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We can determine the number of tanks in series by calculating the
dimensionless variance o from a tracer experiment.
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The number of tanks in series is
series 1 72
e p= ;% ot (14-12)
plug-
This expression represents the number of tanks necessary to model the real
reactor as n ideal tanks in series.
If the reaction is first-order, we can use Equation 4-11 to calculate the
conversion,
X =i = S S (4-11)
(1 + 7k)"
where
Lo
2 Voh
It is acceptable (and usual) for the value of n calculated from Equation (14-
12) to be a non-integer in Equation (4-11) to calculate the conversion. For
t reactions other than first-order, sequential mole balances on each reactor

must be carried out.

14.2.2 The Dispersion Model

The dispersion model is also used to describe non-ideal tubular reac-
tors. In this model, there is an axial dispersion of the material, which is
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governed by an analogy to Fick’s law of diffusion, superimposed on the
flow. So, in addition to the bulk flow, UA.., every component in the mixture
is transported through any cross-section of the reactor at a rate equal to
[-D.A. (dCldz)] resulting from molecular and turbulent diffusion. At first
sight, this simple model appears to have the possibility of accounting only {
for axial mixing effects. It can be shown however that this approach can
compensate not only for problems caused by axial mixing, but also for those
caused by radial mixing and other nonflat velocity profiles.? These fluctua-
tions in concentration can result from different flow velocities and pathways
and from molecular and turbulent diffusion.

To illustrate how dispersion affects concentration in a tubular reactor
we consider the injection of a perfect tracer pulse. Figure 14-4 shows how
dispersion causes the pulse to broaden as it moves down the reactor and
becomes less concentrated.

The molar flow rate of tracer (F ) by both convection and dispersion
is

FT s —D,,A(- aa_?- = UA(-CT

In this expression D, is the effective dispersion coefficient (m%s) and U is
the superficial velocity. Correlations for the dispersion coefficients in both
liquid and gas systems may be found in Levenspiel.*

A mole balance on the inert tracer T gives (W

dF 7 aCr
&%
Substituting for F; and dividing by the cross-sectional area A. we have
3*Cr - MO Cr
dz* 3z ot

D, (14-13)

t3 4 ts

t ©
t=0
{
The dispersion /\ AA | !
model is a one- 4 I e e,
parameter model ! l
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il |
4 - input Measurement
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Figure 14-4 Dispersion in a tubular reactor [From O. Levenspiel, Chemical
Reaction Engineering, 2nd ed., (1972). Reprinted by permission of John Wiley
& Sons, Inc.]

*R. Aris, Proc. R. Soc. (London) A235, 67 (1956).
Lt Levenspiel, Chemical Reaction Engineering (New York: Wiley, 1962), pp. 290-

293,
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Peclet number

For open tubes
Pe, ~ 108,
PCf e 104

For packed beds
Pe, ~ 10°,
Pef o IOI
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Before proceeding to solve this equation, we will first put the equation in
dimensionless form to arrive at the dimensionless group(s) that characterize
the process. Let :

Mesﬁw \\)V\ASQ""\~ [ o~
Cr Z tU
==L A=2, and 0=—
e T L

For a pulse input Cyy is defined as the mass of tracer injected, M, divided

by the vessel volume, V.
Then

[
UL o a0

The quantity UL/D, is a form of the Peclet number, Pe. The Peclet
number can be regarded as the ratio of

(14-14)

rate of transport by convection L
rate of transport by diffusion or dispersion D,

in which ¢ is the characteristic length term. There are two different types
of Peclet numbers in common use. We can call Pe, the reactor Peclet number;
it uses the reactor length, L, for the characteristic length, so
Pe, = UL/D,. It is Pe, that appears in Equation (14-14). The other type
of Peclet number can be called the fluid Peclet number, Pey; it uses the
characteristic length that determines the fluid’s mechanical behavior. In a
packed bed this length is the particle diameter d,,, and Pe, = Ud,/eD,. (The
term U is the empty tube or superficial velocity. For packed beds we often
wish to use the average interstitial velocity and thus Ule is commonly used
for the packed-bed velocity term.) In an empty tube the fluid behavior is
determined by the tube diameter d,, and Pe; = Ud,/D,. The fluid Peclet

number, Pey, is given in all correlations relating Peclet number to Reynolds

number because both are directly related to the fluid mechanical behavior.
It is, of course, very simple to convert Pesto Pe,: multiply by the ratio L/d,
or L/d,. The reciprocal of Pe,, [D,/UL], sometimes is called the vessel dis-
persion number. Writing Equation (14-14) in terms of the Peclet number
yields

— === (14-15)

Boundary Conditions There are two cases that we need to consider: bound-
ary conditions for closed vessels and open vessels. In the case of closed-
closed vessels we assume there is no dispersion or radial variation in con-
centration either upstream (closed) m‘(éfosed) of the reactxon
section, hence this is a closed-closed vessel. In an open vessel, disp

occurs both upstream (open) and downstream (open) of the reaction section;
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hence this is an open-open vessel. These two cases are shown in Figure 14-
5 where fluctuations in concentration due to dispersion are superimposed
on the plug flow velocity profile. A closed-open vessel boundary condition
is one in which there is no dispersion in the entrance section but there is
dispersion in the reaction and exit sections.

