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1 Basics

1.1 What is Octave?

Octave is an interactive programming language specifically suited for vectoriz-
able numerical calculations. It provides a high level interface to many standard
libraries of numerical mathematics, e.g. LAPACK or BLAS.

The syntax of Octave resembles that of Matlab. An Octave program usually
runs unmodified on Matlab. Matlab, being commercial software, has a larger
function set, and so the reverse does not always work, especially when the
program makes use of specialized add-on toolboxes for Matlab.

1.2 Help!

• help lists the names of all built-in functions and internal variables.

• help name further explains the variable or function “name”.

Example:

octave:1> help eig
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1.3 Input conventions

• All commands can be typed in at the prompt or read from a script.

• Scripts are plain text files with file suffix .m. They are imported by calling
the file name without the suffix and behave as if their content was typed
in line by line.

• ; separates several commands within a line. A command terminated by
; does not display its result on-screen.

• , separates two commands without suppressing on-screen output.

• ... at the end of the line denotes that an expression continues into the
next line.

• Comments are preceded by %.

• Octave is case sensitive.

1.4 Variables and standard operations

• varname = expression assigns the result of expression to varname.

• Octave has all the usual mathematical functions +, -, *, /, ^, sin, cos,
exp, acos, abs, etc.

• The operators of elementary logic are:

< smaller <= smaller or equal & and
> greater >= greater or equal | or
== equal ~= not equal ~ not

When debugging user-defined objects, the following commands are useful:

• whos shows all user-defined variables and functions (see Section 3.1).

• clear name clears name from memory; if no name is given, all variables
and functions will be cleared.

• type name displays information about the variable or function name on
the screen.

Examples:

octave:1> x12 = 1/8, long_name = ’A String’
x12 = 0.12500
long_name = A String
octave:2> sqrt(-1)-i
ans = 0
octave:3> x = sqrt(2); sin(x)/x
ans = 0.69846

And here is a script doless, saved in a file named doless.m:
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one = 1;
two = 2;
three = one + two;

Calling the script:

octave:1> doless
octave:2> whos
*** local user variables:
prot type rows cols name
==== ==== ==== ==== ====
wd real scalar 1 1 three
wd real scalar 1 1 one
wd real scalar 1 1 two

2 Vector and matrix operations

Matrices and vectors are the most important building blocks for programming
in Octave.

2.1 Vectors

• Row vector: v = (1, 2, 3):

v = [ 1 2 3 ]

• Column vector: v = (1, 2, 3)T :

v = [ 1; 2; 3 ]

• Automatic generation of vectors with constant increment:

Start[:Increment]:End

Examples:

octave:1> x = 3:6
x =
3 4 5 6

octave:2> y = 0:.15:.7
y =
0.00000 0.15000 0.30000 0.45000 0.60000
octave:3> z = pi:-pi/4:0
z =
3.14159 2.35619 1.57080 0.78540 0.00000

2.2 Matrices

A matrix A =
(

1 2
3 4

)
is generated as follows.

octave:1> A = [ 1 2; 3 4]
A =
1 2
3 4
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Matrices can assembled from submatrices:

octave:2> b = [5; 6];
octave:3> M = [A b]
M =

1 2 5
3 4 6

There are functions to create frequently used m×n matrices. If m = n, only
one argument is necessary.

• eye(m,n) produces a matrix with ones on the main diagonal and zeros
elsewhere. When m = n, the identity matrix is generated.

• zeros(m,n) generates the zero matrix of dimension m× n.

• ones(m,n) generates an m× n matrix where all entries are 1.

• rand(m,n) generates a random matrix whose entries are uniformly dis-
tributed in the interval (0, 1).

2.3 Basic matrix arithmetic

• +, -, and * denote matrix addition, subtraction, and multiplication.

• A’ transposes and conjugates A.

• A.’ transposes A.

Examples:

octave:1> A = [1 2; 3 4]; B = 2*ones(2,2);
octave:2> A+B, A-B, A*B
ans =
3 4
5 6

ans =
-1 0
1 2

ans =
6 6
14 14

2.4 Element-wise operations

While * refers to the usual matrix multiplication, .* denotes element-wise mul-
tiplication. Similarly, ./ and .^ denote the element-wise division and power
operators.
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Examples:

octave:1> A = [1 2; 3 4]; A.^2 % Element-wise power
ans =

1 4
9 16

octave:2> A^2 % Proper matrix power: A^2 = A*A
ans =

7 10
15 22

2.5 Indexing and slicing

• v(k) is the k-th element of the row or column vector v.

