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Fundamentals of Mass Transfer

Diffusion is the process by which molecules, ions, or other small particles spon-

taneously mix, moving from regions of relatively high concentration into regions of lower

concentration. This process can be analyzed in two ways. First, it can be described with

Fick's law and a diffusion coeffìcient, a fundamental and scientific description used in the
fìrst two parts of this book. Second, it can be explained in terms of a mass transfer coef-

ficient, an approximate engineering idea that often gives a simpler description. It is this
simpler idea that is emphasized in this part of this book.

Analyzing diffusion with mass transfer coefficients requires assuming that changes in

concentration are limited to that small part of the system's volume near its boundaries. For

example, in the absorption of one gas into a liquid, we assume that all gases and liquids are
well mixed, except near the gas-liquid interface. In the leaching of metal by pouring acid
over ore, we assume that the acid is homogeneous, except in a thin layer next to the solid ore
particles. In studies of digestion, we assume that the contents of the small intestine are well
mixed, except near the villi at the intestine's wall. Such an analysis is sometimes called a
"lumped-parameter model" to distinguish it from the "distributed-parameter model" using
diffusion coefficients. Both models are much simpler for dilute solutions.

If you are beginning a study of diffusion, you may have troubìe deciding whether to
organize your results as mass transfer coefficients or as diffusion coefficients. I have this
trouble too. The cliché is that you should use the mass transfer coeffìcient approach if

the diffusion occurs across an interface, but this cliché has many exceptions. Instead of
depending on the cliché, I believe you should always try both approaches to see which is

better for your own needs. In my own work, I have found that I often switch from one to

the other as the work proceeds and my objectives evolve.
This chapter discusses mass transfer coefficients for dilute solutions; extensions to con-

centrated solutions are deferred to Section 13.5. In Section 8.1, we give a basic definition
for a mass transfer coefficient and show how this coefficient can be used experimentally.
In Section 8.2, we present other common definitions that represent a thicket of prickly al-

ternatives rivaled only by standard states for chemical potentials. These various definitions
are why mass transfer often has a reputation with students of being a difficult subject. In

Section 8.3, we list existing correlations of mass transfer coefficients; and in Section 8.4,
we explain how these correlations can be developed with dimensional analysis. Finally, in

Section 8.5, we discuss processes involving diffusion across interfaces, a topic that leads to

overall mass transfer coeffìcients found as averages of more local processes. This last idea

is commonly called mass transfer resistances in series.

8.1 A Definition of Mass Tlansfer Coefficients

The defìnition of mass transfer is based on empirical arguments like those used

in developing Fick's law in Chapter 2. Imagine we are interested in the transfer of mass
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irom some interface into a well-mixed solution. We expect that the amount transferred is
proportional to the concentration difference and the interfacial area:
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where the proportionality is summarized by À, called a mass transfer coeffìcient. If we
divide both sides of this equation by the area, we can write the equation in more familiar
symbols:

N r : k ( c r i - c t ) (8. r-2)
where N1 is the ffux at the interface and c1; and cl are the concentrations at the interface
and in the bulk solution, respectively. The flux N1 includes both diffusion and convection:
it is like the total flux nt except that it is located at the interface. The concentration c1; is
at the interface but in the same fluid as the bulk concentration c1. It is often in equilibrium
with the concentration across the interface in a second, adjacent fluid phase; we will defer
discussion of transport across this interface until section g.5.

The flux equation in Eq.8.1-2 makes practical sense. It says that if the concentration
difference is doubled, the flux will double. It also suggests that if the area is doubled, the
total amount of mass transferred will double but the flux per area will not change. In other
words, this definition suggests an easy way of organizing our thinking around a simple
constant, the mass transfer coefîcient ft.

Unfbrtunately, this simple scheme conceals a variety of approximations and ambigui-
ties. Before introducing these complexities, we shall go over some easy examples. These
examples are important. Study them carefully before you go on to the harder material that
follows.

Example 8.1-l: Humidification Imagine that water is evaporating into initially dry air in
the closed vessel shown schematically in Fig. 8. 1- I (a). The vessel is isothermal at 25"C, so
the water's vapor pressure is 23.8 mm Hg. This vessel has 0.8 liter of water with 150 cm2
of surface area in a total volume of 19.2 liters. After 3 minutes, the air is five percent
saturated. What is the mass transfer coeffìcient? How long will it take to reach ninety
percent saturation?

