traffic flows during the summer
period (Kassomenos, 2005) and the increase of the photochemical
activity that reduces NOx and produces O3, since the area experiences
intensive solar insolation (Paschalidou and Kassomenos, 2004).

The diurnal variability of PM10 (Fig. 2 c) reflects the activities of the
people working around the sites; there is a peak of concentrations
during the rush hours at the urban traffic station and an almost
constant behavior after 11.00 at the urban background station. The
seasonal variability of PM10 at the urban background station (Fig. 2 d)
reveals spring and autumn peaks, probably due to the contribution of
natural sources (Borge et al., 2007). The seasonal variability at the
urban traffic station is not clear; the same result has also been
observed during 2001–2003 (Vardoulakis and Kassomenos, 2008).



Fig. 2. Diurnal and seasonal variations of NOx (panels a and b) and PM10 (c and d) concentrations in Athens in 2005.
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3.1.2. Helsinki
The concentrations of NOx and PM10 at street level are dominated

by vehicular emissions and in case of PM10, long-range transport.
There are occasional episodes of high PM10 concentrations caused by
long-range transport of anthropogenic pollution from Central and
Fig. 3. Diurnal and seasonal variations of NOx (panels a and b
Eastern Europe, and wild-land fires originating from Russia, Baltic
countries and Central Eastern Europe.

We have estimated the diurnal variations of the NOx concentra-
tions in Helsinki, at the urban traffic and background stations (Fig. 3 a).
The NOx concentrations are continuously higher at both stations from
) and PM10 (c and d) concentrations in Helsinki in 2005.

image of Fig.�2
image of Fig.�3


Table 1b
Statistical parameters of the predicted and observed daily average concentrations for
PM10, presented separately for the warm and cold periods, for Athens.

Daily average concentration of PM10

Statistical
parameters

Zografou UB Marousi UT

Predicted Observed Predicted Observed

Mean (μg m−3)
Warm period 15 34 48 46
Cold period 46 33 42 40

Max (μg m−3)
Warm period 56 96 110 174
Cold period 450 464 107 82

St. dev. (μg m−3)
Warm period 15 16 19 26
Cold period 75 59 22 18
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the morning rush hour (at 8:00) until the evening hours (approxi-
mately from 19:00 to 22:00). However, no distinct maxima during
rush hours, such as those in Athens, are detected. This behavior is
probably caused by the less severely congested traffic in Helsinki,
compared with Athens.

In case of the seasonal variations, higher NOx concentrations occur
in spring and autumn, and the minimum occurs in summer. This
variation is associated with the seasonal variation of the relevant
meteorological dispersion conditions; such as the more common
occurrence of stable and extremely stable low wind speed situations
during the winter half-year (Kukkonen et al., 2005) (Fig. 3 d).

The diurnal and seasonal variations of the PM10 concentrations are
presented in Fig. 3 c–d for Helsinki. The PM10 concentrations present a
similar behavior with the NOx concentrations (Aarnio et al., 2007).
R2

Warm period 0.80 0.50
Cold period 0.86 0.64

UB = urban background station, UT = urban traffic station, St. dev. = standard
deviation, R2 = coefficient of determination squared.
3.2. Statistical analysis of the observed and predicted values of the
dependent variables

We first examine the statistical significance of the correlations
between the dependent variables of the models and the various
predictors, as this is crucial in terms of the inclusion of these
predictors in the final stepwise regression models. Second, the model
performance is evaluated using an independent dataset that has not
been used in the setting of the values of these constants.

Descriptive statistics for both the observed values and for those
predicted by the regression model in case of Athens are presented in
Tables 1a–1b. The highest hourly averaged values in a day for both
pollutants considered have been presented in Table 1a, and the daily
average values for PM10 have been presented in Table 1b. The
corresponding statistical values in case of Helsinki have been
presented in Tables 2a–2b.

The coefficient of determination squared, adjusted for the number
of regressed points (R2) (Table 1a) of the highest hourly averaged
values in a day for both the warm and cold periods in Athens ranged
from 0.37 to 0.65. The model forecasted with a relatively higher
accuracy the NOx concentrations during the warm period and the
PM10 concentrations during the cold period, compared with the
corresponding forecasts for the other period.