• A(k,l) is the matrix element akl.

• v(m:n) is the “slice” of the vector v from its mth to its n-th entry.

• A(k,:) is the kth row of matrix A.

• A(:,l) is the lth column of matrix A.

Querying dimensions:

• length(v) returns the number of elements of the vector v.

• [Rows,Columns] = size(A) returns the number of rows and columns of
the matrix A.

Reshaping:

• reshape(A,m,n) transforms A into an m× n-matrix.

• diag(A) creates a column vector containing the diagonal elements ajj of
the matrix A.

• diag(v) generates a matrix with the elements from the vector v on the
diagonal.

• diag(v,k) generates a matrix with the elements from the vector v on the
k-th diagonal.

• A(k,:) = rv assigns to the k-th row of A the row vector rv.

• A(k,:) = [] deletes the k-th row of A.

• A(:,j) = cv assigns to the j-th column of A the column vector cv.

• A(:,j) = [] deletes the j-th column of A.

6



Examples:

octave:1> A = [1 2 3; 4 5 6]; v = [7; 8];
octave:2> A(2,3) = v(2)
A =

1 2 3
4 5 8

octave:3> A(:,2) = v
A =

1 7 3
4 8 8

octave:4> A(1,1:2) = v’
A =

7 8 3
4 8 8

2.6 Solving linear systems of equations

• A\b solves the equation Ax = b.

2.7 Inverses, decompositions, eigenvalues

• B = inv(A) computes the inverse of A.

• [L,U,P] = lu(A) computes the LU-decomposition LU = PA.

• [Q,R] = qr(A) computes the QR-decomposition QR = A.

• R = chol(A) computes the Cholesky decomposition of A.

• S = svd(A) computes the singular values of A.

• H = hess(A) brings A into Hessenberg form.

• E = eig(A) computes the eigenvalues of A.

• [V,D] = eig(A) computes a diagonal matrix D, containing the eigenval-
ues of A, and a matrix V containing the corresponding eigenvectors such
that AV = V D.

• norm(X,p) calculates the p-norm of vector X. If X is a matrix, p can only
take the values 1, 2 or inf. The default is p = 2.

• cond(A) computes the condition number of A with respect to the 2-norm.

A lot of these commands support further options. They can be listed by typing
help funcname.
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2.8 Testing for zero elements

• [i,j,v] = find(A) finds the indices of all nonzero elements of A. The
resulting vectors satisfy Ai(l),j(l) = vl 6= 0.

• any(v) returns 1 if the vector v contains nonzero elements.

• any(A) applies any to each of the columns of the matrix A.

3 Control structures

3.1 Functions

Traditionally, functions are also stored in plain text files with suffix .m. In
contrast to scripts, functions can be called with arguments, and all variables used
within the function are local—they do not influence variables defined previously.

Example: A function f, saved in the file named f.m.

function y = f (x)
y = cos(x/2)+x;

end

Remark: In Octave, several functions can be defined in a single script file.
Matlab on the other hand, strictly enforces one function per .m file, where the
name of the function must match the name of the file. If compatibility with
Matlab is important, this restriction should also be applied to programs written
in Octave.

Example with two function values: A function dolittle, which is saved
in the file named dolittle.m.

function [out1,out2] = dolittle (x)
out1 = x^2;
out2 = out1*x;

end

Calling the function:

octave:1> [x1,x2]=dolittle(2)
x1 = 4
x2 = 8
octave:2> whos
*** currently compiled functions:
prot type rows cols name
==== ==== ==== ==== ====
wd user function - - dolittle
*** local user variables:
prot type rows cols name
==== ==== ==== ==== ====
wd real scalar 1 1 x1
wd real scalar 1 1 x2
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Obviously, the variables out1 and out2 were local to dolittle. Previously
defined variables out1 or out2 would not have been affected by calling dolittle.

3.2 Global variables

global name declares name as a global variable.

Example: A function foo in the file named foo.m:

global N % makes N a global variable; may be set in main file

function out = foo(arg1,arg2)
global N % makes local N refer to the global N
<Computation>
end

If you change N within the function, it changes in the value of N everywhere.

3.3 Loops

The syntax of for - and while-loops is immediate from the following examples:

for n = 1:10
[x(n),y(n)]=dolittle(n);

end

while t<T
t = t+h;

end

For -loop backward:

for n = 10:-1:1
...