Solution The flux at 3 minutes can be found directly from the values siven:

N r :

^  ̂ -  / 2 3 . 8 \  /  |  m o l  \  / 2 7 3  \
U . U ) t "  t t  l t  _ ) t t g . 4 t i r e r s lr  , 60  /  \  22 .4  t i r e r s  /  \  298  /-

: 4 . 4 . 1 0 - E  m o l / c m 2 - s e c

The concentration difference is that at the water's surface minus that in the bulk solution.
That at the water's surfàce is the value at saturation; that in bulk at short times is essentially
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(b) Packod Bed

(d) A Gas Bubble

Fig. 8.1-1. Foureasy examples. We analyze each of the physical situations shown in terms of
mass transfer coefficients. In (a), we assume that the air is at constant humidity, except near the
air-water interface. In (b), we assume that water flowing through the packed bed is well mixed,
except very close to the solid spheres. In (c) and (d), we assume that the liquid solution, which
is the continuous phase, is at constant composition, except near the droplet or bubble surfaces.

zero. Thus, from Eq. 8.1-2, we have

4.4.  l0-"  mol /cm2-sec :  k  (2: '8  t  t : '  
.  ? l  -o\

\ 1 6 0  2 2 . 4 .  l 0 '  c m '  2 9 8  /
k  : 3 . 4 .  l 0 - 2  c m / s e c

This value is lower than that commonly found for transfer in gases.
The time required for ninety percent saturation can be found from a mass balance:

/ accumulation \ / evaporation \
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The air is initially dry, so

/  : 0 ,  c r  : 0

We use this condition to integrate the mass balance:
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Rearranging the equation and inserting the values given, we find
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Example 8.1-2: Mass transfer in a packed bed Imagine that 0.2 centimeter-diameter
spheres of benzoic acid are packed into a bed like that shown schematically in Fig. 8. 1- 1 (b).

The spheres have 23 cm2 surface per 1 cm3 of bed. Pure water flowing at a superficial
velocity of 5 cm/sec into the bed is sixty-two percent saturated with benzoic acid after it
has passed through 100 centimeters of bed. What is the mass transfer coefficient?

Solution The answer to this problem depends on the concentration difference
used in the definition of the mass transfer coefficient. In every definition, we choose this
difference as the value at the sphere's surface minus that in the solution. However, we
can define different mass transfer coefficients by choosing the concentration difference at
various positions in the bed. For example, we can choose the concentration difference at
the bed's entrance and so obtain

N r : k l c r ( s a t ) - 0 1

0.62c 1 t sat) {5 cm/sec) A

(23  . r r / . * . x  l oo  . , , - ' )A  
:  ( c t ( sa t )

where A is the bed's cross section. Thus

k : 1 . 3 .  1 0  3 c m / s e c

This definition for the mass transfer coeffìcient is infrequently used.
Alternatively. we can choose as our concentration difference that at a position e in the

bed and write a mass balance on a differential volume AA,z at this position:
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where a is the sphere surface area per bed volume. Substituting for N1 from Eq.8.l-2,
dividing by AAz, and taking the limit as Az goes to zero, we find

dc,  ka
'  :  ^ l c t ( s a t )  - c 1 l

47.

This is subject to the initial condition that

z  : 0 ,  c t  : 0

Integrating, we obtain an exponential of the same form as in the fìrst example:

c 1  _ r  - - \ k a l u o ) z-  |  - (
c't (sat)

Rearranging the equation and inserting the values given, we find

* : ( ' n ) ' , l ' -  ' '  I
\ a : /  \  r ' 1 ( s a t ) /

(accumurarior, : ( 
"r,"lr"'fJ; "r, )

5 cm/sec

(23 cmzlcm3)(100 cm)

:  2.1 '  10-3 cm/sec
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This value is typical of those found in liquids. This type of mass transfer coefficient
definition is preferable to that used first, a point explored further in Section 8.2.

A tangential point worth discussing is the specific chemical system of benzoic acid
dissolving in water. This system is academically ubiquitous, showing up again and again
in problems of mass transfer. Indeed, if you read the literature, you can get the impression
that it is the only system where mass transfer is important, which is not true. Why is it used
so much?