The coefficient of determination squared of the daily average
concentrations ranged from 0.50 to 0.86, for both the warm and cold
periods in Athens, for PM10 (Table 1b). As expected, the model ability
is better for the forecasts of the daily average values, compared with
those for the highest hourly values in a day. Clearly, this is caused by
the fact that longer integrating times tend to smooth out shorter-term
fluctuations that are more difficult to predict reliably. The model
Table 1a
Statistical parameters of the predicted and observed highest hourly concentrations in a day

Statistical
parameters

Highest hourly daily concentrations in a day of NOx

Zografou UB Marousi UT

Predict. Observ. Predict. Ob

Mean (μg m−3)
Warm period 62 57 125 12
Cold period 67 62 213 20

Max (μg m−3)
Warm period 133 238 409 45
Cold period 145 205 661 84

St. dev. (μg m−3)
Warm period 29 37 76 8
Cold period 22 35 124 16

R2

Warm period 0.61 0.65
Cold period 0.37 0.60

UB = urban background station, UT = urban traffic station, St. dev. = standard deviation,
forecasted the daily average values with a higher accuracy during the
cold period, compared with the warm period.

In case of Helsinki, the model computations were performed using
two modeling options denoted by A and B. In Case A, the
meteorological data that were based directly on measured quantities
(including only a spatial interpolation), i.e., ambient temperature,
wind speed and direction, and relative humidity, were used as input
variables of the model. In Case B, additionally Monin-Obukhov length
and mixing height were used as input variables of the model; these
were computed based on the boundary layer scaling contained in the
MPP-FMI model.

The descriptive statistics of the measured and predicted values,
and the regression coefficients of the measured and forecasted time
series have been presented in Tables 2a–2b. As in the case of Athens,
the model ability was on the average better for the forecasts of the
daily average values, compared with those for the highest hourly
values in a day. The model ability, as measured by the coefficient of
determination, was in all cases except for one better or at least equal
in Case B, compared with Case A. The inclusion of turbulence and
boundary layer parameters as additional input variables therefore in
most cases improves the forecasting capability. Clearly, this result is to
be expected, as the turbulence strength and boundary layer height are
key parameters for the forecasting of air quality, especially in episodic
conditions (e.g., Kukkonen et al., 2005).
, for NOx and PM10, presented separately for the warm and cold periods, for Athens.

Highest hourly concentrations in a day of PM10

Zografou UB Marousi UT

serv. Predict. Observ. Predict. Observ.

5 63 62 94 90
6 54 52 102 107

8 356 433 240 288
7 459 484 222 474

9 68 46 33 33
0 46 57 44 67

0.57 0.45
0.58 0.58

R2 = coefficient of determination squared.



Table 2a
Statistical parameters of the predicted and observed highest hourly concentrations in a day, for NOx and PM10, presented separately for the warm and cold periods, and for the two
modeling options denoted by the letters A and B. In Case A, the meteorological data was based directly on measured quantities, and in Case B, additionally Monin-Obukhov length
and mixing height were used as input variables of the model.

Statistical
parameters

Highest hourly concentrations in a day of NOx Highest hourly concentrations in a day of PM10

Kallio UB Vallila UT Kallio UB Vallila UT

Predict. Observ. Predict. Observ. Predict. Observ. Predict. Observ.

Mean (μg m−3)
Warm period

A 63 65 97 103 30 29 32 33
B 62 65 98 103 30 29 32 33

Cold period
A 98 95 126 134 34 34 38 39
B 99 95 126 134 34 34 38 39

Max (μg m−3)
Warm period

A 172 298 335 493 112 194 106 172
B 286 298 441 493 112 194 106 172

Cold period
A 283 1025 1093 1358 136 215 144 157
B 291 1025 1164 1358 136 215 142 157

St. dev. (μg m−3)
Warm period

A 25 47 36 80 16 20 16 22
B 35 47 59 80 16 20 16 22

Cold period
A 68 113 128 167 21 26 22 27
B 59 113 134 167 21 26 25 27

R2

Warm period
A 0.32 0.27 0.48 0.67
B 0.53 0.61 0.48 0.70

Cold period
A 0.57 0.60 0.45 0.24
B 0.68 0.70 0.55 0.30

UB = urban background station, UT = urban traffic station, St. dev. = standard deviation, R2 = coefficient of determination squared..
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Tables 3 and 4a–4b present the predictors included by themultiple
stepwise regression in the predicting equations for both thewarm and
cold periods, for Athens and Helsinki (Cases A and B). We have split
the present day in two sub-periods, 1–12 h named as m and 13–24 h,
named as a. So, if the value of a predictor was measured during the
hours 1–12 of the present day, it is counted to column m, while if it
was measured during the hours 13–24, it is counted to column a for
each predictor. The best predictor variables and the correlation
coefficients (R) between the best predictor and the dependent
variables are presented in the same tables.
Table 2b
Statistical parameters of the predicted and observed values daily average concentrations fo
options denoted by the letters A and B, for Helsinki.

