CHAPTER 8

Fundamentals of Mass Transfer

Diffusion is the process by which molecules, ions, or other small particles spon-
taneously mix, moving from regions of relatively high concentration into regions of lower
concentration. This process can be analyzed in two ways. First, it can be described with
Fick’s law and a diffusion coefficient, a fundamental and scientific description used in the
first two parts of this book. Second, it can be explained in terms of a mass transfer coef-
ficient, an approximate engineering idea that often gives a simpler description. It is this
simpler idea that is emphasized in this part of this book.

Analyzing diffusion with mass transfer coefficients requires assuming that changes in
concentration are limited to that small part of the system’s volume near its boundaries. For
example, in the absorption of one gas into a liquid, we assume that all gases and liquids are
well mixed, except near the gas—liquid interface. In the leaching of metal by pouring acid
over ore, we assume that the acid is homogeneous, except in a thin layer next to the solid ore
particles. In studies of digestion, we assume that the contents of the small intestine are well
mixed, except near the villi at the intestine’s wall. Such an analysis is sometimes called a
“lumped-parameter model” to distinguish it from the “distributed-parameter model” using
diffusion coefficients. Both models are much simpler for dilute solutions.

If you are beginning a study of diffusion, you may have trouble deciding whether to
organize your results as mass transfer coefficients or as diffusion coefficients. I have this
trouble too. The cliché is that you should use the mass transfer coefficient approach if
the diffusion occurs across an interface, but this cliché has many exceptions. Instead of
depending on the cliché, 1 believe you should always try both approaches to see which is
better for your own needs. In my own work, I have found that I often switch from one to
the other as the work proceeds and my objectives evolve.

This chapter discusses mass transfer coefficients for dilute solutions; extensions to con-
centrated solutions are deferred to Section 13.5. In Section 8.1, we give a basic definition
for a mass transfer coefficient and show how this coefficient can be used experimentally.
In Section 8.2, we present other common definitions that represent a thicket of prickly al-
ternatives rivaled only by standard states for chemical potentials. These various definitions
are why mass transfer often has a reputation with students of being a difficult subject. In
Section 8.3, we list existing correlations of mass transfer coefficients; and in Section 8.4,
we explain how these correlations can be developed with dimensional analysis. Finally, in
Section 8.5, we discuss processes involving diffusion across interfaces, a topic that leads to
overall mass transfer coefficients found as averages of more local processes. This last idea
is commonly called mass transfer resistances in series.

8.1 A Definition of Mass Transfer Coefficients

The definition of mass transfer is based on empirical arguments like those used
in developing Fick’s law in Chapter 2. Imagine we are interested in the transfer of mass
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from some interface into a well-mixed solution. We expect that the amount transferred is
proportional to the concentration difference and the interfacial area:

rate of mass \ L interfacial concentration 8.1-1)
transferred /| area difference )
where the proportionality is summarized by k, called a mass transfer coefficient. If we

divide both sides of this equation by the area, we can write the equation in more familiar
symbols:

Ny =klcy —cp) (8.1-2)

where Ny is the flux at the interface and ¢; and ¢ are the concentrations at the interface
and in the bulk solution, respectively. The flux N; includes both diffusion and convection;
it is like the total flux n, except that it is located at the interface. The concentration cy;i 18
at the interface but in the same fluid as the bulk concentration c1. Itis often in equilibrium
with the concentration across the interface in a second, adjacent fluid phase; we will defer
discussion of transport across this interface until section 8.5.

The flux equation in Eq. 8.1-2 makes practical sense. It says that if the concentration
difference is doubled, the flux will double. Tt also suggests that if the area is doubled, the
total amount of mass transferred will double but the flux per area will not change. In other
words, this definition suggests an easy way of organizing our thinking around a simple
constant, the mass transfer coefficient k.

Unfortunately, this simple scheme conceals a variety of approximations and ambigui-
ties. Before introducing these complexities, we shall go over some easy examples. These

examples are important. Study them carefully before you go on to the harder material that
follows.

Example 8.1-1: Humidification Imagine that water is evaporating into initially dry air in
the closed vessel shown schematically in Fig. 8.1-1(a). The vessel is isothermal at 25°C, so
the water’s vapor pressure is 23.8 mm Hg. This vessel has 0.8 liter of water with 150 cm?
of surface area in a total volume of 19.2 liters. After 3 minutes, the air is five percent
saturated. What is the mass transfer coefficient? How long will it take to reach ninety
percent saturation?

Solution The flux at 3 minutes can be found directly from the values given:
vapor air
concentration volume
<hqu1d) (time)
area

238\ / 1mol \ /273
05 [ 222) (MO0 ) (222 (18 4 Jiters
0 (760) <22.4 Iiters) (298) (184 fiters)

(150 cm?)(180 sec)

Ny =

= 4.4-107% mol/cm?-sec

The concentration difference is that at the water’s surface minus that in the bulk solution.
That at the water’s surface is the value at saturation; that in bulk at short times is essentially
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(a) Humidification (b) Packed Bed
air
cy(t) EE
AAAAAAAAAAAA —> Zz Z2+Az
water 'z +01 (z /
(c) Liquid Drops (d) A Gas Bubble
VYT YW
0 o,
o o B
o OC,(t) Size = f(t)

Fig. 8.1-1. Four easy examples. We analyze each of the physical situations shown in terms of
mass transfer coefficients. In (a), we assume that the air is at constant humidity, except near the
air—water interface. In (b), we assume that water flowing through the packed bed is well mixed,
except very close to the solid spheres. In (c) and (d), we assume that the liquid solution, which
is the continuous phase, is at constant composition, except near the droplet or bubble surfaces.

zero. Thus, from Eq. 8.1-2, we have

238  1mol 273
44107 mollemsec = k | oo MO0
movemsee (760 22.4- 107 em® 298 >

k=3.4.10"7 cm/sec

This value is lower than that commonly found for transfer in gases.
The time required for ninety percent saturation can be found from a mass balance:

accumulation \ [ evaporation
in gas phase ;| rate
d
—VCI = AN]
dt
= Akl[c)(sat) — ¢}
The air is initially dry, so
t=0, ¢ =0

We use this condition to integrate the mass balance:

O kA
cy(sat)

Rearranging the equation and inserting the values given, we find

Vv C|
t=——In{1-—
kA ¢ (sat)

18.4-10° cm?
= - In(1 —0.9)
(3.4 - 1072 cm/sec) - (150 cm?)

=8.3.10°sec=2.3hr

It takes over 2 hours to saturate the air this much.
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Example 8.1-2: Mass transfer in a packed bed Imagine that 0.2 centimeter-diameter
spheres of benzoic acid are packed into a bed like that shown schematically in Fig. 8.1-1(b).
The spheres have 23 cm? surface per 1 cm® of bed. Pure water flowing at a superficial
velocity of 5 cm/sec into the bed is sixty-two percent saturated with benzoic acid after it
has passed through 100 centimeters of bed. What is the mass transfer coefficient?

Solution The answer to this problem depends on the concentration difference
used in the definition of the mass transfer coefficient. In every definition, we choose this
difference as the value at the sphere’s surface minus that in the solution. However, we
can define different mass transfer coefficients by choosing the concentration difference at
various positions in the bed. For example, we can choose the concentration difference at
the bed’s entrance and so obtain

N1 = k[c|(sat) — 0]

0.62¢; (sat)(5 cm/sec)A
(23 cm?/cm3)(100 cm) A

where A is the bed’s cross section. Thus

= kci(sat)

k=1.3-10"cm/sec

This definition for the mass transfer coefficient is infrequently used.
Alternatively, we can choose as our concentration difference that at a position z in the
bed and write a mass balance on a differential volume A Az at this position:

. flow in amount of
(accumulation) = . + . .
minus flow out dissolution

0=A (C]UO’ —-c1v0

) + (AAZ)aN;
+Az

where g is the sphere surface area per bed volume. Substituting for N; from Eq. 8.1-2,
dividing by AAz, and taking the limit as Az goes to zero, we find

dcy ka
e = F[cl(sat) —ci]
This is subject to the initial condition that
z=0, ¢ =0
Integrating, we obtain an exponential of the same form as in the first example:
€Ly —ka/)z
¢ (sat)

Rearranging the equation and inserting the values given, we find

(G)m(1-=6)
— JIn{1-—
az ¢y (sat)

B 5 cm/sec In(1 — 0.62)
(23 cm?/em3)(100 cm) '

k

=2.1-10"" cm/sec
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This value is typical of those found in liquids. This type of mass transfer coefficient
definition is preferable to that used first, a point explored further in Section 8.2.

