
; h a p ; 1 4

(14-6)

) for rr

(t4-7)

)sents

(14-8)

series
imber
plug-
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We can determine the number of tanks in series by calculating

dimensionless variance oà from a tracer experiment.

, o ' r xs 6 :  j :  J o ' ( o  
-  l ) 2 8 ( o ) d o

: 
í:o2E(o) 

d@ - , [: oE(o) d@ + f] not ae (14-e)

r
o6 : 

Jo 
O2E(O) d@ - I

_  f -  
^ '  n(n@) 

-  l
- 

Jo otff i  e-n@ d@ - I

o2o :  
h  [ "  

o"* t  e-n@ d@ -  I

:#,,ti#] ,
. , l

o ó : -
n

The number of tanks in series is

rFcp\*-v^
:-

i.i!f
i l l i ,
. i 1 : , '
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the

As the number of
tanks increases the
variance decreases

(14-10)

(14 - l  l )

(r4-12)

(4-r l)

This expression represents the number of tanks necessary to model the real

reactor as n ideal tanks in series.
If the reaction is first-order, we can use Equation 4-11 to calculate the

conversion,

where

It is acceptable (and usual) for the value of n calculated from Equation (14-

l2) to be a non-integer in Equation (4-ll) to calculate the conversion' For

reactions other than first-order, sequential mole balances on each reactor

must be carried out.

14.2.2 The DisPersion Model

The dispersion model is also used to describe non-ideal tubular reac-

tors. In this model, there is an axial dispersion of the material' which is

I
x - t - @

v
' |  

i  -
Uoll

I

i i
r ; l

i t

it

I r z
n : - : -

oó ú-
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governed by an analogy to Fick's law of diffusion, superimposed on the
flow. so, in addition to the bulk flow , (JA,. every component in the mixture
is transported through any cross-section of the reactor at a rate equal to
[- D"A. (dCldò] resulting from molecular and turbulent diffusion. At first
sight, this simple model appears to have the possibility of accounting only
for axial mixing effects. It can be shown however thàt this approach can
compensate not only for problems caused by axial mixing, Aut itio for those
caused by radial mixing and other nonflat veroc'ity proJilrr.t These fluctua-
tions in concentration can result from different flow velocities and pathways
and from molecular and turbulent diffusion.

To illustrate how dispersion affects concentration in a tubular reactor
we consider the injection of a perfect tracer pulse. Figure l4-4 shows how
dispersion causes the pulse to broaden as it moves down the reactor and
becomes less concentrated.

The molar flow rate of tracer (Fr) by both convection and dispersion
is

F r : - D n A , . * * ( J A , C : -
dz

I n t h i s e x p r e s s i o î D , , i s t h e . f f . @ e n t ( m 2 / s ) a n d U i s
the superficial velocity. Corr fì.i.nt, in bothliquid and gas systems may be found in Levenspier.a

A mole balance on the inert tracer I gives tfufù

- ò F r  -  ^  6 C ,
a ,  

:  o 'T

Substituting for F7 and dividing by the cross-sectional area A,. we have

n o'c, d(u cr) Ecrt t " @  -  
a .  

= T  ( 1 4 - 1 3 )

t = 0  
t 1 t5t4t3t2

The dispersion
model is a one-

parameter model
1 {  ,

Measurcment
Location

Figure l4'4 Dispersion in a tubular reactor IFrom O. Levenspiel. Chemicttl
Reaction Engineering, 2nd ed., (1972). Reprinted by permission of John Wilev
& Sons.  Inc . l

3 R. Aris. proc'.  R. Soc.. (London\ A235.67 (1956).

4 
o O. Levenspiel,  Chemical Reac.t ion Engineeríng(New york: Wiley, 1962,),pp.290_

293.

i:
I
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Before proceeding to solve this equation, we will first put the equation in

dimensionless form to arrive at the dimensionless group(s) that characterize

the process' Let <,$^c . *S*^ .-,^4\^- \e-q*.=
C-V -  - . À . : + ,  a n d  g : +
Lzo  L  L