Statistical
parameters

Daily average concentration of PM10

Warm period

Kallio UB Vallila UT

Predict. Observ. Predict. Obse

Mean (μg m−3)
Case A 15 14 19 19
Case B 15 14 19 19

Max (μg m−3)
Case A 43 51 56 62
Case B 43 51 56 62

St. dev. (μg m−3)
Case A 7 9 8 10
Case B 7 9 9 10

R2

Case A 0.66 0.72
Case B 0.66 0.70

UB = urban background station, UT = urban traffic station, St. dev. = standard deviation,
In case of Athens, the forecasted NOx concentrations are strongly
dependent on the NO2, NO and CO concentrations measured on the
present day, especially at the urban traffic (UT) station, and the effect
of meteorology (especially wind speed and direction) is also
important. For PM10, both for forecasted hourly maximum and daily
average values, PM10 concentrations measured on the present day are
significant contributors.

For the prediction of average PM10 values of the next day, the local
meteorology plays a smaller role than for the prediction of the hourly
maximum concentrations of both NOx and PM10. This is caused by the
r PM10, presented separately for the warm and cold periods, and for the two modeling

Cold period

Kallio UB Vallila UT

rv. Predict. Observ. Predict. Observ.

17 17 21 21
17 17 21 21

49 45 69 108
45 45 85 108

8 9 11 13
8 9 12 13

0.58 0.63
0.66 0.65

R2 = coefficient of determination squared.



Table 3
Predictors included by the multiple stepwise regression in the predicting equations for both the warm and cold period for Athens.

Dependent variable NO2

ma
NO2

aa
NOx

ma
NOx

aa
NO
ma

NO
aa

CO
ma

CO
aa

O3

ma
O3

aa
PM10

ma
PM10

aa
WS ma WS

aa
WDI
ma

WDI
aa

T
ma

T
aa

RH
ma

RH
aa

BPRb Rc R2d VIFe

Warm period
MAR NOx X X X X X X X X H22NO2

f 0.79 0.69 2.46
ZOG NOx X X X X X X H20NO2

c 0.65 0.58 2.91
MAR PM10 X X X X X X H10WDIf 0.67 0.48 2.41
ZOG PM10 X X X X H16PM10

c 0.67 0.58 2.11
MAR av. PM10 X X X X X H6PM10

f 0.80 0.72 2.36
ZOG av. PM10 X X X X X X H24PM10

f 0.52 0.77 2.54
Cold period

MAR NOx X X X X X X H24COf 0.81 0.75 2.46
ZOG NOx X X X X X H24WSf 0.65 0.49 2.03
MAR PM10 X X X X H24NOxf 0.86 0.80 2.30
ZOG PM10 X X X X X X H24PM10

f 0.86 0.79 1.25
MAR av. PM10 X X X H22PM10

f 0.60 0.71 2.21
ZOG av. PM10 X X X X H24NOf 0.74 0.87 2.62

The highest six rows of the table correspond to the warm period, and the lowest six rows to the cold period. The notation av. refers to the prediction of daily average values (the other
values are highest hourly concentrations), WDI and WS are the wind direction index and wind speed.

a m refers to the hours 01–12; a to the hours 13–24.
b BPR = best predictor variable found using multiple regression analysis.
c R = correlation coefficient between the best predictor and the dependent variables.
d R2 = coefficient of determination squared of the model.
e VIF = variance inflation factor (maximum value).
f Hxx = hourly averaged concentration on a specific hour of the day, e.g. H20NO2 refers the NO2 concentration at 8 p.m.
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fact that especially the elevated daily averaged PM10 concentrations
can commonly be caused by regionally or long-range transported
pollution; such episodes are not sufficiently described by the locally
measured meteorological conditions.

In most cases, the best predictor variables of both NOx and PM10

are statistically most significantly associated to the NOx and PM10

concentrations of the present day, especially during the evening hours
of the present day. Regarding the meteorological parameters, wind
speed and direction are most substantially associated to the
dependent variables. However, there is also a substantial variation
in the best predictor variables (i.e., these are different from case to
case) for both NOx and PM10. These variations are partly due to the
local urban characteristics of each station, such as the detailed
distribution of pollutant sources in the vicinity of the stations.