A tangential point worth discussing is the specific chemical system of benzoic acid
dissolving in water. This system is academically ubiquitous, showing up again and again
in problems of mass transfer. Indeed, if you read the literature, you can get the impression
that it is the only system where mass transfer is important, which is not true. Why is it used
so much?

Benzoic acid is studied thoroughly for three distinct reasons. First, its concentration
is relatively easily measured, for the amount present can be determined by titration with
base, by UV spectrophotometry of the benzene ring, or by radioactively tagging either the
carbon or the hydrogen. Second, the dissolution of benzoic acid is accurately described
by one mass transfer coefficient. This is not true of all dissolutions. For example, the
dissolution of aspirin is essentially independent of events in solution (see Section 15.3).
Third, and most subtle, benzoic acid is solid, so mass transfer takes place across a solid—fluid
interface. Such interfaces are an exception in mass transfer problems; fluid—fluid interfaces
are much more common. However, solid—fluid interfaces are the rule for heat transfer, the
intellectual precursor of mass transfer. Experiments with benzoic acid dissolving in water
can be compared directly with heat transfer experiments. These three reasons make this
chemical system popular.

Example 8.1-3: Mass transfer in an emulsion Bromine is being rapidly dissolved in
water, as shown schematically in Fig. 8.1-1(c). Its concentration is about half saturated in
3 minutes. What is the mass transfer coefficient?

Solution Again, we begin with a mass balance:

d
— Ve = ANy = Ak[cy(sat) — ¢f]

dt
YU faley(sat) — 1]
— = Kadjc(sat) — ¢
dt 1 1

where a(= A/V) is the surface area of the bromine droplets divided by the volume of
aqueous solution. If the water initially contains no bromine,

t=0, =0

Using this in our integration, we find

Cl =1 = e“kat
¢ (sat)
Rearranging,
1
ka = —-In (1 __a )
t ¢y (sat)
1
= — —In(1 —0.5)
3 min

3.9.1072 sec!
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This 1s as far as we can go; we cannot find the mass transfer coefficient, only its product
with a.

Such a product occurs often and is a fixture of many mass transfer correlations. The
quantity ka is very similar to the rate constant of a first-order reversible reaction with an
equilibrium constant equal to unity. This particular problem is similar to the calculation of
a half-life for radioactive decay. Such a parallel is worth thinking through and will become
a very useful concept in Chapter 15.

Example 8.1-4: Mass transfer from an oxygen bubble A bubble of oxygen originally
0.1 centimeter in diameter is injected into excess stirred water, as shown schematically in
Fig. 8.1-1(d). After 7 minutes, the bubble is 0.054 centimeter in diameter. What is the mass
transfer coefficient?

Solution This time, we write a mass balance not on the surrounding solution but
on the bubble itself:

d 4
— lcizmr’ } = AN,
dt 3

= —4nr’k[c;(sat) ~ 0]

This equation is tricky; ¢ refers to the oxygen concentration in the bubble, 1 mol/22 4 liters
at standard conditions, but ¢ (sat) refers to the oxygen concentration at saturation in water,
about 1.5 - 10~ moles per liter under similar conditions. Thus

dr _ kcl(sat)

E - C
—0.034k

This is subject to the condition
t=0, r=005cm
so integration gives
r = 0.05 cm — 0.034kt
Inserting the numerical values given, we find

0.027 cm = 0.05 cm — 0.034k (420 sec)
k=16-10"%cm/sec

Remember that this coefficient is defined in terms of the concentration in the liquid; it would
be numerically different if it were defined in terms of the gas-phase concentration.
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Table 8.2-1. Mass transfer coefficient compared with other rate coefficients

Basic
Effect equation Rate Force Coefficient
Mass transfer Ny = kAc, Flux per area Difference of The mass transfer coetfi-
relative to concentration cient k([=]L/t)isa
an interface function of flow
Diffusion —ji = DV¢, Flux per area Gradient of The diffusion coefficient
relative to concentration D ([=]L%/t)isa
the volume physical property
average independent of flow
velocity
Dispersion —cvy = EVe, Fluxperarea  Gradient of The dispersion coefficient
relative to time average E(=]L*/1) depends
the mass concentration on the flow
average
velocity
Homogeneous  r} = k¢ Rate per Concentration The rate constant
chemical volume Kk ([=]11/1)1s
reaction a physical property
independent of flow
Heterogeneous r; = k¢, Flux per Concentration The rate constant
chemical interfacial k1 ([=]L/t) is a surface
reaction area property often defined

in terms of a bulk
concentration

8.2 Other Definitions of Mass Transfer Coefficients

We now want to return to some of the problems we glossed over in the simple
definition of a mass transfer coefficient given in the previous section. We introduced this
definition with the implication that it provides a simple way of analyzing complex problems.
We implied that the mass transfer coefficient will be like the density or the viscosity, a
physical quantity that is well defined for a specific situation.

In fact, the mass transfer coefficient is often an ambiguous concept, reflecting nuances
of its basic definition. To begin our discussion of these nuances, we first compare the mass
transfer coefficient with the other rate constants given in Table 8.2-1. The mass transfer
coefficient seems a curious contrast, a combination of diffusion and dispersion. Because
it involves a concentration difference, it has different dimensions than the diffusion and
dispersion coefficients. Itis a rate constant for an interfacial physical reaction, most similar
to the rate constant of an interfacial chemical reaction.

Unfortunately, the definition of the mass transtfer coefficient in Table 8.2-1 is not so well
accepted that the coefficient’s dimensions are always the same. This is not true for the
other processes in this table. For example, the dimensions of the diffusion coefficient are
always taken as L?/¢. If the concentration is expressed in terms of mole fraction or partial
pressure, then appropriate unit conversions are made to ensure that the diffusion coefficient
keeps the same dimensions.

This is not the case for mass transfer coefficients, where a variety of definitions are
accepted. Four of the more common of these are shown in Table 8.2-2. This variety is
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Table 8.2-2. Common definitions of mass transfer coefficients®

Basic equation Typical units of k° Remarks

Ny =kAc, cm/sec Common in the older literature; used
here because of its simple physical
significance (Treybal, 1980)

Ny =k,Ap, mol/cm?-sec-atm Common for a gas absorption; equivalent

forms occur in biological problems
(McCabe Smith, and Harriot, 1985;
Sherwood, Pigford, and Wilke, 1975)

N, =k, Ax, mol/cm?-sec Preferred for practical calculations,
especially in gases (Bennett
and Myers, 1974)

Ny =kAc 4+ ¢0° cmy/sec Used in an effort to include diffusion-

induced convection (cf. k in Eq. 13.5-2
et seq.) (Bird, Stewart, and Lightfoot, 1960)

Notes: “In this table, Ny is defined as moles per L%¢, and ¢, as moles per L>. Parallel definitions
where N, is in terms of M/L*t and | is M/L>t are easily developed. Definitions mixing moles and
mass are infrequently used.

For a gas of constant molar concentration ¢, k = RTk, = ky/c. For a dilute liquid solution
k = (M»/p)k,, where M, is the molecular weight of the solvent, and p is the solution density.

largely an experimental artifact, arising because the concentration can be measured in so
many different units, including partial pressure, mole and mass fractions, and molarity.

In this book, we will most frequently use the first definition in Table 8.2-2, implying that
mass transfer coefficients have dimensions of length per time. If the flux is expressed in
moles per area per time we will usually express the concentration in moles per volume. If
the flux is expressed in mass per area per time, we will give the concentration in mass per
volume. This choice is the simplest for correlations of mass transfer coefficients reviewed in
this chapter and for predictions of these coefficients given in Chapters 13-14. Expressing the
mass transfer coefficient in dimensions of velocity is also simplest in the cases of chemical
reaction and simultaneous heat and mass transfer described in Chapters 15, 16, and 20.