For a pulse input Cro is defined as the mass of tracer injected, M, divided

by the vessel volume, V.
Then

D,, AzV

UL#

The quantity e. The Peclet

number can be regardèd as the ratio of

pe : rate of transport by convection . : y
rate of transport by diffusion or dispersion Do

in which f is the characteristic length term. There are two different types

of Peclet numbers in common use. We can call Pe, the reactor -Pggle@qr;
it uses the reactor length, L, for the characteristic length, so

Pe, = UL\D,,. lt is Pe,. that appears in Equation (14-14).The other type

of Peclet number can be called the fluid Peclet number, Per; it uses the

characteristic length that determines the fluid's mechanical behavior. In a

packed bed this length is the particle diameter do, and Pqr = UdpleD,,. (The

i.rr U is the empty tube or superficial velocity. For packed beds we often

wish to use the average interstitial velocity and thus U/e is commonly used

for the packed-bed velocity term.) ln an empty tube the fluid behavior is

determined by the tube diameter d,, andPe.f : Ud,lD,,. The fluid-Peclet

number, Pe;, is given in all correlations relating Peclet number to Reynolds

number because both are directly related to the fluid mechanical behavior.

It is, of course, very simple to convert Pelto Pe': multiply by the ratio Lld,

or Lld,. The reciprocal of Pe,, lD,,lUL), sometimes is called the vessel dis-

persion number. Writing Equation (14-14) in terms of the Peclet number

vields

I ó2V

P.,;f '
dv av
dÀ ó0

dvóv
dÀ,

il_4-r4)

(  l4-  15)

Peclet number

For open tubes
Pe, - l0ó,
Per - lOa

For packed beds
Pe, - 103,
Per - l0l

Boundary Conditions There are two cases that we need to consider: bound-

ary conditions for closed vessels and oryn vessels. In the case. of closed-

c losedvesse lsweas f f i snod ispers ionor rad ia lva r ia t ion incon-
centration either upstream (closed)
se d-closeffipen vesse|,im'ersion

oóil. both upstream (open) and downstream (open) of the reaction section;
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D"t 0 D" t  0 D"t 0

Plug
Flow

Dispersion

Closed Vessel Opet Vessel

Figure l4-5

hence this is an open-open vessel. These two cases are shown in Figure 14-
5 where fluctuations in concentration due to dispersion are superimposed
on the plug flow velocity profi le. A closed-open vessel boundary condition
is one in which there is no dispersion in the entrance sect ion but there is
dispersion in the react ion and exi t  sect ions.

Closed'Closed Vessel Boundary Condition For a closed-closed vessel, we
have plug flow (no dispersion) to the immediate left of the entrance line
(z :  0-)  (c losed) and to the immediate r ight  of  z :  L (z :  t*)  (c losed).
However between Z :  0* and Z: L- we have dispersion and react ion.
The corresponding boundary condition is

Fr (0-  ,  t )  - -  F7 (0* ,  r )

Substituting for F7 yields

UA,C7 (0- . r1 :  -A.D, , + uA.cr(0*, t )?).:,.
Solving for the enter ing concentrat ion Cr (0-,  / )  :  Czir

^ -  D, ,  qe. . )  + Cr(g*,  r )  (14- tó)L z o  :  
u  í ) ? .  f  . : 1 1 ,

At
is

the exi t  to the react ion sect ion the concentrat ion is cont inuous and there
no gradient in t racer concentrat ion.  i .e. ,

<
I Danckwerts t
I boundary I
I conditions tr----

A t :  :  l : C r ( L - )  :  C r ( L * )

A,Cr. : g
Ez

These two boundary condit ions. Eqns (14-16) and
stated by P. V. Danckwertss and have become known as
t  P.  V.  Danckwer ts ,  Chent .  Enr ! .  Sc i . .  2 .  |  (1953) .