Closed-Closed Vessel Boundary Condition For a closed-closed vessel, we
have plug flow (no dispersion) to the immediate left of the entrance line
(z = 07) (closed) and to the immediate right of z = L (z = L*) (closed).
However between z = 0 and z = L~ we have dispersion and reaction.
The corresponding boundary condition is

FT(Oi, [) = FT(0+, [)
Substituting for F; yields

aCy
VAL @ = A D, —7) + UACHe D
=0t

0z

Solving for the entering concentration C; (07, 1) = Cyo
_lllaCT
th a2
At the exit to the reaction section the concentration is continuous and there

is no gradient in tracer concentration. i.e.,

Cro = ) a0 D) (14-16)
it 223

Danckwerts : .
boundary {Atz = L: CHlL ) o= Cq(L7) (14-17)
conditions -

‘_ — ICy =
9z

These two boundary conditions. Eqns (14-16) and (14-17), were first
stated by P. V. Danckwerts’ and have become known as the famous Danck-

* P. V. Danckwerts, Chem. Eng. Sci., 2. 1 (1953).
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werts boundary conditions. Bischoff® has given a rigorous derivation of
them, solving the differential equations governing the dispersion of com-
ponent A in the entrance and exit sections and taking the limit as D, in
entrance and exit sections approaches zero. From the solutions he obtained
boundary conditions on the reaction section identical with those Danckwerts
proposed. The initial condition is

Att =0, z>0, CH07,0 =0 (14-18)

The mass of tracer injected, M is
M= UA. [ Cr0~, 1)

In dimensionless form the Dankwerts boundary conditions are

1 0¥ C+0™,5
At =0 - — — + V= —— =]
Pe,; aA Cqo
=l oV
i . - (14-19)
N

Equation (14-15) has been solved numerically for a pulse injection and the
resulting dimensionless effluent tracer concentration, W, is shown as a func-
tion of the dimensionless time 6 in Figure 14-6 for various Peclet numbers.
While analytical solutions for W cannot be determined for this case, the
following relations for the mean residence time and variance have been
found.”

i = (14-20)
and
2 1 =S -
S =g - E0a
s
o’ 2 2

e . BE o g 14-21
5 e Pe:( g, : )

Correlations for the Peclet number as a function of the Reynolds and Schmidt
numbers can be found in Levenspiel.® Pe, can be found experimentally by
determining t,,, and o from the RTD data and then solving Equation (14-21)
1orFPe..

¢ K. B. Bischoff, Chem. Eng. Sci., 16, 131 (1961).

7 See Bischoff, K. and O. Levenspiel, Adv. Chem. Eng. 4, p. 95, (New York: Aca-
demic Press (1963)).

® 0. Levenspiel. Chemical Reaction Engineering, 2nd ed. (New York: Wiley 1972),
pp. 282-284.
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Figure 14-6 C curves in closed vessels for various extents of back-mixing as
predicted by the dispersion model. [From O. Levenspiel, Chemical Reaction
Engineering, 2nd ed., (1972). Reprinted by permission of John Wiley & Sons,
Inc.]

Open-Open Vessel Boundary Conditions When a tracer is injected into a
packed bed at a location more than two or three particle diameters down-
stream from the entrance and measured some distance upstream from the
exit, the open-open vessel boundary conditions apply. For an open-open v
system an analytical solution to Equation (14-15) can be obtained for a pulse 3
tracer input.

For an open-open system the boundary conditions at the entrance are

Fr0,t) = Fr(0" 1)

then for the case when the dispersion coefficient is the same in the entrance
and reaction sections
aCr

-D, ——) + UC07 1)
0z 2=07

-D, ?ﬁ> + UC(07,1) !
0z /z=0+ (14-22) |
C+(07,0)

Cr07,1)




Chap. 14

dispersion,

spersion,

as

18,

d into a
's down-
from the
»en-open
r a pulse

ance are

sntrance

(14-22)

Open at the exit

Sec. 142  One-Parameter Models LIy

At the exit CAl .0 = AL )} (14-23)

aCr aC
~D, —’) + UCHL™ ) = =Dy —
d i 0z

) + UCHL™,t)
z=L*

There are a number of perturbations of these boundary conditions that
can be applied. The dispersion coefficient can take on different values in
each of the three regions: (z < 0; 0 = z = L, and z > 0) and the tracer can
also be injected at some point z; rather than at the boundary, z = 0. These

" cases and others can be found in the supplementary reading given at the end

of the chapter. We shall consider the case when there is no variation in the
dispersion coefficient for all z and an impulse of tracer is injected at z = 0
att = 0.