However, in some other cases, alternative forms of the mass transfer coefficients lead to
simpler final equations. This is especially true in the design of equipment for gas adsorption,
distillation, and extraction described in Chapters 9-11. There, we will frequently use k.,
the third form in Table 8.2.2, which expresses concentrations in mole fractions. In some
cases of gas adsorption, we will find it convenient to respect seventy years of tradition and
use k,, with concentrations expressed as partial pressures. In the membrane separations
in Chapter 17, we will mention forms like k, but will carry out our discussion in terms of
forms equivalent to k.

The mass transfer coefficients defined in Table 8.2-2 are also complicated by the choice
of a concentration difference, by the interfacial area for mass transfer, and by the treatment
of convection. The basic definitions given in Eq. 8.1-2 or Table 8.2-1 are ambiguous, for
the concentration difference involved is incompletely defined. To explore the ambiguity
more carefully, consider the packed tower shown schematically in Fig. 8.2-1. This tower
is basically a piece of pipe standing on its end and filled with crushed inert material like
broken glass. Air containing ammonia flows upward through the column. Water trickles
down through the column and absorbs the ammonia: Ammonia is scrubbed out of the gas
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Fig. 8.2-1. Ammonia scrubbing. In this example, ammonia is separated by washing a gas
mixture with water. As explained in the text, the example illustrates ambiguities in the
definition of mass transfer coefficients. The ambiguities occur because the concentration
difference causing the mass transfer changes and because the interfacial area between gas and
liquid is unknown.

mixture with water. The flux of ammonia into the water is proportional to the ammonia
concentration at the air—water interface minus the ammonia concentration in the bulk water.
The proportionality constant is the mass transfer coefficient. The concentration difference
between interface and bulk is not constant but can vary along the height of the column.
Which value of concentration difference should we use?

In this book, we always choose to use the local concentration difference at a particular
position in the column. Such a choice implies a “local mass transfer coefficient” to distin-
guish it from an “average mass transfer coefficient.” Use of a local coefficient means that
we often must make a few extra mathematical calculations. However, the local coefficient
is more nearly constant, a smooth function of changes in other process variables. This
definition was implicitly used in Examples 8.1-1, 8.1-3, and 8.1-4 in the previous section.
It was used in parallel with a type of average coefficient in Example 8.1-2.

Another potential source of ambiguity in the definition of the mass transfer coefficient is
the interfacial area. As an example, we again consider the packed tower in Fig. 8.2-1. The
surface area between water and gas is usually experimentally unknown, so that the flux per
area is unknown as well. Thus the mass transfer coefficient cannot be easily found. This
problem is dodged by lumping the area into the mass transfer coefficient and experimentally
determining the product of the two. We just measure the flux per column volume. This
may seem like cheating, but it works like a charm.

Finally, mass transfer coefficients can be complicated by diffusion-induced convection
normal to the interface. This complication does not exist in dilute solution, just as it does not
exist for the dilute diffusion described in Chapter 2. For concentrated solutions, there may
be a larger convective flux normal to the interface that disrupts the concentration profiles
near the interface. The consequence of this flux, which is like the concentrated diffusion
problems in Section 3.3, is that the flux will not double when the concentration difference
is doubled. This diffusion-induced convection is responsible for the last definition in Table
8.2-2, where the interfacial velocity is explicitly included. Fortunately, most solutions are
dilute, so we can successfully defer discussing this problem until Section 13.5.

I find these points difficult, hard to understand without careful thought. To spur this
thought, try solving the examples that follow.
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Example 8.2-1: The mass transfer coefficient in a blood oxygenator Blood oxygena-
tors are used to replace the human lungs during open-heart surgery. To improve oxygenator
design, you are studying mass transfer of oxygen into water in one specific blood oxygenator.
From published correlations of mass transfer coefficients, you expect that the mass transfer
coefficient based on the oxygen concentration difference in the water is 3.3 - 1073 centime-
ters per second. You want to use this coefficient in an equation given by the oxygenator
manufacturer

Nl = kp(p()z - p:;z)

where py, is the actual oxygen partial pressure in the gas, and pg, is the hypothetical oxygen
partial pressure (the “oxygen tension™) that would be in equilibrium with water under the
experimental conditions. The manufacturer expressed both pressures in millimeters of
O,. You also know the Henry’s law constant of oxygen in water at your experimental
conditions:

Po, = 44, 000 atm X0,

where xy, is the mole fraction of the total oxygen in the water.
Find the mass transfer coefficient k.
Solution Because the correlations are based on the concentrations in the liquid,
the flux equation must be

Ny =3.3-107° cm/sec (co,, — co,)

where co,, and ¢y, refer to concentrations at the interface and the bulk solution, respectively.
We can convert these concentrations to the oxygen tensions as follows:

o = cx _<ppoz)
0, = CXo, = | = —~
M H

where ¢ is the total concentration in the liquid water, p is the liquid’s density, and M is its
average molecular weight. Because the solution is dilute,

1 g/cm? 1 atm
€0, = 7 Po,
18 g/mol 4.4 - 10* atm 760 mm Hg

Combining with the earlier definition, we see

cm [1.67 - 10~%mol
Ny =33. 103 | 1000 moly
: sec [: cm3 mm Hg :! (pO_J Pog)
=55 10712 mol ( B
T pOZ.i p()g)

cm? sec mm Hg

The new coefficient k, equals 5.5 - 10~'2 in the units given.

Example 8.2-2: Converting units of ammonia mass transfer coefficients A packed
tower is being used to study ammonia scrubbing with 25°C water. The mass transfer
coefficients reported for this tower are 1.18 1b-mol NHs/hr-fi? for the liquid and 1.09 Ib-mol
NHa/hr-ft?-atm for the gas. What are these coefficients in centimeters per second?
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Solution From Table 8.2-2, we see that the units of the liquid-phase coefficient
correspond to k,. Thus

M
k= 22k,
0

_( 181b/mol 1.18 Ib-mol NHj; 30.5cm hr
~\62.4 Ib/ft] f-hr ft 3,600 sec

=2.9.10"% ¢m/sec

For the gas phase, we see from Table 8.2-2 that the coefficient has the units of k,. Thus

k = RTk,
1.314 atm-ft*\ /1.09 Ib-mol\ /30.5 cm hr .
= 7 (298°K)
Ib-mol-°’K hr-ft=-atm ft 3,600 sec
= 3.6 cm/sec

These conversions take time and thought, but are not difficult.

Example 8.2-3: Averaging a mass transfer coefficient Imagine two porous solids whose
pores contain different concentrations of a particular dilute solution. If these solids are
placed together, the flux N, from one to the other will be (see Section 2.3)

Ny =+/D/atAc

By comparison with Eq. 8.1-2, we see that the local mass transfer coefficient is

k=+/D/mt

Note that this coefficient is initially infinite.
We want to correlate our results not in terms of this local value but in terms of a total
experimental time fy. This implies an average coefficient, &, defined by

N] = ]EAC]

where N is the total solute transferred per area divided by 5. How is k related to k?
Solution From the problem statement, we see that

4] fy
_ Ndt D/t Acidt
fy = o dt o YD/t —2./D/ntyAc

fo -
o dr |
Thus

k= 2\/D/7Tl()

which is twice the value of k evaluated at 75. Note that “local” refers here to a particular
time rather than a particular position.
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Example 8.2-4: Log mean mass transfer coefficients Consider again the packed bed of
benzoic acid spheres shown in Fig. 8.1-1(b) that was basic to Example 8.1-2. Mass transfer
coefficients in a bed like this are sometimes reported in terms of a log mean driving force:

Acy inter — Acy outlet
( ACl,inlet )
In{ ———
AC) putlet
For this specific case, N; is the total benzoic acid leaving the bed divided by the total surface
area in the bed. The bed is fed with pure water, and the benzoic acid concentration at the

sphere surfaces is at saturation; that is, it equals ¢)(sat). Thus

Nl = klog

[c1(sat) — 0] — [c1(sat) — ci(out)]
Cl(Sat) -0
ol X7 =
¢y (sat) — ¢y (out)
Show how k), is related to the tocal coefficient k used in the earlier problem.
Solution By integrating amass balanceona differential length of bed, we showed

in Example 8.1-2 that for a bed of length L,

Nl = klog

ciou) - —(ka/v)L
¢ (sat)

Rearranging, we find
¢y (sat) — ¢y (out) _ e—(ka/vo)L
cy(sat) — 0
Taking the logarithm of both sides and rearranging,
_ kaL
- | ci(sat) — 0
¢ (sat) — ¢ (out)

Multiplying both sides by ¢;(out),

UO

i (out)r’ = kal [c1(sat) — 0] — [c1 (sat) — cy(out)]
In <-_cLsat)——0__>

ci(sat) — cy(out)

By definition,

cl(out)voA
a(AL)

where A is the bed’s cross section and AL is its volume. Thus

=z

| =

[c(sat) — 0] — [c;(sat) — c1(out)]

< cy(sat) — 0 )
. ci(sat) — c;(out)

N =k
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and
kiog =k

The coefficients are identical.