3.4 Branching

Conditional branching works as follows.

if x==0
error(’x is 0!’);

else
y = 1/x;

end

switch pnorm
case 1
sum(abs(v))

case inf
max(abs(v))

otherwise
sqrt(v’*v)

end
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3.5 Functions of functions

• eval(string) evaluates string as Octave code.

• feval(funcname,arg1,. . . ) is equivalent to calling funcname with argu-
ments arg1,. . . .

Example: Approximate an integral by the midpoint rule:∫ b

a

f(x) dx ≈ b− a
N

N−1∑
j=0

f

(
a+ (j +

1
2

)
b− a
N

)
We define two functions, gauss.m and mpr.m, as follows:

function y = gauss(x)
y = exp(-x.^2/2);

end

function S = mpr(fun,a,b,N)
h = (b-a)/N;
S = h*sum(feval(fun,[a+h/2:h:b]));

end

Now the function gauss can be integrated by calling:

octave:1> mpr(’gauss’,0,5,500)

3.6 Efficiency considerations

Loops and function calls, especially through feval, have a very high computa-
tional overhead. Therefore, if possible, vectorize all operations.

Example: We are programming the midpoint rule from the previous section
with a for -loop (file name is mpr_long.m):

function S = mpr_long(fun,a,b,N)
h = (b-a)/N; S = 0;
for k = 0:(N-1),
S = S + feval(fun,a+h*(k+1/2));

end
S = h*S;

end

We verify that mpr and mpr_long yield the same answer, and compare the
evaluation times.

octave:1> t = cputime;
> Int1=mpr(’gauss’,0,5,500); t1=cputime-t;
octave:2> t = cputime;
> Int2=mpr_long(’gauss’,0,5,500); t2=cputime-t;
octave:3> Int1-Int2, t2/t1
ans = 0
ans = 45.250
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3.7 Input and output

• save data var1 [var2 . . . ] saves the values of variables var1 etc. into
the file data.

• load data reads the file data, restoring the values of the previously saved
variables.

• fprintf(string[,var1,. . . ]) resembles C syntax for formatting output,
see man fprintf under Unix.

• format [long|short] enlarges or reduces the number of decimals dis-
played. Calling format without argument restores the default.

• pause Suspends evaluation until a key is pressed.

Example:

octave:1> for k = .1:.2:.5,
> fprintf(’1/%g = %10.2e\n’,k,1/k); end
1/0.1 = 1.00e+01
1/0.3 = 3.33e+00
1/0.5 = 2.00e+00

4 Graphics

4.1 2D graphics

• plot(x,y[,fmt]) plots a line through the points (xj , yj). With the string
fmt you can select line style and color; see help plot for details.

• semilogx(x,y[,fmt]) like plot with a logarithmic scale for the x axis.

• semilogy(x,y[,fmt]) like plot with a logarithmic scale for the y axis.

• loglog(x,y[,fmt]) like plot with a logarithmic scale for both axes.

Procedure for plotting a function y = f(x):

1. Generate a vector with the x-coordinates of the points to be plotted.

x = x_min:step_size:x_max;

(See also Section 2.1.)

2. Generate a vector containing the corresponding y-values by letting f act
on the vector x element-wise.

y = f(x);

Important: Since f operates element-wise, you must use of the operators
.+, .-, .^ etc. instead of the usual +, - and ^! (See Section 2.4.)

3. Finally you call the plot command.
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plot(x,y)

4. To generate a coordinate grid, write:

plot(x,y)
grid

Example:

octave:1> x = -10:.1:10;
octave:2> y = sin(x).*exp(-abs(x));
octave:3> plot(x,y)
octave:4> grid

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10 15

line 1

4.2 3D graphics:

• [xx,yy] = meshgrid(x,y) generates the grid data for a 3D plot—two
matrices xx whose rows are copies of x, and yy whose columns are copies
of y.

• mesh(x,y,z) plots a surface in 3D.

Example:

octave:1> x = -2:0.1:2;
octave:2> [xx,yy] = meshgrid(x,x);
octave:3> z = sin(xx.^2-yy.^2);
octave:4> mesh(x,x,z);
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4.3 Commands for 2D and 3D graphics

• title(string) writes string as title for the graphics.

• xlabel(string) labels the x-axis with string.

• ylabel(string) labels the y-axis with string.

• zlabel(string) labels the z-axis with string.

• axis(v) set axes limits for the plot. v is a vector of form v = (xmin,
xmax, ymin, ymax[, zmin zmax]).

• hold [on|off] controls whether the next graphics output should or not
clear the previous graphics.

• clg clears the graphics window.