Benzoic acid is studied thoroughly for three distinct reasons. First, its concentration
is relatively easily measured, for the amount present can be determined by titration with
base, by UV spectrophotometry of the benzene ring, or by radioactively tagging either the
carbon or the hydrogen. Second, the dissolution of benzoic acid is accurately described
by one mass transfer coefficient. This is not true of all dissolutions. For example, the
dissolution of aspirin is essentially independent of events in solution (see Section 15.3).
Third, and most subtle, benzoic acid is solid, so mass transfer takes place across a solid-fluid
interface. Such interfaces are an exception in mass transfer problems; fluid-fluid interfaces
are much more common. However, solid-fluid interfaces are the rule for heat transfer, the
intellectual precursor of mass transfer. Experiments with benzoic acid dissolving in water
can be compared directly with heat transfer experiments. These three reasons make this
chemical system popular.

Example 8.1-3: Mass transfer in an emulsion Bromine is being rapidly dissolved in
water, as shown schematically in Fig. 8.1-1(c). Its concentration is about half saturated in
3 minutes. What is the mass transfer coefficient?

Solution Again, we begin with a mass balance:

d
- -Vc t  

-  ANr :  Ak l c t  ( sa t )  -  c r l
d t

d c t

, : k a f c t ( s a t ) - c r la t

where a(: AIV) is the surface íìrea of the bromine droplets divided by the volume of
aqueous solution. If the water initially contains no bromine,

f  : 0 ,  c r  : 0

Using this in our integration, we find

c t  - 1 * r * k a t
c1 (sat)

Rearranging,

k o :  - ! n ( r  _ - 1 )
/ \ c1$at) /

I- - *  l n ( l - 0 . 5 )
-t mtn

:  3.9 .  10-3 sec I
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This is as far as we can go; we cannot find the mass transfèr coefficient, only its product
with a.

Such a product occurs often and is a fixture of many mass transfer conelations. The
quantity fta is very similar to the rate constant of a flrst-order reversible reaction with an
equilibrium constant equal to unity. This particular problem is similar to the calculation of
a half-life for radioactive decay. Such a parallel is worth thinking through and will become
a very useful concept in Chapter 15.

Example 8.1-4: Mass transfer from an oxygen bubble A bubble of oxygen originally
0.1 centimeter in diameter is injected into excess stirred water, as shown schematically in
Fig. 8. 1- 1(d). After 7 minutes, the bubble is 0.054 centimeter in diameter. What is the mass
transfer coefficient?

Solution This time. we write a mass balance not on the surroundins solution but
on the bubble itself:

-  ANr

: -4trr2klcr (sat) - 0l

This equation is tricky; cl refers to the oxygen concentration in the bubble, 1 mol/22.4 liters
at standard conditions. but t 1(sat) rel 'ers to the oxygen concentration al saturation in water.
about 1.5 . l0-3 moles oer l i ter under similar conditions. Thus

,  c1(sa t )

c l

: -0.034k

This is subiect to the condition

t  : 0 ,  r  :  0 . 0 5  c m

so integration gives

r : 0.0-5 cm - 0.034kr

Inserting the numerical values given, we fìnd

0.021 cm: 0.05 cm - 0.034ft(420 sec)

k :  1 . 6 .  l 0  I  c m / s e c

Remember that this coefficient is defined in terms of the concentration in the liquid; it would
be numerically different if it were defined in terms of the gas-phase concentration.
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Table 8.2- | . Mass transJèr cofficient compared with other raîe coe.lf (ienîsrJuct
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chemical
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8.2 Other Definitions of Mass Thansfer Coefficients

We now want to return to some of the problems we glossed over in the simple
definition of a mass transfer coefficient given in the previous section. We introduced this
defìnition with the implication that it provides a simple way of analyzing complex problems.
We implied that the mass transfer coefficient will be like the density or the viscosity, a
physical quantity that is well defìned for a specifìc situation.

In fact, the mass transfer coefficient is often an ambiguous concept, reflecting nuances
of its basic definition. To begin our discussion of these nuances, we first compare the mass
transfer coefficient with the other rate constants given in Tàble 8.2-1. The mass transfer
coefficient seems a curious contrast, a combination of diffusion and dispersion. Because
it involves a concentration difference, it has different dimensions than the diffusion and
dispersion coefficients. It is a rate constant for an interfacial physical reaction, most similar
to the rate constant of an interfàcial chemical reaction.