Many argue that the log mean mass transfer coefficient is superior to the local value
used mostly in this book. Their reasons are that the coefficients are the same or (at WwOrst)
closely related and that kiog is macroscopic and hence easier to measure. After all, these
critics assert, you implicitly repeat this derivation every time you make a mass balance.
Why bother? Why not use ., and be done with it?

This argument has merit, but it makes me uneasy. I find that I need to think through the
approximations of mass transfer coefficients every time I use them and that this review is eas-
ily accomplished by making a mass balance and integrating. I find that most students share
this need. My advice is to avoid log mean coefficients until your calculations are routine.

8.3 Correlations of Mass Transfer Coefficients

In the previous two sections we have presented definitions of mass transfer coeffi-
cients and have shown how these coefficients can be found from experiment. Thus we have
a method for analyzing the results of mass transfer experiments. This method can be more
convenient than diffusion when the experiments involve mass transfer across interfaces.
Experiments of this sort include liquid-liquid extraction, gas absorption, and distillation.

However, we often want to predict how one of these complex situations will behave. We
do not want to correlate experiments; we want to avoid experiments as much as possible.
This avoidance is like that in our studies of diffusion, where we often looked up diffusion
coefficients so that we could calculate a flux or a concentration profile. We wanted to use
someone clse’s measurements rather than painfully make our own.

8.3.1 Dimensionless Numbers

In the same way, we want to look up mass transfer coefficients whenever pos-
sible. These coefficients are rarely reported as individual values, but as correlations of
dimensionless numbers. These numbers are often named, and they are major weapons that
engineers use to confuse scientists. These weapons are effective because the names sound
so scientific, like close relatives of nineteenth-century organic chemists.

The characteristics of the common dimensionless groups frequently used in mass transfer
correlations are given in Table 8.3-1. Sherwood and Stanton numbers involve the mass
transfer coefficient itself. The Schmidt, Lewis, and Prandtl numbers involve different kinds
of diffusion, and the Reynolds, Grashof, and Peclet numbers describe flow. The second
Damkohler number, which certainly is the most imposing name, is one of many groups
used for diffusion with chemical reaction.

A key point about each of these groups is that its exact definition implies a specific
physical system. For example, the characteristic length / in the Sherwood number kI/D
will be the membrane thickness for membrane transport, but the sphere diameter for a
dissolving sphere. A good analogy is the dimensionless group “efficiency.” An efficiency
of thirty percent has very different implications for a turbine and for a running deer. In
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Table 8.3-1. Significance of common dimensionless groups

Group* Physical meaning Used in

kl mass transfer velocity .
Sherwood number — - - - Usual dependent variable
D diffusion velocity

k mass transfer velocity . .
Stanton number — - Occasional dependent variable
v flow velocity

v diffusivity of momentum
Schmidt number — ! u.s1v1 y ,O Correlations of gas or liquid data
D diffusivity of mass

diffusivity of energy

. o .
Lewis number D Simultaneous heat and mass transfer

diffusivity of mass

diffusivity of momentum Heat transfer; included here for
diffusivity of energy completeness

Prandtl number i
o

VY inertial forces )
Reynolds number — —— Or Forced convection
v viscous forces

flow velocity

“momentum velocity”

Grashof number Free convection

PgAp/p buoyancy forces
2 viscous forces

) o0 flow velocity ) .
Péclet number — —_—_— Correlations of gas or liquid data
D diffusion velocity

reaction velocity Correlations involving reactions

S d Damkohl b —_—
ceond amkonier fumber diffusion velocity (see Chapters 15-16)

12
or (Thiele modulus)? %

Note: ¢ The symbols and their dimensions are as follows:
D diffusion coefficient (L2/¢)

g acceleration due to gravity (L/1%)

k mass transfer coefficient (L /1)

[ characteristic length (L)

v¥ fluid velocity (L/t)

a thermal diffusivity (L2/t)

« first-order reaction rate constant (+ ')

v kinematic viscosity (L2/t)

Ap/p fractional density change

the same way, a Sherwood number of 2 means different things for a membrane and for a
dissolving sphere. This flexibility is central to the correlations that follow.

8.3.2 Frequently Used Correlations

Correlations of mass transfer coefficients are conveniently divided into those for
fluid—fluid interfaces and those for fluid—solid interfaces. The correlations for fluid—-fluid
interfaces are by far the more important, for they are basic to gas adsorption, liquid-liquid
extraction. and nonideal distillation. Correlations of these mass transfer coefficients are
also important for aeration and water cooling. These correlations usually have no known
parallel correlations in heat transfer, where fluid—fluid interfaces are not common.
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Some of the more useful correlations for fluid—fluid interfaces are given in Table 8.3-2.
The accuracy of these correlations is typically of the order of thirty percent, but larger
errors are not uncommon. Raw data can look more like the result of a shotgun blast than
any sort of coherent experiment because the data include wide ranges of chemical and
physical properties. For example, the Reynolds number, that characteristic parameter of
forced convection, can vary 10,000 times. The Schmidt number, the ratio (v/D), is about
1 for gases but about 1000 for liquids. Over a more moderate range, experimental data can
be reliable. Still, while the correlations are useful for the preliminary design of small pilot
plants, they should not be used for the design of full-scale equipment without experimental
checks on the specific chemical systems involved.

Many of the correlations in Table 8.3-2 have the same general form. They typically
involve a Sherwood number, which contains the mass transfer coefficient, the quantity of
interest. This Sherwood number varies with Schmidt number, a characteristic of diffusion.
The variation of Sherwood number with flow is more complex because the flow has two
different physical origins. In most cases, the flow is caused by external stirring or pumping.
For example, the liquids used in extraction are rapidly stirred; the gas in ammonia scrubbing
is pumped through the packed tower; the blood in the artificial kidney is pumped by the heart
through the dialysis unit. This type of externally driven flow is called “forced convection.”
In other cases, the fluid velocity is a result of the mass transfer itself. The mass transfer
causes density gradients in the surrounding solution; these in turn cause flow. This type
of internally generated flow is called “free convection.” For example, the dispersal of
pollutants and the dissolution of drugs are often accelerated by free convection.

The dimensionless form of the correlations for fluid—fluid interfaces may disguise the
very real quantitative similarities between them. To explore these similarities, we consider
the variations of the mass transfer coefficient with fluid velocity and with diffusion coeffi-
cient. These variations are surprisingly uniform. The mass transfer coefficient varies with
the 0.7 power of the fluid velocity in four of the five correlations for packed towers in Table
8.3-2. It varies with the diffusion coefficient to the 0.5 to 0.7 power in every one of the
correlations. Thus any theory that we derive for mass transfer across fluid—fluid interfaces
should imply variations with velocity and diffusion coefficient like those shown here.

Some frequently quoted correlations for fluid-solid interfaces are given in Table 8.3-3.
These correlations are rarely important in common separation processes like absorption
and extractions. They are important in leaching, in membrane separations, and in electro-
chemistry. However, the real reason that these correlations are quoted in undergraduate and
graduate courses is that they are close analogues to heat transfer. Heat transfer is an older
subject, with a strong theoretical basis and more familiar nuances. This analogy gets lazy
lecturers merely mumble, “Mass transfer is just like heat transfer” and quickly compare the
correlations in Table 8.3-2 with the heat transfer parallels.