For Helsinki, we examined separately Cases A (Table 4a) and B
(Table 4b). In Case A, the independent parameters are the same as
those for Athens, whereas in Case B, additionally Monin-Obukhov
Table 4a
Predictors included by the multiple stepwise regression in the predicting equations for bot

Dependent variable NOx

ma
NOx

aa
NO2

ma
NO2

aa
NO
ma

NO
aa

O3

ma
O3

aa
SO2

ma
SO2

aa
PM10

ma
P
a

Warm period
Val NOx x x
Kall NOx x x
Val PM10 x
Kall PM10 x
Vall av. PM10 x x x x
Kall av. PM10 x x

Cold period
Vall NOx x x
Kall NOx x x
Vall PM10 x x
Kall PM10 x x x
Vall av. PM10 x x x
Kall av. PM10 x x

a m: refers to the hours 01–12; a to the hours 13–24.
b BPR: best predictor variable found using multiple regression analysis.
c R: correlation coefficient between the best predictor and the dependent variables.
d R2 = coefficient of determination squared of the model.
e VIF = variance inflation factor (maximum value).
f Hxx: hourly averaged concentration on a specific hour of the day.
length and mixing height are included. In Case A, the measured
concentrations of NOx and PM10 from the present day are the main
contributors, while the contribution of meteorological values is less
significant than for Athens. For Case B, also the meteorological
parameters, especially Monin-Obukhov length and mixing height
contribute significantly.

Similarly to the case of Athens, in most cases, the best predictors
are the corresponding concentrations of the selected two pollutants
during the evening hours of the present day.

3.3. Evaluation of the model performance

We present the model evaluation against an independent dataset
that was not used in setting the values of the model constants. This
randomly selected independent dataset contains almost 25% of the
total data.We have used various statistical indexes and skill measures,
such as those included in the Model Validation Kit (Olesen, 1995). The
h the warm and cold periods for Helsinki, in Case A.

M10
a

PM2.5

ma
PM2.5

aa
WS
ma

WS
aa

T
ma

T
aa

RH
ma

RH
aa

BPRb Rc R2d VIFe

H24NOx
f 0.80 0.69 2.43

H24NO2
f 0.85 0.78 2.39

x x H19PM10
f 0.80 0.72 3.01

x x H22PM10
f 0.60 0.56 1.99

x H20PM10
f 0.72 0.81 2.94

x H24PM10
f 0.79 0.67 2.21

x H21PM10
f 0.38 0.67 2.13

x H23NOx
f 0.41 0.42 3.02

x H21PM10
f 0.70 0.72 2.37

H21PM10
f 0.86 0.84 2.19

H21PM10
f 0.68 0.71 3.27

x H23PM10
f 0.86 0.81 1.98



Table 4b
Predictors included by the multiple stepwise regression in the predicting equations for both the warm and cold periods for Helsinki, in Case B.

Dependent variable NOx

ma
NOx

aa
NO2

ma
NO2

aa
O3

ma
O3

aa
SO2

ma
SO2

aa
PM10

ma
PM10

aa
PM2.5

ma
PM2.5

aa
T
ma

T
aa

RH
ma

RH
aa

INVL
ma

INVL
aa

MIX
ma

MIX
aa

BPRb Rc R2d VIFe

Warm period
Val NOx x x x x x x H24NOx

f 0.29 0.74 2.22
Kall NOx x x x x x H24INVLf 0.47 0.67 2.15
Val PM10 x x x x x H19PM10

f 0.76 0.70 2.03
Kall PM10 x x x H22PM10

f 0.60 0.48 1.17
Vall av. PM10 x x x x H20PM10

f 0.68 0.73 2.09
Kall av. PM10 x x x H24PM10

f 0.79 0.74 2.36
Cold period

Vall NOx x x x H21NOx
f 0.38 0.68 3.19

Kall NOx x x x x x H23NOx
f 0.41 0.48 2.28

Vall PM10 x x x x H21PM10
f 0.70 0.76 2.37

Kall PM10 x x x x x x H21PM10
f 0.74 0.60 2.81

Vall DAPM10 x x x x H21PM10
f 0.73 0.64 2.19

Kall DAPM10 x x x x H23PM10
f 0.73 0.75 1.98

a m: refers to the hours 01–12; a to the hours 13–24.
b BPR: best predictor variable found using multiple regression analysis.
c R: correlation coefficient between the best predictor and the dependent variables.
d R2 = coefficient of determination squared of the model.
e VIF = variance inflation factor (maximum value).
f Hxx: hourly averaged concentration on a specific hour of the day.
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results of the application of these measures are presented in Table 5
for Athens and in Tables 6 and 7 for Helsinki for the MLR model.