Unfortunately, the definition of the mass transfer coeffìcient in Table 8.2- I is not so well
accepted that the coefficient's dimensions are always the same. This is not true for the
other processes in this table. For example, the dimensions of the diffusion coefficient are
always taken as L2 lt. Iî the concentration is expressed in terms of mole fraction or partial
pressure, then appropriate unit conversions are made to ensure that the diffusion coefficient
keeps the same dimensions.

This is not the case fbr mass transfer coefficients, where a variety of definitions are
accepted. Four of the more common of these are shown in Table 8.2-2. This variety is
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Table 8.2-2. Common definitions of mass transfer cofficientso

Basic equation Typical units of /<b Remarks

Nr :  tAcr

Nt  :  kpLp t

Nr : fr.,4-rr

N r  :ÀAc r  f  c ruo

cm/sec

mol/cm2-sec-atm

mol/cm2-sec

cm/sec

Common in the older literature: used
here because of its simple physical
signifìcance (Treybal, 1980)

Common for a gas absorption; equivalent
fbrms occur in biological problems
(McCabe Smith, and Harriot, 1985;
Sherwood, Pigford, and Wilke, 1975)

Preferred for practical calculations,
especially in gases (Bennett
and Myers, 1974)

Used in an effort to include diffusion-
induced convection (cf. fr in Eq. 13.5-2
et seq.) (Bird, Stewart, and Lightfoot, 1960)

Notes: oIn this table, Nt is defìned as moles per L2t, and ct as moles per L3. Parallel definitions
where Nr is in terms of M lL2t and cr is M f L3t are easily developed. Definitions mixing moles and
mass are infrequently used.
bFor a gas of constant molar concentration c, k : RTkp : k,lc. For a dilute liquid solution
k : 6421 ùk,, where úz is ttre molecular weight of the solvent, antl p is the solution density.

largely an experimental artifact, arising because the concentration can be measured in so
many different units, including partial pressure, mole and mass fractions, and molarity.

In this book, we will most frequently use the first definition in Table 8.2-2, implying that
mass transfer coefficients have dimensions of length per time. If the flux is expressed in
moles per area per time we will usually express the concentration in moles per volume. If
the flux is expressed in mass per area per time, we will give the concentration in mass per
volume. This choice is the simplest for correlations of mass transfer coefficients reviewed in
this chapter and for predictions of these coeffìcients given in Chapters I 3- I 4. Expressing the
mass transfer coeffìcient in dimensions of velocity is also simplest in the cases of chemical
reaction and simultaneous heat and mass transfer described in Chapters 15, 16, and20.

However, in some other cases, alternative forms of the mass transfer coefficients lead to
simpler final equations. This is especially true in the design of equipment for gas adsorption,
distillation, and extraction described in Chapters g-l l. There, we will frequently use k'
the third form in Table8.2.2, which expresses concentrations in mole fractions. In some
cases of gas adsorption, we will find it convenient to respect seventy years of tradition and
use kp, with concentrations expressed as partial pressures. In the membrane separations
in Chapter 17, we will mention forms like k, but will calry out our discussion in terms of
forms equivalent to k.

The mass transfer coefîcients defined in Table 8.2-2 are also complicated by the choice
of a concentration difference, by the interfacial area for mass transfer, and by the treatment
of convection. The basic definitions given in Eq. 8.1-2 or Table 8.2-l are ambiguous, for
the concentration diffèrence involved is incompletely defined. To explore the ambiguity
more carefully, consider the packed tower shown schematically in Fig. 8.2-1. This tower
is basically a piece of pipe standing on its end and filled with crushed inert material like
broken gìass. Air containing ammonia flows upward through the column. Water trickles
down through the column and absorbs the ammonia: Ammonia is scrubbed out of the gas
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Fig. 8.2- l . Ammonia scrubbing. In this example, ammonia is separated by washing a gas
mixture with water. As explained in the text, the example illustrates ambiguities in the
definition of mass transfer coefficients. The ambiguities occur because the concentration
difference causing the mass transfèr changes and because the interfacial area between gas and
liquid is unknown.

mixture with water. The flux of ammonia into the water is proportional to the ammonia
concentration at the air-water interface minus the ammonia concentration in the bulk water.
The proportionality constant is the mass transfer coefficient. The concentration difference
between interface and bulk is not constant but can vary along the height of the column.
Which value of concentration difference should we use?