The correlations for solid-fluid interfaces in Table 8.3-3 are much like their heat transfer
equivalents. More significantly, these less important, fluid—solid correlations are analogous
but more accurate than the important fluid—fluid correlations in Table 8.3-2. Accuracies for
solid-fluid interfaces are typically average 410%: for some correlations like laminar flow in
a single tube, accuracies can be +1%. Such precision, which is truly rare for mass transfer
measurements, reflects the simpler geometry and stable flows in these cases. Laminar flow
of one fluid in a tube is much better understood than turbulent flow of gas and liquid in a
packed tower.

The correlations for fluid—solid interfaces often show mathematical forms like those for
fluid—fluid interfaces. The mass transfer coefficient is most often written as a Sherwood
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228 8 / Fundamentals of Mass Transfer

number, though occasionally as a Stanton number. The effect of diffusion coefficient is
most often expressed as a Schmidt number. The effect of fiow is most often expressed as a
Reynolds number for forced convection, and as a Grashof number for free convection.

These fluid—solid dimensionless correlations can conceal how the mass transfer coef-
ficient varies with fluid flow v and diffusion coefficient D, just as those for fluid—fluid
interfaces obscured these variations. Basically, & often varies with the square root of v.
The variation is lower for some laminar flows and higher for turbulent flows. It usually
varies with D?/3, though this variation is rarely checked carefully by those who develop the
correlations. Variation of k with D*3 does have some theoretical basis, a point explored
further in Chapter 13.

Example 8.3-1: Dissolution rate of a spinning disc A solid disc of benzoic acid

2.5 centimeters in diameter is spinning at 20 rpm and 25°C. How fast will it dissolve

in a large volume of water? How fast will it dissolve in a large volume of air? The diffusion

coefficients are 1.00 - 1075 cm?/sec in water and 0.233 cm?/sec in air. The solubility of

benzoic acid in water is 0.003 g/cm?; its equilibrium vapor pressure is 0.30 mm Hg.
Solution Before starting this problem, try to guess the answer. Will the mass

transfer be higher in water or in air?

In each case, the dissolution rate is

N = ke (sat)

where ¢ (sat) is the concentration at equilibrium. We can find k from Table 8.3-2:

k = 0.62D (%)1/2 (%>1/3

For water, the mass transfer coefficient is

20/60)2r/sec)\ >/ 0.01 em?/sec \ '’
0.01 cm?/sec 1.00 - 1075 em?/sec

k = 0.62(1.00 - 107° cm?/sec) (
=0.90- 107 cm/sec
Thus the flux is
N; = (0.90 - 10~ cm/sec)(0.003 g/cm?)
=12.7-107° g/cm?-sec

For air, the values are very different:

(20/60)(27r/sec)>1/2 < 0.15 cm?/sec >l/3

k = 0.62(0.233 cm?
( cm”/sec) ( 0.15 cm?/sec 0.233 cm?/sec

= 0.47 cm/sec

8.3/ Corre.
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Almost pure
air

70 T 7/, Pure water
zf ';/W

A Air & water —
| soluble vapor

lGus dissolved
in water

Fig. 8.3-1. Gas scrubbing in a wetted-wall column. A water-soluble gas is being dissolved in

a falling film of water. The problem is to calculate the length of the column necessary to
reach a liguid concentration equal to ten percent saturation.

which is much larger than before. However, the flux is

Ny = (047 em/sec) 0.3 mm Hg 1 mol 273 122 ¢
= . cm/sec —_— —_— —_—
: 760 mm Hg / \ 22.4 - 103 cm?® / \ 298 ) \ “mol

=0.9-107%/cm? sec

The flux in air is about one-third of that in water, even though the mass transfer coefficient
in air is about 500 times larger than that in water. Did you guess this?

Example 8.3-2: Gas scrubbing with a wetted-wall column  Air containing a water-
soluble vapor is flowing up and water is flowing down in the experimental column shown
in Fig. 8.3-1. The water flow in the 0.07-centimeter-thick film is 3 centimeters per second,
the column diameter is 10 centimeters, and the air is essentially well mixed right up to the
interface. The diffusion coefficient in water of the absorbed vapor is 1.8 - 107> cm?/sec.
How long a column is needed to reach a gas concentration in water that is ten percent of
saturation?

Solution  The first step is to write a mass balance on the water in a differential
column height Az ;

(accumulation) = (flow in minus flow out) + (absorption)
0 = [wdiV’c|], — [wdlv%¢)]. s, + md Azk[c) (sat) — ]

in which d is the column diameter, / is the film thickness, v is the flow, and ¢; is the vapor
concentration in the water. This balance leads to

dC]
R + ki (sat) — ¢q]

0=-1°
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From Table 8.3-2, we have

Dy’ 1/2
k =0.69 (—”)
Z

We also know that the entering water is pure; that is, when
z=0, ¢ =0
Combining these results and integrating, we find

“a 1 _e—1.38(Dz/12v0)1/2
c1(sat)

Inserting the numerical values given,

(i60) [ (- )|
= In{1-—
1.90D ¢y (sat)

_ ( (0.07 cm)?*(3 cm/sec)
~ \(1.90)1.8 - 105 cm?/sec

) [In(1 = 0.1)]?

=4.8cm

This approximate calculation has been improved elaborately, even though its practical value
is small.

Example 8.3-3: Measuring stomach flow Imagine we want to estimate the average flow
in the stomach by measuring the dissolution rate of a nonabsorbing solute present as a large
spherical pill. From in vitro experiments, we know that this pill’s dissolution is accurately
described with a mass transfer coefficient. How can we do this?

Solution We first calculate the concentration ¢ of the dissolving solute in the
stomach and then show how this is related to the flow. From a mass balance,

vI ke sat) — 1]
— =7 C - C
d[ 1 1

where V is the stomach’s volume, 7 d? is the pill’s area, k is the mass transfer coefficient,
and ci(sat) is the solute’s solubility. Because no solute is initially present,

¢y=0 when =0

Integrating,

|4 ¢ (sat)
k= In
wd?t ci(sat) — ¢

If we assume that stomach flow is essentially forced convection, we find, from Table 8.3-3,

kd dv\'"? ;v\13
Yo oq06( (—)
D v D

N2 Corre
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where d is the pill diameter, D is the diffusion coefficient, and v is the unknown stomach
flow. Combining and rearranging,

25 (V1323 1% ci(sat) 2
V= — In -2
9 d wdtD ci(sat) — ¢,

which is the desired result. Note the assumptions in this problem: The flow is due to forced
convection, the pill diameter is constant, and flow in and out of the stomach is negligible.

Example 8.3-4: Glucose uptake by red blood cells The uptake of glucose across the red
blood cell membrane has a maximum rate ranging from 0.1 to 5 szmol/cm?-hr. Apparently,
these differences result from differences in experimental conditions. Using the correlation
for liquid drops in Table 8.3-2, estimate the effect of mass transfer in the bulk to see when it
could have affected these uptake rates. To make the estimation more quantitative, assume
that a typical experiment is made in a beaker containing 100 cm? of red blood cells suspended
in 1 liter of plasma. The beaker is stirred with a 1/50-hp motor. The cells originally contain
little glucose. At time zero, radioactively tagged glucose is added and its uptake measured.
The diffusion coefficient of glucose is about 6 - 10~¢ ¢m? /sec, and the plasma viscosity is
approximately that of water.

Solution We are interested in the case in which glucose uptake is dominated
by mass transfer. 1In this case, glucose will diffuse to the membrane and then almost
instantaneously be taken into the cell, Thus

N[ :kC1

where ¢y is the bulk concentration. If we can calculate k, then we can estimate Ny, the
desired quantity. We see from Table 8.3-2 that for a suspension of liquid drops,

P 1/4
k=0.13 <V> p~ 4y S12 23

03[ _1/50hp 745 10° g-cm? Va7 1g A
© 7 7\1,000cm®  hpsec® cm?

(001 cm?\ ~/12 6-10‘602% 2B
sec sec

=5.7-107* cm/sec = 21 cm/hr
The flux is
Ny = (21 em/hr)c,

Whether or not diffusion outside the cells is significant depends on ¢}, the amount of glucose
used. The flux equals 5 pumol/cm?-hr when ¢y is about 0.3 mmol/titer. If ¢; far exceeds
0.3 mmol/liter, then the flux due to diffusion will be much faster than that due to the cell
membrane. The measurements will then truly represent membrane properties. However,
if the glucose concentration is less than 0.3 mmol/liter, then the measurements will be
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functions both of the membrane and of mass transfer in plasma. Such restrictions can
compromise measurements in biological systems.