(14-17)

(14-17). were f irst
the famous Danck-
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werts boundary condit ions. Bischoffo has given a r igorous derivation of
them, solving the dif ferential equations governing the dispersion of com-
ponent A in the entrance and exit  sections and taking the l imit as D., in
entrance and exit  sections approaches zero. From the solut ions he obtained
boundary conditions on the reaction section identical with those Danckwerts
proposed. The init ial  condit ion is

A t t : 0 ,  z ) 0 ,  C r ( 0 * , 0 ) : 0

The mass of tracer injected, M is

( l 4 - r8 )

M _ U A , CrQ- ,  t )  dt

In dimensionless form the Dankwerts boundary conditions are

A t À , : 0 :  -  I  u V * . 1 r : C t ( O - ' D : l
Pe, dÀ, Cn

{;

d v : 0
óÀ,

Ar À'  :  l : ( r4- r9)

4-16)

there

1-t7)

' first
rnck-

Equation (14-15) has been solved numerical ly for a pulse inject ion and the
resulting dimensionless effluent tracer concentration, V, is shown as a func-
t ion of the dimensionless t ime 0 in Figure l4-6 for various Peclet numbers.
While analytical solutions for rlr cannot be determined for this case, the
following relations for the mean residence time and variance have been
found.T

fr r, - r)2 Ee)dt

o2 2
fitt 

- e-Per)
t7,, Pe,,

",
o-_ :
tk

(t4-20)

(t4-2r)

Correlations for the Peclet number as a function of the Reynolds and Schmidt
numbers can be found in Levenspiel.8 Pe, can be found experimentally by
determining t,,, and or from the RTD data and then solving Equation ( 14-21)
for Pe,.

6  K .  B .  B i scho f f .  C l r cm.  Eng .  Sc í . ,  16 ,13 l  ( 1961 ) .
t  See Bischof f .  K.  and O.  Levenspie l ,  Adv.  Chem. Eng.4,  p .95, (New York:  Aca-

demic Press ( 1963)).
8 O. Levenspiel.  Chemical Reoction Engineeritrg. 2nd ed. (New York: Wiley 1972),

pp.282-284.
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È = h
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Figure 14-6 C curves in closed vessels for various extents of back-mixing as
predicted by the dispersion model. IFrom O. Levenspiel, Chemical Reaction

Engineering, 2nd ed., (1972). Reprinted by permission of John Wiley & Sons,

Inc. l

Open-Open Vessel Boundary Conditions When a tracer is injected into a
packed bed at a location more than two or three particle diameters down-
stream from the entrance and measured some distance upstream from the
exit, the open-open vessel boundary conditions apply. For an open-open
system an analytical solution to Equation (14-15) can be obtained for a pulse

tracer input.
For an open-open system the boundary conditions at the entrance are

Fr(O-, f )  :  Ft (g*  ' l )

then for the case when the dispersion coefficient is the same in the entrance

U

r L
=  O . 2

and reaction sections
'ì /-r \

-  D"ry ì  + UCIQ- , t )  :"  a z  /  ' : o -
Cr(0- , t)  :

+  UCr(0* , f  )  ì

I 
(14-22)

-Dn+)
d Z  /  7 : s *

Cr(O*,r )
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At the ex i t  cr (L-  , t )  :  cr (L* , t ) i

t  77 t

fl4-23)

+ UCr(L* , t )Open at the exit -  D, ,?)  
z :L-+ 

IJCr&- , t )  :  -  D, ,Y) , : r -

There aÍe a number of perturbations of these boundary conditions that

can be applied. The dispersion coefficient can take on different values in

e a c h o f t h e t h r e e r e g i o n s : ( z < 0 ; 0 = z = L , a n d e > 0 ) a n d t h e t r a c e r c a n
also be injected at some point er rather than at the boundary, z - 0' These

cases and others can be found in the supplementary reading given at the end

of the chapter. We shall consider the case when there is no variation in the

dispersion coefficient for all z and an impulse of tracer is injected at z. : 0

a t f : 0 .
Using the above boundary conditions we can solve Equation (14-15)

to determine the effluent tracer concentration, i.e.,

v(1.0) :W: N#É,..r[1H#] e4-24)
The corresponding mean residence time is

I\ .  !

'ì f-

(t4-2s)

(14-26)

where r is based on the volume between e : 0 and z : L (i 'e', reactor

volume measured with a yardstick). We note that the mean residence time

for an open system is greater than that for a closed system. The variance

for an open system is

We now consider two cases for which we can use equations (14-25)

and (14-26) to determine the system parameters:

Case 1. The space-time t is known. That is V and us àîc measured

indepéndently. Here we can determine the Peclet number by

deteimining t^ and o2 from the concentration-time data and

then using Equation (14-26) to calculate Pe,. We can also cal-

culate t^ and then use Equation (14-25) as a check but, this

is usuallY less accurate.