For Athens, the model performance measures for the maximum
hourly values in a day are in most cases better during the warm
period, compared with the cold period. However, for the daily
average concentrations of PM10, the model has in most cases higher
accuracy during the cold than warm period. The model forecasts
with a higher accuracy in three cases from the four cases considered,
when the dependent variable is daily average concentration of PM10,
compared with the corresponding forecasts for the maximum hourly
concentration.

Themodel performance is in all cases better for NOx, comparedwith
the corresponding results for PM10. Themain reason is probably that the
Table 5
Statistical model performance measures using an independent dataset, for Athens.

Stations Pollut. ra NMSEb FA2
c FBd

Highest hourly concentrations in a day
Warm period
Marousi NOx 0.73 0.25 0.86 −0.03

PM10 0.73 0.15 0.93 −0.07
Zografou NOx 0.64 0.26 2.01 −0.1

PM10 0.59 0.07 1.04 0.009
Cold period
Marousi NOx 0.69 0.93 0.55 0.35

PM10 0.50 0.37 0.99 0.09
Zografou NOx 0.60 0.23 0.91 −0.01

PM10 0.22 0.21 0.88 −0.15

Daily average concentrations of PM10

Warm period
Marousi PM10 0.81 0.13 1.13 −0.02
Zografou PM10 0.67 1.00 0.40 0.76
Cold period
Marousi PM10 0.91 0.15 1.25 −0.06
Zografou PM10 0.76 2.21 1.33 −0.52

a r is the Pearson correlation coefficient when we used the 25% of the dataset.
b NMSE: normalized mean square error.
c FA2: factor of two.
d FB: fractional bias.
e FV: fractional variance.
f MBE: mean bias error.
g MAE: mean absolute error.
h RMSE: root mean square error.
i IA: index of agreement.
urban NOx concentrations are to a large extent originated from local
sources, while the urban PM10 concentrations are more commonly of a
regionalor long-range transported (LRT) origin (whicharenot explicitly
taken into account in such a statistical model).

For Helsinki, the model has a better performance in most of Case B
(i.e., using additionally pre-processed meteorological data as model
input), compared with the corresponding Case A. In the warm period,
the model performance is better for PM10, compared with the
corresponding cases for NOx. However, in most cases in the cold period,
the forecasts for NOx are better than those for PM10. For both warm and
cold periods, the model performance is in most cases better for the
forecasting of the daily average PM10 comparedwith the corresponding
forecasts for the hourly maximum values in a day.
FVe MBEf MAEg RMSEh (μg m−3) IAi

0.16 2.97 44.83 55.36 0.84
0.27 6.74 22.86 31.78 0.81

−0.1 5.79 21.68 27.22 0.77
0.12 −0.57 21.37 27.22 0.77

0.43 −64.27 137.29 170.91 0.69
0.53 −10.99 47.65 67.33 0.62
0.44 5.75 22.04 28.18 0.72
0.21 7.15 16.52 21.31 0.40

0.28 1.10 6.79 12.99 0.86
0.06 −18.70 11.72 18.22 0.57

−0.16 2.50 9.21 13.47 0.86
−0.23 16.79 21.88 45.79 0.86



Table 6
Statistical model performance measures using an independent dataset, for Helsinki, during the warm period. The letters A and B refer to Cases A and B.

Stations Pollutant ra NMSEb FA2
c FBd FVe MBEf MAEg RMSEh (μg m−3) IAi

Highest hourly concentrations in a day
Vallila A NOx 0.03 0.42 0.68 0.02 0.65 −1.82 43.62 62.17 0.32
Vallila B NOx 0.47 0.37 1.71 −0.37 0.10 44.1 54.08 70.35 0.62
Vallila A PM10 0.71 0.36 0.39 0.09 0.76 −3.21 12.90 20.74 0.70
Vallila B PM10 0.73 0.36 0.40 0.11 0.73 −3.9 12.44 20.43 0.71
Kallio A NOx 0.22 2.54 0.08 0.7 1.01 −33.19 36.90 69.82 0.36
Kallio B NOx 0.34 0.93 0.18 0.05 0.76 −3.00 28.13 59.58 0.42
Kallio A PM10 0.73 0.13 1.50 −0.16 −0.16 4.66 8.12 9.98 0.82
Kallio B PM10 0.73 0.13 1.50 −0.16 −0.16 4.66 8.12 9.98 0.82