8.4 Dimensional Analysis: The route to Correlations

The correlations in the previous section provide a useful and compact way of
presenting experimental information. Use of these correlations quickly gives reasonable
estimates of mass transfer coefficients. However, when we find the correlations inadequate,
we will be forced to make our own experiments and develop our own correlations. How
can we do this?

The basic form of mass transfer correlations is easily developed using a method called
dimensional analysis (Bridgeman, 1922; Becker, 1976). This method is easily learned via
the two specific examples that follow. Before embarking on this description, 1 want to
emphasize that most people go through three mental states concerning this method. At
first they believe it is a route to all knowledge, a simple technique by which any set of
experimental data can be greatly simplified. Next they become disillusioned when they
have difficulties in the use of the technique. These difficulties commonly result from efforts
to be too complete. Finally, they learn to use the method with skill and caution, benefiting
both from their past successes and from their frequent failures. 1 mention these three stages
because I am afraid many may give up at the second stage and miss the real benefits involved.
We now turn to the examples.

8.4.1 Aeration

Aeration is a common industrial process and yet one in which there is often serious
disagreement about correlations. This is especially true for deep-bed fermentors and for
sewage treatment, where the rising bubbles can be the chief means of stirring. We want
to study this process using the equipment shown schematically in Fig. 8.4-1. We plan to
inject oxygen into a variety of aqueous solutions and measure the oXygen concentration in
the bulk with oxygen selective electrodes. We expect to vary the average bubble velocity
v, the solution’s density p and viscosity u, the entering bubble diameter d, and the depth
of the bed L.

We measure the steady-state oxygen concentration as a function of position in the bed.
These data can be summarized as a mass transfer coefficient in the following way. From a
mass balance, we see that

d
0= 0" 4 kale (sat) — ¢1] (8.4-1)
dz
where a is the total bubble area per column volume. This equation, a close parallel to the
many mass balances in Section 8.1, is subject to the initial condition
2=0, ¢ =0 (8.4-2)
Thus
] o t
ka= 21 (ﬁ"@)‘) (8.4-3)

ci(sat) — ¢ (z)

A
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= v .
2y w Aqueous solution in
Oxygen
electrodes mz%
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° | S—
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—>
Oxygen spurger/
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Solution out

Fig. 8.4-1. An experimental apparatus for the study of aeration. Oxygen bubbles from the
sparger at the bottom of the tower partially dissolve in the aqueous solution. The concentration
in this solution is measured with electrodes that are specific for dissolved oxygen. The
concentrations found in this way are interpreted in terms of mass transfer coefficients; this
interpretation assumes that the solution is well mixed, except very near the bubble walls.

Ideally, we would like to measure k and a independently, separating the effects of mass
transfer and geometry. This would be difficult here, so we report only the product ka.
Our experimental results now consist of the following:

ka =ka(v, p, u.d, z) (8.4-4)
We assume that this function has the form
ka = [constant]v® p? u” d°z¢ (8.4-5)

where both the constant in the square brackets and the exponents are dimensionless. Now
the dimensions or units on the left-hand side of this equation must equal the dimensions or
units on the right-hand side. We cannot have centimeters per second on the left-hand side
equal to grams on the right. Because ka has dimensions of the reciprocal of time (1/t), v

has dimensions of length/time (L /), p has dimensions of mass per length cubed (M/L?),
and so forth, we find

Lo (BY M>ﬁ M>VL5LE 8.4-6
;[—]<7> (i‘g (E (L)'(L) (8.4-6)

The only way this equation can be dimensionally consistent is if the exponent on time on the
left-hand side of the equation equals the sum of the exponents on time on the right-hand side:

—l=—a-—y (8.4-7)
Similar equations hold for the mass:

0=8+y (8.4-8)
and for the length:

O=a—3f~y+5+e (8.4-9)

Equations 8.4-7 to 8.4-9 give three equations for the five unknown exponents.
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We can solve these equations in terms of the two key exponents and thus simplify
Eq. 8.4-5. We choose the two key exponents arbitrarily. For example, if we choose the
exponent on the viscosity y and that on column height ¢, we obtain

a=1-y (8.4-10)
B=—y (8.4-11)
y=v (8.4-12)
§=—y—e—1 (8.4-13)
€=¢ (8.4-14)

Inserting these results into Eq. 8.4-5 and rearranging, we find

e
<@> — [constant] (dﬂ> (5) (8.4-15)
v " d

The left-hand side of this equation is a type of Stanton number. The first term in parentheses
on the right-hand side is the Reynolds number, and the second such term is a measure of
the tank’s depth.

This analysis suggests how we should plan our experiments. We expect to plot our
measurements of Stanton number versus two independent variables: Reynolds number and
z/d. We want to cover the widest possible range of independent variables. Our resulting
correlation will be a convenient and compact way of presenting our results, and everyone
will live happily ever after.

Unfortunately, it is not always that simple for a variety of reasons. First, we had to assume
that the bulk liquid was well mixed, and it may not be. If it is not, we shall be averaging our
values in some unknown fashion, and we may find that our correlation extrapolates unreli-
ably. Second, we may find that our data do not fit an exponential form like Eq. 8.4-5. This can
happen if the oxygen transferred is consumed in some sort of chemical reaction, which is true
in aeration. Third, we do not know which independent variables are important. We might
suspect that ka varies with tank diameter, or sparger shape, or surface tension, or the phases
of the moon. Such variations can be included in our analysis, but they make it complex.

Still, this strategy has produced a simple method of correlating our results. The foregoing
objections are important only if they are shown to be so by experiment. Until then, we should
use this easy strategy.

8.4.2 The Artificial Kidney

The second example to be discussed in this section is the mass tr..asfer out of the
tube shown schematically in Fig. 8.4-2. Such tubes are basic to the artificial kidney. There,
blood flowing in a tubular membrane is dialyzed against well-stirred saline solution. Toxins
in the blood diffuse across the membrane into the saline, thus purifying the blood. This
dialysis is often slow; it can take more than 40 hours per week. Increasing the mass transfer
in this system would greatly improve its clinical value.

The first step in increasing this rate is to stir the surrounding saline rapidly. This mixing
increases the rate of mass transfer on the saline side of the membrane, so that only a small
part of the concentration difference is there, as shown in Fig. 8.4-2. In other words, we have
decreased the resistance to mass transfer on the saline side. The second step in increasing
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Blood flow

/

Cuprophan
membrane

Stirred

saline .

solution Saline
N

Fig. 8.4-2. Mass transfer in an artificial kidney. Arterial blood flows through a dialysis tube that
is immersed in saline. Toxins in the blood diffuse across the tube wall and into the saline. If the
saline is well stirred and if the tube wall is thin, then the rate of toxin removal depends on the

concentration gradient in the blood. Experiments in this situation are easily correlated using
dimensional analysis.

the rate is to make the membrane as thin as possible. Although too thin a membrane would
rupture, existing membranes are already so thin that the membrane thickness has only a
minor effect. The result is that the concentration difference across the membrane is not the
largest part of the overall concentration difference, again as shown in Fig. 8.4-2.

The rate of toxin removal now depends only on what happens in the blood. We want to
correlate our measurements of toxin removal as a function of blood flow, tube size, and so
forth. To do this, we find the flux for each case:

amount transferred

flux Ny = - (8.4-16)
(area) (time)

By definition,
Ny = k(cr — ci)
= ke (8.4-17)

Because we know N, and ¢, we can find the mass transfer coefficient k.