In this book, we always choose to use the local concentration difference at a particular
position in the column. Such a choice implies a "local mass transfer coefficient" to distin-
guish it from an "average mass transfer coefficient." Use of a local coefficient means that
we often must make a few extra mathematical calculations. However. the local coefficient
is more nearly constant, a smooth function of changes in other process variables. This
definit ion was implicit ly used in Examples 8.1-1, 8.1-3, and 8.1-4 in the previous section.
It was used in parallel with a type of average coefficient in Example 8. | -2.

Another potential source of ambiguity in the definition of the mass transfer coefficient is
the interfacial area. As an example, we again consider the packed tower in Fig. 8.2-1. The
surface area between water and gas is usually experimentally unknown, so that the flux per
area is unknown as well. Thus the mass transfer coefficient cannot be easily found. This
problem is dodged by lumping the area into the mass transfer coefficient and experimentally
determining the product of the two. We just measure the flux per column volume. This
may seem like cheating, but it works like a charm.

Finally, mass transfer coefficients can be complicated by diffusion-induced convection
normal to the interface. This complication does not exist in dilute solution, just as it does not
exist for the dilute diffusion described in Chapter 2. For concentrated solutions, there may
be a larger convective flux normal to the interface that disrupts the concentration profiles
near the interface. The consequence of this flux, which is like the concentrated diffusion
problems in Section 3.3, is that the flux will not double when the concentration difference
is doubled. This diffusion-induced convection is responsible for the last definition in Table
8.2-2, where the interfacial velocity is explicitly included. Fortunately, most solutions are
dilute, so we can successfully defer discussing this problem until Section 13.5.

I fìnd these points difficult, hard to understand without careful thought. To spur this
thought, try solving the examples that follow.
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Example 8.2-1: The mass transfer coefficient in a blood oxygenator Blood oxygena-
tors are used to replace the human lungs during open-heart surgery. To improve oxygenator
design, you are studying mass transfer of oxygen into water in one specific blood oxygenator.
From published correlations of mass transfer coefficients, you expect that the mass transfer
coefficient based on the oxygen concentration difference in the water is 3.3 ' 10-3 centime-
ters per second. You want to use this coefficient in an equation given by the oxygenator
manufacturer

N 1  : k p ( p o , - p ó , )

where p0, is the actual oxygen partial pressure in the gas, and pfi. is the hypothetical oxygen
partial pressure (the "oxygen tension") that would be in equilibrium with water under the
experimental conditions. The manufacturer expressed both pressures in millimeters of
02. You also know the Henry's law constant of oxygen in water at your experimental
conditions:

Po' : 44,000 atm xo,

where xe, is the mole fraction of the total oxygen in the water.
Find the mass transfer coefficient ko.

Solution Because the correlations are based on the concentrations in the liquid.
the flux equation must be

Nr  : 3 .1  '  l 0  I  cm/sec  ( t ' e , ,  -  t ' 6 r )

where ca., and cs, refer to concentrations at the interface and the bulk solution, respectively.
We can convert these concentrations to the oxvsen tensions as follows:

L U ì  -  L ^ U r  -

where c is the total concentration in the liquid water, p is the liquid's density, and M is its
average molecular weight. Because the solution is dilute,

| 1 g/cmr I atm It0' : 
118 g/r.,-rot 4A. 104 atn760.rn Hcl 

po'

Combining with the earlier definition, we see
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: : l i l 3  r r th3

. c m  I
Nr  :  3 .3  l0 - ' -  |sec L

1 . 6 7 .  l 0 - e m o l l  ,
. - :  o, 'n Hg )(n0.,  

-  no,)

mol
:  5 . 5 '  1 0  1 2

cm2 sec mm Hg
\Po t ,  -  Poz)

The new coefficient ko equals 5.5 ' l0-12 in the units given.