Daily average concentrations
Vallila A PM10 0.81 0.11 1.12 −0.001 0.32 0.012 4.26 6.19 0.88
Vallila B PM10 0.75 0.16 1.2 −0.003 0.35 0.024 4.64 7.08 0.83
Kallio A PM10 0.84 0.09 0.78 −0.02 0.15 0.31 3.39 4.51 0.90
Kallio B PM10 0.84 0.09 0.78 −0.02 0.15 0.31 3.39 4.51 0.90

a r is the Pearson correlation coefficient when we used 25% of the dataset.
b NMSE: normalized mean square error.
c FA2: factor of two.
d FB: fractional bias.
e FV: fractional variance.
f MBE: mean bias error.
g MAE: mean absolute error.
h RMSE: root mean square error.
i IA: index of agreement.
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Another significant variable that could be included in the model is
the vehicular traffic flow; however, these measurements are not
available for Athens. Local authorities measure traffic volumes in
selected roads, but not on a continuous basis. The CO concentrations
have therefore previously been used as a proxy variable of the local
vehicular traffic (Kassomenos, 2005). It is also possible to use general
characteristics of the traffic flows as model input variables
(Kassomenos et al., 2006; Vardoulakis and Kassomenos, 2008;
Chaloulakou et al., 2003).

The model has some inherent limitations. As the model uses the
concentrations and meteorological data measured during the present
day as predictor variables, it inherently assumes persistence of both
the meteorological and air quality situation. The model therefore
cannot allow for temporally rapid changes of the meteorological
Table 7
Statistical model performance measures using an independent dataset, for Helsinki, during

Stations Pollutant ra NMSEb FA2
c FBd

Highest hourly concentrations in a day
Vallila A NOx 0.80 1.13 1.8 0.2
Vallila B NOx 0.74 1.12 1.59 0.004
Vallila A PM10 0.60 0.27 0.60 −0.09
Vallila B PM10 0.67 0.26 0.71 −0.02
Kallio A NOx 0.64 0.47 1.68 −0.11
Kallio B NOx 0.58 0.63 1.63 0.08
Kallio A PM10 0.66 0.67 1.7 −0.01
Kallio B PM10 0.79 0.51 1.9 0.02

Daily average concentrations
Vallila A PM10 0.67 0.16 0.57 0.02
Vallila B PM10 0.69 0.15 0.79 −0.11
Kallio A PM10 0.70 0.13 0.43 −0.03
Kallio B PM10 0.76 0.11 0.68 −0.02

a r is the Pearson correlation coefficient when we used the 25% of the dataset.
b NMSE: normalized mean square error.
c FA2: factor of two.
d FB: fractional bias.
e FV: fractional variance.
f MBE: mean bias error.
g MAE: mean absolute error.
h RMSE: root mean square error.
i IA: index of agreement.
conditions, or a rapidly changing chemical composition of the air
masses. This implies that the model tends to underpredict concentra-
tions during any regional or LRT'ed episodes, such as e.g., those caused
by wild-land fires or suspended dust on a regional or larger scale.
Rapid transport of air masses could also be caused, for instance, by a
land–sea breeze or a recirculation of pollution within an urban area.

We separately checked the performance of the model for PM10 in
case of land–sea breeze or a recirculation of pollution in Athens. To
determine these days we employed the methodology introduced by
Kassomenos et al. (1998). Applying this methodology we found that
the Pearson correlation coefficient for these days was 0.36, compared
with the value of 0.80 for the whole period. Similar low results were
found for NOx. The model is also expected to fail in case of
meteorological frontal activity, or in case of other sudden changes in
the cold period. The letters A and B refer to Cases A and B.

FVe MBEf MAEg RMSEh (μg m−3) IAi

0.32 −27.65 79.93 140.18 0.86
0.39 −0.59 93.48 154.36 0.82
0.16 1.33 12.25 17.61 0.77

−0.01 0.33 12.29 17.28 0.81
0.32 4.05 44.65 58.86 0.77
0.15 −2.8 49.72 65.62 0.75
0.75 0.60 15.67 27.11 0.67
0.65 −0.68 13.67 23.22 0.78

0.20 −0.16 6.57 8.43 0.81
0.17 0.97 6.48 8.29 0.82
0.30 0.18 3.94 5.36 0.82
0.26 0.15 3.56 4.93 0.85



Table 9
Comparison of the results of MLR and ANNmethodologies applied to 25% of the dataset
for Helsinki.