As before, we recognize that the mass transfer coefficient of a particular toxin varies
with the system’s properties:

k=kw,p,u, D, d) (8.4-18)

where v, p, and p are the velocity, density, and viscosity of the blood, D is the diffusion

coefficient of the toxin in blood, and d is the diameter of the tube. We assume that this
relation has the form

k = [constant]v® pf u?” D’d¢ (8.4-19)

where the constant is dimensionless. The dimensions or units on the left-hand side of this
equation must equal the dimensions or units on the right-hand side; so

L LN/ MN\? [ M\Y [ L*\®
e(F) (3) (@) (5) v G



236 8/ Fundamentals of Mass Transfer

This equation will be dimensionally consistent only if the exponent on the length on the
left-hand side of the equation equals the sum of the exponents on the right-hand side:

l=a~38—-y+25+¢ (8.4-21)
Similar equations must hold for mass:

0=g+y (8.4-22)
and for time:

—l=—0—y -3 (8.4-23)

We solve these equations in terms of the exponents « and §:

o=« (8.4-24)
B=a+8—1 (8.4-25)
y=1l—-a~34 (8.4-26)
§=94§ (8.4-27)
€ =a~— 1 (8.4-28)

We combine these results with Eq. 8.4-19 and collect terms:

kd dvp \*“ -
e [constant] <—U'(-)> (—“—) (8.4-29)
M u pD

By convention, we multiply both sides of this equation by the dimensionless quantity ¢/ p D
to obtain

kd d o 1-8
— = [constant] <—U£> <L> (8.4-30)
D 0 pD

This equation is the desired correlation. As in the first example, a key step in the analysis
is the arbitrary choice of the two exponents « and §. Any other pair of exponents could
have been chosen and would have given a completely equivalent correlation. However,
the particular manipulations here are made so that the dimensionless groups found are
consistent with traditional patterns. Such traditional patterns sometimes reflect experience
and sometimes merely mirror convention. Multiplying both sides of Eq. 8.4-29 u/pD
involves these factors.

The trouble with this analysis is that it is not the whole story. From experiments at low
flow, we would find that the mass transfer coefficient k does vary with the cube root of the
velocity v and with the two thirds power of the diffusion coefficient D. This suggests that
Eq. 8.4-30 can be rewritten

kd dv\'"?
—D(~ = [constant} <'DE> (8.4-31)

that is. that @ = (I — §) = 1/3. However, if we then measured & as a function of the tube
diameter d. we would find it proportional to d~'/3, not d=%/* as suggested by Eq. 8.4-31.
After a good start, our dimensional analysis is failing.

8.5/ Mass T

The reaso
beginning. in
the density ¢

kd
D

which is the
have no reas
and make im
sharpens.

8.5

In
describing d
These coeftic
2xemplified ¢
710 make e
In this <2
sell-mixed *
man does
swamples s

Toonlems ot



. 1:22)

< 123)

~1-24)
< 4:25)
2 4:26)
427
+4-28)

~ 4-29)

alpD

~.4-30)

2 .nalysis

==+ could
SRoUnaNex.

e

-0l oI L8

-oNs aar

~.4-31)

- -he tube
- 8431

8.5/ Mass Transfer Across Interfaces 237

The reason for this failure is that we did not choose all the relevant variables at the very
beginning, in Eq. 8.4-18. We should have included the tube length L; we could have omitted
the density o and viscosity . Had we done so, we would have obtained:

kd a2\
) = [constant] (ﬁ) (8.4-32)

which is the result quoted in Table 8.3-3. However, from dimensional analysis alone, we
have no reason to be critical of our original result in Eq. 8.4-30. We can only be critical
and make improvements as our experimental experience grows and as our physical insight
sharpens.

8.5 Mass Transfer Across Interfaces

In the previous sections, we used mass transfer coefficients as an easy way of
describing diffusion occurring from an interface into a relatively homogeneous solution.
These coefficients involved many approximations and sparked the explosion of definitions
exemplified by Table 8.2-2. Still, they are a very easy way to correlate experimental results
or to make estimates using the published relations summarized in Tables 8.3-2 and 8.3-3.

In this section, we extend these definitions to transfer across an interface, from one
well-mixed bulk phase into another different one. This case occurs much more frequently
than does transfer from an interface into one bulk phase; indeed, 1 had trouble dreaming up
examples earlier in this chapter. Transfer across an interface again sparks potentially major
problems of unit conversion, but these problems are often simplified in special cases.

8.5.1 The Basic Flux Equation

Presumably, we can describe mass transfer across an interface in terms of the same
type of flux equation as before:

N, = KAc (8.5-1)
where N, is the solute flux relative to the interface, K is called an “overall mass transfer
wmesr. -0 iad Aoy (S sane approgriace concendration diterence. But wital is Ay ?

s - -2 anappropriate value of Ac; turns out to be difficult. To illustrate this, consider
e wr- - _ccions shown in Fig. 8.5-1. In the first term, hot benzene is placed on top of
«ul ~ .. .- -2 benzene cools and the water warms until they reach the same temperature.
Mg - ---.ure is the criterion for equilibrium, and the amount of energy transferred
mmms .~ proportional to the temperature difference between the liquids. Everything

sceimns secure.

As a second example, shown in Fig. 8.5-1(b), imagine that a benzene solution of bromine
is placed on top of water containing the same concentration of bromine. After a while, we
find that the initially equal concentrations have changed, that the bromine concentration in
the benzene is much higher than that in water. This is because the bromine is more soluble
in benzene, so that its concentration in the final solution is higher.

This result suggests which concentration difference we can use in Eq. 8.5-1. We should
not use the concentration in benzene minus the concentration in water; that is initially zero,
and yet there is a flux. Instead, we can use the concentration actually in benzene minus the



238 8/ Fundamentals of Mass Transfer
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Fig. 8.5-1. Driving forces across interfaces. In heat transfer, the amount of heat transferred
depends on the temperature difference between the two liquids, as shown in (a). In mass
transfer, the amount of solute that diffuses depends on the solute’s “solubility” or, more exactly,
on its chemical potential. Two cases are shown. In (b), bromine diffuses from water into
benzene because it is much more soluble in benzene; in (c), bromine evaporates until its
chemical potentials in the solutions are equal. This behavior complicates analysis of mass
transfer.

concentration that would be in benzene that was in equilibrium with the actual concentration
in water. Symbolically,

Ny = K|c(in benzene) — He(in water)] (8.5-2)

where H is a partition coefficient, the ratio at equilibrium of the concentration in benzene
to that in water. Note that this does predict a zero flux at equilibrium.

A better understanding of this phenomenon may come from the third case, shown in
Fig. 8.5-1(c). Here, bromine is vaporized from water into air. Initially, the bromine’s
concentration in water is higher than that in air; afterward, it is lower. Of course, this
reversal of the concentration in the liquid might be expressed in moles per liter and that in
gas as a partial pressure in atmospheres, so it is not surprising that strange things happen.

As you think about this more carefully, you will realize that the units of pressure or
concentration cloud a deeper truth: Mass transfer can be described in terms of more funda-
mental chemical potentials. If this were done, the peculiar concentration differences would
disappear. However, chemical potentials turn out to be very difficult to use in practice, and
so the concentration differences for mass transfer across interfaces will remain complicated
by units.

8.5.2 The Overall Mass Transfer Coefficient

We want to include these qualitative observations in more exact equations. To do
this, we consider the example of the gas—liquid interface in Fig. 8.5-2. In this case, gas on
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NN
Liquid

Fig. 8.5-2. Mass transfer across a gas—liquid interface. In this example, a solute vapor is
diffusing from the gas on the left into the liquid on the right. Because the solute concentration
changes both in the gas and in the liquid, the solute’s flux must depend on a mass transfer

coefficient in each phase. These coefficients are combined into an overall flux equation in the
text.

the left is being transferred into the liquid on the right. The flux in the gas is
Ny =ky(pio — p1i) (8.5-3)

where k), is the gas-phase mass transfer coefficient (typically in mol/cm?-sec-atm), p)g is
the bulk pressure, and py; is the interfacial pressure. Because the interfacial region is thin,

the flux across it will be in steady state, and the flux in the gas will equal that in the liquid.
Thus,

Ny =kr(ci; — cio) (8.5-4)

where the liquid-phase mass transfer coefficient &, is typically in centimeters per second
and ¢y; and ¢ are the interfacial and bulk concentrations, respectively.

We now need to eliminate the unknown interfacial concentrations from these equations.
In almost all cases, equilibrium exists across the interface:

pii = Hcy; (8.5-5)

where H is a type of Henry’s law or partition constant (here in cm?-atm/mol). Combining
Eqgs. 8.5-3 through 8.5-5, we can find the interfacial concentrations
Pu _ kppio+kicio

e = Pl _ (8.5-6)
H ~ kH+kg

and the flux
1

N=—uon—— — He 8.5-7
! Uk, + Hjk (P10 c10) ( )

You should check the derivations of these results.