Example 8.2-2: Converting units of ammonia mass transfer coefficients A packed
tower is being used to study ammonia scrubbing with 25"C water. The mass transfer
coefficients reported for this tower are I .18 lb-mol NHrftrr-ft2 for the liquid and 1.09 lb-mol
NHr/hr-ft2-atm for the gas. What are these coefficients in centimeters per second?
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Solution From Table 8.2-2, we see that the units of the liquid-phase coefficient
correspond to k,. Thus

, ,  ú r , ,
t : - ^ ,

p

/  18  l b /mo l  \  /  t .  I 8  l b -mo l  NHr  \  /  30 .5  cm \  /  h r  \
: t _ _ _ _ _ _ _ _ _ _ _ _ 1  t t _  l t  l t  _ l

\ 62.4 rb/fr ' / \ frr-hr / \ fr / \ 3.ó00 sec /

: 2 . 9  . 1 0 - 3  c m r s e c

Forthe gas phase, we see from Table 8.2-2that the coefficienthas the units of kr. Thus

k :  R T k p

/ l . 3 l 4 a r m - f t r \  / l . 0 9 l b - m o l \  / 3 0 . 5 c m \  /  h r  \_ t _ l t - _ | _ l t _ [ 2 9 8 " K )
\  l b - m o l - K  / \ h r - f t ' - a t m / \  f t  / \ 3 . 6 0 0 s e c /

: 3.6 cm/sec

These conversions take time and thousht. but are not difficult.

Example 8.2-3: Averaging a mass transfer coefficient Imagine two porous solids whose
pores contain different concentrations of a particular dilute solution. If these solids are
placed together, the flux N1 from one to the other will be (see Section 2.3)

N , :  J D l n t L r ,

By comparison with Eq. 8.1-2, we see that the local mass transfer coefficient is

k:  t fDl r t

Note that this coefficient is initially infinite.
We want to correlate our results not in terms of this local value but in terms of a total

experimental time /e. This implies an average coefficient. [. defined by

Nt :  [a t '

where N1 is the total solute transferred per area divided by 16. How is I related to ft?
Solution From the problem statement, we see that

.. [,"" N1,tr fi" JD/n nrlat
Nl  :  ' ! ^ t - '  :2V D l t r toLc t' 

.[,1," d, rs

Thus

* :  zvTl"n

which is twice the value of k evaluated at /e. Note that "local" refers here to a particular
time rather than a particular position.
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Example 8.2-42 Logmean mass transfer coefficients Consider again the packed bed of

benzoic acid spheres shown in Fig. 8.1- 1(b) that was basic to Example 8. I -2' Mass transfer

coeffìcients in a bed like this are sometimes reported in tetms of a log mean driving force:

For this specific case, N1 is the total benzoic acid leaving the bed divided by the total surface

area in the bed. The bed is fed with pure water, and the benzoic acid concentration at the

sphere surfaces is at saturation; that is, it equals c1(sat)' Thus

.  lcr (sat)  -  0 ]  -  [c1(sat)  -  cr (out) ]
/ V 1  : / < ' u t @

\ t 1 ( s a t ) - c r ( o u t ) /

Showhowklu* isre latedtothelocalcoef f ic ient f tusedintheear l ierproblem.
Soluiion By integrating a mass balance on a differential length of bed, we showed

in Example 8.1-2 that for a bed of length L,

c r ( o u t )  
: 1 _  n - ( k a l u o ) L

cr (sat)

Reananging, we fìnd

c1(sat)  -  r , (o9 _ o_(ka lu \ r
,  ( t " t )  -  0

Taking the logarithm of both sides and rearranging'

N1

kaL

,  I  ( r ( s a t ) - 0  \
l n | - - - - - _ _ - _ . I

\  c 1  ( s a t )  -  c  1  ( o u t )  /

Multiplying both sides by c1(out)'

r (sat)  -  0 l  -  [cr (sat)  -  cr (oul
cr (out)uo : kaL

By definition,

cr  (out)uuA
N r : _ -'  

a ( A L )

/  r ' r  (sa t )  -  0  \
l n l - ' -  l

\  r ' r  (sat)  -  c l  (out)  /

where A is the
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ftros : ft

The coefficients are identical.
Many argue that the log mean mass transfer coefficient is superior to the local value

used mostly in this book. Their reasons are that the coefficients are the same or (at worst)
closely related and that ft1o* is macroscopic and hence easier to measure. After all, these
critics assert, you implicitly repeat this derivation every time you make a mass balance.
Why bother? Why not use ft1o* and be done with it?