Stations Pollut Case A
MLR (r)

Case A
ANN (r)

Case B
MLR (r)

Case B
ANN (r)

Vallila/warm period NOxHD 0.03 0.07 0.47 0.56
Vallila/warm period PM10HD 0.71 0.72 0.73 0.73
Kallio/warm period NOxHD 0.22 0.31 0.34 0.44
Kallio/warm period PM10HD 0.73 0.79 0.73 0.79
Vallila/cold period NOxHD 0.80 0.79 0.74 0.79
Vallila/cold period PM10HD 0.60 0.68 0.67 0.77
Kallio/cold period NOxHD 0.64 0.70 0.58 0.66
Kallio/cold period PM10HD 0.66 0.66 0.79 0.79
Vallila/warm period PM10AD 0.81 0.86 0.75 0.83
Kallio/warm period PM10AD 0.84 0.82 0.84 0.91
Vallila/cold period PM10AD 0.67 0.69 0.69 0.80
Kallio/cold period PM10AD 0.70 0.77 0.76 0.81

HD is the highest daily and AD the average daily air pollutant concentrations. r is the
Pearson correlation coefficient, when we used 25% of the dataset. The letters A and B
refer to cases A and B (defined in the text).

Table 8
Comparison of the results of MLR and ANNmethodologies applied to 25% of the dataset
for Athens.

Stations Pollut MLR (r) ANN (r)

Marousi/warm period NOxHD 0.73 0.85
Marousi/warm period PM10HD 0.73 0.72
Zwgrafou/warm period NOxHD 0.64 0.76
Zwgrafou/warm period PM10HD 0.59 0.64
Marousi/cold period NOxHD 0.69 0.74
Marousi/cold period PM10HD 0.50 0.61
Zwgrafou/cold period NOxHD 0.60 0.62
Zwgrafou/cold period PM10HD 0.22 0.32
Marousi/warm period PM10AD 0.81 0.82
Zwgrafou/warm period PM10AD 0.67 0.77
Marousi/cold period PM10AD 0.91 0.90
Zwgrafou/cold period PM10AD 0.76 0.60

HD is the highest daily and AD the average daily air pollutant concentrations, r Person
correlation coefficient, when we used 25% of the dataset.
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the weather conditions. Clearly, the accuracy of the model is also
crucially dependent on the selection and preparation of the input
variables. For instance, it was found out that the use of the
meteorologically pre-processed data significantly improved the
accuracy of the model forecasts. However, such a pre-processed
meteorological data was not available in case of Athens.

To test the prognostic ability of the MLR model with other existing
models, we have compared the results obtained by MLRwith those by
the ANN model described in Section 2.3. Comparing the two
evaluations made using the two sample datasets (consisting of the
25% of the total data), we found out that the ANN model provides
slightly better results. Table 8 presents the results for Athens and
Table 9 the comparisons for Helsinki (Cases A and B). As we could see
in Tables 8 and 9, the Pearson correlation coefficient (r) for the sample
of 25% of the entire dataset is slightly better than the relevant
parameter computed by the MLR.

In previous research, several authors (Comrie, 1997; Kukkonen et
al., 2003, among others) have compared various alternative method-
ologies (including linear statistical models, ANN models and deter-
ministic models) in different environments. For instance, Kukkonen et
al. (2003) found out that the ANN models used provided better
results, compared with simpler linear statistical techniques. Although
in the present study it was found that the ANNmodel behaves slightly
better than MLR, this simpler statistical model has other advantages.
First, the MLR model is substantially simpler to construct and use.
Second, the functioning of the model and the results can be
interpreted in a more straightforward way. In particular, the user of
MLR can know in detail, which is the exact contribution of each
predictor to the final result; this is commonly not known in case of
ANNmodels. The use of simpler statistical techniques can therefore in
some cases be preferable to the use of ANN models.
Fig. 4.Highest hourly concentrations of (a) NOx and (b) PM10 of observed and predicted
values, at Marousi, during warm period (days are a random collection of data from 25%
of the initial dataset covering the period of 6 months).
3.4. Time series of the measured and predicted concentrations

Time series of the measured and predicted concentrations for both
cities are presented in Figs. 4–7. Fig. 4 a–b presents the highest hourly
concentrations of NOx and PM10 for Marousi station during the warm
period, while Fig. 5 a–b indicates the daily average concentrations of
PM10 in Marousi station, for both periods. Fig. 6 a–b indicates the
highest hourly concentration of NOx and PM10 in Vallila station (Case
A) and Kallio station (Case B) during the cold period. In the case of
daily average concentration of PM10, Fig. 7 a–b illustrates the observed
and predicted values at the stations of Vallila (Case A) in warm period
and Kallio station (Case B), in cold period respectively.