Before proceeding further, we make a quick analogy. This result is often compared to
an electric circuit containing two resistances in series. The flux corresponds to the current,
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and the concentration difference pjg — Hcjo corresponds to the voltage. The resistance is
then 1/k, + H/k;, which is roughly a sum of two resistances in series. This is a good way
of thinking about these effects. You must remember, however, that the resistances 1 /kp,
and 1/k; are not directly added, but always weighted by partition coefficients like H.

We now want to write Eq. 8.5-7 in the form of Eq. 8.5-1. We can do this in two ways.
First, we can write

Ny =K (c] —cio) (8.5-8)
where
1
Ki=——+—— (8.5-9)
Yk, +1/k,H
and
P1o
oI 8.5-10
o= ( )

K is called an “overall liquid-side mass transfer coefficient,” and c} is the hypothetical
liquid concentration that would be in equilibrium with the bulk gas. Alternatively,

Ni=K,(pio—pD) (8.5-11)

where

|

Ky=——— 8.5-12
P 1k, + HJ kL ( )

and
pT = HCl() (85-13)

K, is an “overall gas-side mass transfer coefficient,” and p} is the hypothetical gas-phase
concentration that would be in equilibrium with the bulk liquid.

We now turn to a variety of examples illustrating mass transfer across an interface. These
examples have the annoying characteristic that they are initially difficult to do, but they are
trivial after you understand them. Remember that most of the difficulty comes from that
ancient but common curse: unit conversion.

Example 8.5-1: Oxygen mass transfer Estimate the overall liquid-side mass transfer
coefficient at 25°C for oxygen from water into air. In this estimate, assume that each
individual mass transfer coefficient is
D
~ 0.0l cm

This relation is justified in Section 13.1.

Solution For oxygen in air, the diffusion coefficient is 0.23 cm?/sec; for oxygen
in water. the diffusion coefficient is 2.1 - 1075 cm?/sec. The Henry’s law constant in this
case is 4.4 - 10" atmospheres. We need only calculate k; and k, and plug these values into
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Eq. 8.5-9. Finding &, is easy:

D, 211075 cm*/sec

k, = =
0.01 cm 0.01 cm

=2.1-10"% cm/sec

Finding k, and H is harder because of unit conversions. From Eq. 8.5-3 and Table 8.2-2
ke Dg
RT ~ (0.01 cm)(RT)

p =

_ 0.23 cm?/sec
~(0.01 cm)(82 cm’-atm/g-mol-"K)(298°K)

=9.4-107* g-mol/cm?-sec-atm

From the units of the Henry’s law constant, we see that the value given implies

pii = H'xy
By comparison with Eq. 8.5-5,

pi = Hey = (Ho)xy
Thus

H= (ﬁ/) = M—% =7.9-10° atm-cm’/g-mol

¢ 1 g-mol/18 cm’

Inserting these results into Eq. 8.5-9, we find

1

Kj=——
1/kp + 1/k,H

1
1 1
=3 + =7 3 53
2.1-10" cm/sec ~ (9.4- 107" g-mol/cm*-sec-atm)}(7.9 - 10” cm”’-atm/g-mol)

=2.1-10"% cm/sec

The mass transfer is dominated by the liquid-side resistance. This would also be true if we
calculated the overall gas-side mass transfer coefficient, a consequence of the slow diffusion
in the liquid state. It is the usual case for problems of this sort.

Example 8.5-2: Perfume extraction Jasmone (C, HcO) is a valuable material in the
perfume industry, used in many soaps and cosmetics. Suppose we are recovering this
material from a water suspension of jasmine flowers by an extraction with benzene. The
aqueous phase is continuous; the mass transfer coefficient in the benzene drops is 3.0- 10~*
centimeters per second; the mass transfer coefficient in the aqueous phase is 2.4 - 1073
centimeters per second. Jasmone is about 170 times more soluble in benzene than in the
suspension. What is the overall mass transfer coefficient?
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Solution For convenience, we designate all concentrations in the benzene phase
with a prime and all those in the water without a prime. The flux is

!’ / 14
Ny =k{cig—ci) =k (le - Clo)
The interfacial concentrations are in equilibrium:
!
Cy = HC[,'

Eliminating these interfacial concentrations, we find

1/k'+ H/k
The quantity in square brackets is the overall coefficient K’ that we seek. This coefficient
is based on a driving force in benzene. Inserting the values,

|

1 170
3.0-10 % cm/sec = 2.4- 107% cm/sec

1
N, = {—“] (Hcyp — ¢hp)

K' =

=1.3-107° cm/sec

Similar results for the overall coefficient based on a driving force in water are easily found.

Two points about this problem deserve mention. First, the result is a complete parallel
to Eq. 8.5-12, but for a liquid-liquid interface instead of a gas—liquid interface. Second,
mass transfer in the water dominates the process even though the mass transfer coefficient
in water is larger because jasmone is so much more soluble in benzene.

Example 8.5-3: Overall mass transfer coefficients in a packed tower We are studying
gas absorption into water at 2.2 atmospheres total pressure in a packed tower contain-
ing Berl saddles. From earlier experiments with ammonia and methane, we believe that
for both gases the mass transfer coefficient times the packing area per tower volume is
18 Ib-mol/hr-ft® for the gas side and 530 Ib-mol/hr-ft for the liquid side. The values for
these two gases may be similar because methane, and ammonia have similar molecular
weights. However, their Henry’s law constants are different: 9.6 atmospheres for ammonia
and 41,000 atmospheres for methane. What is the overall gas-side mass transfer coefficient
for each gas?

Solution This is essentially a problem in unit conversion. Although you can
extract the appropriate equations from the text, I always feel more confident if I repeat parts
of the derivation.

The quantity we seek, the overall gas-side transfer coefficient K, is defined by

Nia = Kya(yo — ¥7)
= kya(ywo — y11)
= k.a(xy; — x10)

where v| and x| are the gas and liquid mole fractions.
The interfacial concentrations are related by Henry’s law:

pui = pyu = Hxy;
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When these interfacial concentrations are eliminated, we find that

1 1 H
+/p

Kya kea k.a

In passing, we recognize that y} must equal Hxo/p.
We can now find the overall coefficient for each gas. For ammonia,
1 1 n 9.6 atm/2.2 atm
Kya 18 Ib-mol/hr-ft* 530 Ib-mol/hr-ft}

K,a = 16 Ib-mol/hr-ft’
The gas-side resistance controls the rate. For methane,

1 1 | 41,000 atm/2.2 atm
K,a 18 1b-mol/hr-f ~ 530 Ib-mol/hr-ft®

K,a = 0.03 Ib-mol/hr-ft’

The coefficient for methane is smaller and is dominated by the liquid-side mass transfer
coefficient.

8.6 Conclusions

This chapter presents an alternative model for diffusion, one using mass transfer
coefficients rather than diffusion coefficients. The model is most useful for diffusion across
phase boundaries. It assumes that large changes in the concentration occur only very near
these boundaries and that the solutions far from the boundaries are well mixed. Such a
description is called a lumped-parameter model.

In this chapter, we have shown how experimental results can be converted into mass
transfer coefficients. We have also shown how these coefficients can be efficiently orga-
nized as dimensionless correlations, and we have cataloged published correlations that are
commonly useful. These correlations are compromised by problems with units that come
out of a plethora of closely related definitions.

Mass transfer coefficients provide especially useful descriptions of diffusion in complex
multiphase systems. They are basic to the analysis and design of industrial processes
like absorption, extraction, and distillation. They should find major applications in the
study of physiologic processes like membrane diffusion, blood perfusion. and digestion;
physiologists and physicians do not often use these models but would benefit from doing so.

Mass transfer coefficients are not useful in chemistry when the focus is on chemical
Kinetics or chemical change. They are not useful in studies of the solid state, where
concentrations vary with both position and time, and lumped-parameter models do not help
much. However, mass transfer coefficients are used in analyzing etching processes, like
those used in making silicon chips.

All in all, the material in this chapter is a solid alternative for analyzing diffusion near
interfaces. It is basic stuff for chemical engineers, but it is an unexplored method for many
others. It repays careful study.