This argument has merit, but it makes me uneasy. I fìnd that I need to think through the
approximations of mass transfercoefficients every time I use them and that this review is eas-
iÌy accomplished by making a mass balance and integrating. I fìnd that most students share
this need. My advice is to avoid log mean coefficients until your calculations are routine.

: Ì  ece

: t  the

',r ed 8.3 Correlations of Mass Tlansfer Coefficients

In the previous two sections we have presented definitions of mass transfer coeffi-
cients and have shown how these coefficients can be found from experiment. Thus we have
a method for analyzing the results of mass transfèr experiments. This method can be more
convenient than diffusion when the experiments involve mass transfer across interfaces.
Experiments of this sort include liquid-liquid extraction, gas absorption, and distillation.

However, we often want to predict how one of these complex situations will behave. We
do not want to correlate experiments; we wanf to avoid experiments as much as possible.
This avoidance is like that in our studies of diffusion, where we often looked up diffusion
coefficients so that we could calculate a flux or a concentration profile. We wanted to use
someone else's measurements rather than painfullv make our own.

8.3. I Dimensionless Numbers

In the same way, we want to look up mass transfer coefficients whenever pos-
sible. These coefficients are rarely reported as individual values, but as correlations of
dimensionless numbers. These numbers are often named, and they are major weapons that
engineers use to confuse scientists. These weapons are effective because the names sound
so scientific, like close relatives of nineteenth-century organic chemists.

The characteristics of the common dimensionless groups frequently used in mass transfer
conelations are given in Table 8.3-1. Sherwood and Stanton numbers involve the mass
transfer coefficient itself. The Schmidt, Lewis, and Prandtl numbers involve different kinds
of diffusion, and the Reynolds, Grashof, and Peclet numbers describe flow. The second
Damkohler number, which certainly is the most imposing name, is one of many groups
used for diffusion with chemical reaction.

A key point about each of these groups is that its exact defìnition implies a specific
physical system. For example, the characteristic length / in the Sherwood number kllD
will be the membrane thickness for membrane transport, but the sphere diameter for a
dissolving sphere. A good analogy is the dimensionless group "efficiency." An efficiency
of thirty percent has very different implications for a turbine and for a running deer. In
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Table 8.3-1. Significanr:e of r:ommon dimensionLess groups

Group' Physical meaning Used in

KI
Sherwood number -

D

k
Stanton number ^

t)u

Schmidt numbe. I
D

Lewis number

Prandtl number

Reynolds

Grashóf numb rr'1#1t

Péclet number

mass transfèr velocity

diffusion velocity

mass transfèr velocity

flow velocity

diffusivity of momentum

diffusivity of mass

diffusivity of energy

diffusivity of mass

diffusivity of momentum

diffusivity of energy

inertial forces- ; - -  ^  o r
vlscous lorces

flow velocity

"momentum velocity"

buoyancy forces

viscous forces

flow velocity

diffusion velocity

reaction velocity

diffusion velocity

Usual dependent variable

Occasional dependent variable

Correlations ofgas or liquid data

Simultaneous heat and mass transfer

Heat transfer; included here for
compìeteness

Forced convection

Free convection

Correlations of gas or liquid data

Correlat ions involving reactions
(see Chapters 15-16)

a

D

. I
a

luo
number -

v

uol

I

Second Damkóhler number

^ rc12
or  (Th ie le  modu lus) ' -

D

Note: u The symbols and their dimensions are as fbllows:
D dif fusion coeff icient (L2lt)
g  acce le ra t ion  due to  g rav i ty  (L / r r )
k mass transfer coefficient (l, /r)
/ characteristic length (L)
u" fluid velociry (Llt)
o thermal diffusivity (L2ll)
r f i rst-order reaction rate constant (t  r)

u kinematic viscosity (L2/r)
Ap/p fractional density change

the same way, a Sherwood number of 2 means different things for a membrane and for a

dissoh'ing sphere. This flexibility is central to the correlations that follow.