The temporal variation of the curves is similar for most of the
predicted and observed values. However, there is substantial under-
or overprediction in some cases. In case of the highest hourly
concentrations of NOx and PM10 (Figs. 4–6), the model seems on the
average to slightly overpredict these in both cities, while for the daily
average concentrations of PM10 the model seems on the average to
slightly underpredict (Fig. 7 a–b).
4. Conclusions

This study describes a linear model to forecast the highest hourly
concentrations of NOx and PM10, as well as the daily average

image of Fig.�4


Fig. 5. Daily average concentrations of PM10 of (a) observed and (b) predicted values, at
Marousi, during warm period and cold period, respectively (days are a random
collection of data from 25% of the initial dataset covering the period of 6 months).

Fig. 6.Highest hourly concentrations of (a) NOx and (b) PM10 of observed and predicted
values, at Vallila (Case A) and Kallio (Case B) respectively, during cold (days are a
random collection of data from 25% of the initial dataset covering the period of
6 months).

Fig. 7. Daily average concentrations of PM10 of (a) observed and (b) predicted values, at
Vallila (Case A) and Kallio (Case B), during warm and cold periods respectively (days
are a random collection of data from 25% of the initial dataset covering the period of
6 months).
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concentrations of PM10 of the next day, using air quality and
meteorological data. The model was applied and evaluated against
the data measured in 2005, for Athens and Helsinki. We have chosen
two stations for each city, representative of urban background and
urban traffic. The dataset was separated in two seasons, the warm
(from April to September) and cold (from October to March) period.
Finally, we use a variety of evaluation methods in order to check the
performance of themodels. Model evaluation statistics and prediction
skills were computed against an independent dataset that contains
25% of the total dataset.

In Athens and Helsinki, there are substantially different types of
climate, different terrain and topographic features, and differing
amount of population and population density. As expected, both the
measured NOx and PM10 concentrations were substantially higher in
Athens, compared with Helsinki.

Generally, the best predictors in both cities were the concentra-
tions of NOx and PM10 during the evening hours of the present day.
The variables of meteorological data had expectedly a substantial
contribution in both cities. In Athens, where only locally measured
meteorological values were used as model input variables, the wind
speed and wind direction index were important variables. In Helsinki,
where also the meteorologically pre-processed variables were used,
themost significant meteorological variables were the inverseMonin-
Obukhov length, and the mixing height. This is understandable, as
these parameters describe physically the most important character-
istics of atmospheric diffusion and turbulence conditions.

It is interesting to note that the local wind regimes (i.e., the urban
wind speed and direction patterns) in Athens substantially affect the
dispersion and accumulation of the released air pollutants. Such wind
regimes and the related atmospheric stability conditions are to a large
extent formed by the specific topography and land-use characteristics
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of the area. Athens is located in a relatively narrow densely populated
basin, surrounded by high mountains on three sides and the sea on
one side of the basin. It is therefore to be expected that wind patterns
have a significant contribution on the formation of air pollution levels
in Athens.

Such a special topography does not exist in case of Helsinki, which is
situated in a fairly flat coastal region. Especially in northern European
conditions, local emissions can cause air pollution episodes in case of
extremely stable stability conditions, under prevailing strong ground-
based or low-level inversions in winter (e.g., Kukkonen et al., 2005). It
was therefore understandable that wind speed was not found to be a
significant predictor variable in Helsinki; instead the Monin-Obukhov
length and the mixing height were found to be more important.

For both cities, the model expectedly performed better for the
forecasting of the daily average concentrations, compared with the
highest hourly concentrations of the next day. For Helsinki, we executed
the model both without and with the Monin-Obukhov length and the
mixingheight. Themodel expectedlyhad abetter performance,when the
above mentioned turbulence and diffusion parameters were included.

The model had a higher prediction accuracy in Helsinki than
Athens. The main reasons for this result are probably associated with
the more complex structure of the emission sources and the more
complex topography in the surroundings of Athens. The latter may
result in complicated meteorological phenomena, such as commonly
occurring land–sea breeze and recirculation of pollution. The factors
related to the higher population and the higher population density,
combined with specific socioeconomic conditions probably also cause
uncertainties to the predictions (Kassomenos, 2005).

The limitations of the model include that it inherently assumes
persistence of the both the meteorological and air quality situation.
The model therefore cannot allow for rapid temporal changes (of the
order of less than one day) caused by regional or LRT'ed episodes, such
as e.g., those caused by wild land fires or suspended dust on a larger
scale. The model is also expected to be inaccurate in case of sudden
changes in the weather conditions, such as, e.g., those associated with
meteorological frontal activity.
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