Case 2. The space-time r is unknox,n This situation arises when there

are dead or stagnant pockets that exist in the reactor along

with the dispersion effects. To analyze this situation we first

calculate f- and o2 from the data as in Case l. Next we solve

( ' .u ; )  ". tTl

ú 2 2 8
- J - -

F ^ -  P e , '  P e l
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Equation U4-26) for Pe,. Finally we solve Equation (14-25) for
r and hence v. The dead volume is the difference between the
measured volume (i.e., with a yardstick) and the volume cal-
culated from the RTD.

Sloppy Tracer Inputs It is not always possible to cleanly inject a tracer pulse
as an input to a system owing to the fact that it takes a finite time to inject
the tracer.

z = L
Measure

does not approach a perfect pulse input, the dif-
between the input and output tracer measurements
Peclet number; i .e.,

A s 2 : o i " - o 3 " ,

where o2i" is the variance of the tracer measured at some point upstream
(near the entrance) and olu, is the variance measured at some point down-
stream (near the exit).

For an open-open system, it has been showne that the Peclet number
can be calculated from the equation

Ao2 2--:- : -
ti Pe,

Flow, Reaction, and Dispersion Having discussed how to determine the dis-
persion coefficient we now return to the case where we have both dispersion
and reaction in a tubular reactor. A mole balance is taken on a particular
component of the mixture (say species A) over a short length Ae of a tubular
reactor in an identical manner to that in Chapter I to arrive at

z = 0
Inject

When the injection
ferences in the variances
are used to calculate the

I dF"- A " d ' - l ' e : 0

Combining Equation (14-28) and the equation for the

D,, d2C s dC o 16

i E  
-  

d ,  *  t :  o

(r4-27)

( l4-28)

molar flux Fa leads to

(t4-2e)

It is nonlinearThis equation is a second-order, ordinary differential equation.
when ra is other than zero- or first-order.

'Ar is ,  R.  Chem. Eng.  Sci ,  9 ,266 (1959) .
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When the reaction rate ra is first-order, the equation is linear, i.e.,

( l4-30)

Flow, reaction, and and amenable to analytical solution. However before obtaining a solution,
dispersion we put our Equation (14-30) describing dispersion and reaction in dimen-

sionless form by letting ú : CelCno and ; : zlL

D, ,dzCn dCo kCe ^
T E -  d r - T : u

t * v  d v
P r W - d ^ - D a v - o

The quantity kLlU appearing in Equation (14-31) is called the Damkoh-
ler number for convection, Da, and physically represents the ratio

Damkóhrer number Da : 
rate olconsumption of A by reaclion - kc\o-t L : kc\ot r u4-32\
rate of transport of A by convection U

[For a first-order reaction, such as we have in Equation (14-30), Da - kLlU.)
We shall consider the case of a closed-closed system, in which case we use
the Danckwerts boundarv conditicns

(r4-3r)

( l4-34)

( r4-35)

- * ; # . v - r a t À , : 0  ( 1 4 - 3 3 )

and

f f  =  o  atÀ, :  I

Conversion for a
first-order reaction

in a tubular or
packed-bed reactor

with dispersion

At the end of the reactor. where tr : 1, the solution is

ù r :  X =  |  -  x
4q exp (Pe,l?)

(1 + q)' exp (Pe,.qD) - (l - ù2 exp ( -Pe,qlL)

w h e r e q : .  . / t + q O ù P e , .

This solution was first obtained by Danckwertsro and has been pub-
l ished many places (e.g., Levenspielrr).Outside the l imited case of a f irst-
order reaction, a numerical solution of the equation is required, and because
this is a split-boundary-value problem. an iterative technique is required.
With a slight rearrangement of Equation ( 14-35) we obtain the conversion
as a function of Da and Pe'' 

4q exp (pe,rz)
x _ t _  ( 1 4 _ 3 6 )

Example I4-l Conversion Using Díspersion and Tanks-in-Series Models

The first-order reaction

A - ' B
'n  P.V. Danckwerts,  Chem. Eng. Sc' i . ,  2,  |  (1953).

" O. Levenspiel, Chernical Reac'tion Engineering,2nded., (New York: Wiley 1972).