Using the above boundary conditions we can solve Equation (14-15)
to determine the effluent tracer concentration, i.e.,

Cr(L,t) 1 = [} = 4
P8 = W T 14-24
. e [ 46/Pe, ] e
The corresponding mean residence time is ‘
: J
6= bl 14-2
< Per) . B t: ( )
o

where 7 is based on the volume between z = 0 and z = L (i.e., reactor
volume measured with a yardstick). We note that the mean residence time
for an open system is greater than that for a closed system. The variance
for an open system is

(%]

o 2 8
ne s 14-26
2 = Pe, ' Pe .

~

We now consider two cases for which we can use equations (14-25)
and (14-26) to determine the system parameters:

Case 1. The space-time 7 is known. That is V and vo are measured
independently. Here we can determine the Peclet number by
determining t,, and o” from the concentration-time data and
then using Equation (14-26) to calculate Pe,. We can also cal-
culate t,, and then use Equation (14-25) as a check but, this
is usually less accurate.

Case 2. The space-time 7 is unknown. This situation arises when there
are dead or stagnant pockets that exist in the reactor along
with the dispersion effects. To analyze this situation we first
calculate 7,, and o? from the data as in Case 1. Next we solve
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Equation (14-26) for Pe,. Finally we solve Equation (14-25) for
7 and hence V. The dead volume is the difference between the
measured volume (i.e., with a yardstick) and the volume cal-
culated from the RTD.

Sloppy Tracer Inputs 1t is not always possible to cleanly inject a tracer pulse
as an input to a system owing to the fact that it takes a finite time to inject
the tracer.

i

z=0 z=L
Inject Measure

When the injection does not approach a perfect pulse input, the dif-
ferences in the variances between the input and output tracer measurements
are used to calculate the Peclet number; i.e.,

AO'Z g 0'izn s 0'gut
where o7, is the variance of the tracer measured at some point upstream
(near the entrance) and o2, is the variance measured at some point down-
stream (near the exit).
For an open-open system, it has been shown® that the Peclet number
can be calculated from the equation

2
e 07
3 T (14-27)

Flow, Reaction, and Dispersion Having discussed how to determine the dis-
persion coefficient we now return to the case where we have both dispersion
and reaction in a tubular reactor. A mole balance is taken on a particular
component of the mixture (say species A) over a short length A z of a tubular
reactor in an identical manner to that in Chapter 1 to arrive at

- idd—? + =0 (14-28)

Combining Equation (14-28) and the equation for the molar flux F leads to

D, dCa _dCa 1

U dz* dy U

This equation is a second-order, ordinary differential equation. It is nonlinear
when r4 is other than zero- or first-order.

=0 (14-29)

® Aris, R. Chem. Eng. Sci, 9, 266 (1959).
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'14-25) for When the reaction rate r, is first-order, the equation is linear, i.e.,
tween the

D d' dcC kC
slume cal- et et Rt e P (14-30)

U d7? dz U ]
Flow. reaction, and and amenable to analytical solution. However before obtaining a solution,

acer pulse dispersion e put our Equation (14-30) describing dispersion and reaction in dimen-
> to inject sionless form by letting ¢ = Ca/Cao and A = z/L
1 &V ad¥
—— - — —Da¥ =0 14-31
- At B ey

The quantity KL/U appearing in Equation (14-31) is called the Damkdoh-
ler number for convection, Da, and physically represents the ratio

_ rate of consumption of A by reaction _ kCAg 'L

Damkohl ber Da = - = kCho' 14-32
ShaEieee » rate of transport of A by convection U o ( )

[For a first-order reaction, such as we have in Equation (14-30), Da = kL/U.]
We shall consider the case of a closed-closed system, in which case we use
the Danckwerts boundary conditions

. the dif-
] ddt
- — 4 P =] atA =0 14-33
urements Pe. ( )
and
i =0 atk =1 (14-34)
d\
upstream =
at down- At the end of the reactor, where A = 1, the solution 1s
‘
{ Honsr Conversion for a b = FAﬁ =1 -x
first-order reaction A0
in a tubular or = 4q exp (Pe,/2) (14-35)
pcRAgI sy (1 + q)* exp (Pe.q/2) — (1 — g)° exp (—Pe,q/2)
(14-27) with dispersion
where ¢ = V1 + 4Da/Pe,.

: the ‘?iS' This solution was first obtained by Danckwerts'” and has been pub-
persan lished many places (e.g.. Levenspiel'!). Outside the limited case of a first-
>a:t1;uiar order reaction, a numerical solution of the equation is required, and because
a tubular

this is a split-boundary-value problem. an iterative technique is required.
With a slight rearrangement of Equation (14-35) we obtain the conversion

functi fD d Pe,.
(14-28) as a function of Da and Pe R

X=1= : P Sm—— e (14-36)
Sk (1 + g)* exp (Pe,g/2) — (1 — q)* exp (—Pe,q/2)
(14-29) Example 14-1 Conversion Using Dispersion and Tanks-in-Series Models
: The first-order reaction
onlinear

Al

' P.V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953). :
' 0. Levenspiel, Chemical Reaction Engineering, 2nd ed., (New York: Wiley 1972).
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