5 Exercises

5.1 Linear algebra

Take a matrix A and a vector b with

A =
(

1 2
3 4

)
and b =

(
36
88

)
.

Solve the system of equations Ax = b. Calculate the LU and QR decom-
positions, and the eigenvalues and eigenvectors of A. Compute the Cholesky
decomposition of ATA, and verify that cond(ATA) = cond(A)2.
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Solution:

A = reshape(1:4,2,2).’; b = [36; 88];
A\b
[L,U,P] = lu(A)
[Q,R] = qr(A)
[V,D] = eig(A)
A2 = A.’*A;
R = chol(A2)
cond(A)^2 - cond(A2)

5.2 Timing

Compute the matrix-vector product of a 100×100 random matrix with a random
vector in two different ways. First, use the built-in matrix multiplication *.
Next, use for -loops. Compare the results and computing times.

Solution:

A = rand(100); b = rand(100,1);
t = cputime;
v = A*b; t1 = cputime-t;
w = zeros(100,1);
t = cputime;
for n = 1:100,
for m = 1:100
w(n) = w(n)+A(n,m)*b(m);

end
end
t2 = cputime-t;

norm(v-w), t2/t1

Running this script yields the following output.

ans = 0
ans = 577.00

5.3 Stability functions of BDF-integrators

Calculate all the roots of the polynomial

147
60

ζ6 − 6ζ5 +
15
2
ζ4 − 20

3
ζ3 +

15
4
ζ2 − 6

5
ζ +

1
6
.

Hint: Use the command compan.
Plot these roots as points in the complex plane and draw a unit circle for

comparison. (Hint: hold, real, imag).
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Solution:

bdf6 = [147/60 -6 15/2 -20/3 15/4 -6/5 1/6];
R = eig(compan(bdf6));
plot(R,’+’); hold on
plot(exp(pi*i*[0:.01:2]));
if any(find(abs(R)>1))
fprintf(’BDF6 is unstable\n’);

else
fprintf(’BDF6 is stable\n’);

end

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

BDF 6

line 1
line 2

5.4 3D plot

Plot the graph of the function

f(x, y) = exp(−x2 − y2).

Solution:

x = -3:0.1:3;
[xx,yy] = meshgrid(x,x);
z = exp(-xx.^2-yy.^2);
figure, mesh(x,x,z);
title(’exp(-x^2-y^2)’);

5.5 Hilbert matrix

For each n×n Hilbert matrix H where n = 1, . . . , 15 compute the solution to the
linear system Hx = b, b = ones(n,1). Calculate the error and the condition
number of the matrix and plot both in semi-logarithmic coordinates. (Hint:
hilb, invhilb.)
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Solution:

err = zeros(15,1); co = zeros(15,1);
for k = 1:15
H = hilb(k);
b = ones(k,1);
err(k) = norm(H\b-invhilb(k)*b);
co(k) = cond(H);

end
semilogy(1:15,err,’r’,1:15,co,’x’);

5.6 Least square fit of a straight line

Calculate the least square fit of a straight line to the points (xj , yj), given as
two vectors x and y. Plot the points and the line.

Solution:

function coeff = least_square (x,y)
n = length(x);
A = [x ones(n,1)];
coeff = A\y;
plot(x,y,’x’);
hold on
interv = [min(x) max(x)];
plot(interv,coeff(1)*interv+coeff(2));

end

5.7 Trapezoidal rule

Write a program to integrate an arbitrary function f in one variable on an
interval [a, b] numerically using the trapezoidal rule with h = (b− a)/N :

∫ b

a

f(x) dx ≈ h

f(a) + f(b)
2

+
N−1∑
j=1

f(a+ jh)

 .

For a function f of your choice, check, by generating a doubly logarithmic error
plot, that the trapezoidal rule is of order 2.

Solution:

function S = trapez(fun,a,b,N)
h = (b-a)/N;
% fy = feval(fun,[a:h:b]); better:
fy = feval(fun,linspace(a,b,N+1));
fy(1) = fy(1)/2;
fy(N+1) = fy(N+1)/2;
S = h*sum(fy);

end
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function y = f(x)
y = exp(x);

end

for k=1:15;
err(k) = abs(exp(1)-1-trapez(’f’,0,1,2^k));

end
loglog(1./2.^[1:15],err);
hold on;
title(’Trapezoidal rule, f(x) = exp(x)’);
xlabel(’Increment’);
ylabel(’Error’);
loglog(1./2.^[1:15],err,’x’);
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