8.3.2 Frequently Us ed Correlations

Correlations of mass transfer coefficients are conveniently divided into those for
fluid-fluid interfaces and those for fluid-solid interlaces. The correlations for fluid-fluid
interfaces are by far the more important, for they are basic to gas adsorption, liquid-liquid
extraction. and nonideal distillation. Correlations of these mass transfer coefficients are
also important for aeration and water cooling. These correlations usually have no known
parallel correlations in heat transfer, where fluid-fluid interfaces are not common.
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Some of the more useful correlations for fluid-fluid interfaces are given in Table 8.3-2.
The accuracy of these correlations is typically of the order of thirty percent, but larger
elTors are not uncommon. Raw data can look more like the result of a shotgun blast than
any sort of coherent experiment because the data include wide ranges of chemical and
physical properties. For example, the Reynolds number, that characteristic parameter of
forced convection, can vary 10,000 times. The Schmidt number, the ratio (vlD), is about
I for gases but about 1000 for liquids. Over a more moderate range, experimental data can
be reliable' Still, while the correlations are useful for the preliminary design of small pilot
plants, they should not be used for the design of full-scale equipment without experimental
checks on the specific chemical systems involved.

Many of the correlations in Table 8.3-2 have the same general form. They typically
involve a Sherwood number, which contains the mass transfer coefficient, the quantity of
interest. This Sherwood number varies with Schmidt number, a characteristic of diffusion.
The variation of Sherwood number with flow is more complex because the flow has two
different physical origins. In most cases, the flow is caused by extemal stirring or pumping.
For example, the liquids used in extraction are rapidly stirred; the gas in ammonia scrubbing
is pumped through the packed tower; the blood in the artificial kidney is pumped by the heart
through the dialysis unit. This type ofexternally driven flow is called "forced convection."
In other cases, the fluid velocity is a result of the mass transfer itself. The mass transfer
causes density gradients in the surrounding solution; these in turn cause flow. This type
of internally generated flow is called "free convection." For example, the dispersal of
pollutants and the dissolution ofdrugs are often accelerated by free convection.

The dimensionless form of the correlations for fluid-fluid interfaces may disguise the
very real quantitative similarities between them. To explore these similarities, we consider
the variations of the mass transfer coeffìcient with fluid velocity and with diffusion coeffì-
cient. These variations are surprisingly uniform. The mass transfer coefficient varies with
the 0.7 power of the fluid velocity in four of the five correlations for packed towers in Thble
8'3-2. It varies with the diffusion coefficient to the 0.5 to 0.7 power in every one of the
correlations. Thus any theory that we derive for mass transfer across fluid-fluid interfaces
should impÌy variations with velocity and diffusion coeffìcient like those shown here.

Some frequently quoted correlations for fluid-solid interfaces are given in Table 8.3-3.
These correlations are rarely important in common separation processes like absorption
and extractions. They are important in leaching, in membrane separations, and in electro-
chemistry. However, the real reason that these correlations are quoted in undergraduate and
graduate courses is that they are close analogues to heat transfer. Heat transfer is an older
subject, with a strong theoretical basis and more familiar nuances. This analogy gets lazy
lecturers merely mumble, "Mass transfer is just like heat transfer" and quickly compare the
correlations in Thble 8.3-2 with the heat transfer parallels.

The correlations for solid-fluid interfaces in Table 8.3-3 are much like their heat transfer
equivalents. More significantly, these less important, fluid-solid correlations are analogous
but more accurate than the important fluid-fluid correlations in Table 8.3-2. Accuracies for
solid-fluid interfaces are typically average Il07o; for some correlations like laminar flow in
a single tube, accuracies can be *l%o. Such precision, which is truly rare for mass transfèr
measurements, reflects the simpler geometry and stable flows in these cases. Laminar flow
of one fluid in a tube is much better understood than turbulent flow of gas and liquid in a
packed tower.

The correlations for fluid-solid interfaces often show mathematical forms like those for
fluid-fluid interfaces. The mass transfer coefficient is most often written as a Sherwood
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number, though occasionally as a Stanton number. The effect of diffusion coefficient is

most often expressed as a Schmidt number. The effect of flow is most often expressed as a

Reynolds number for forced convection, and as a Grashóf number for free convection.

These fluid-solid dimensionless correlations can conceal how the mass transfer coef-

ficient varies with fluid flow u and diffusion coeffìcient D, just as those for fluid-fluid

interfaces obscured these variations. Basically, ft often varies with the square root of u.

The variation is lower for some laminar flows and higher for turbulent flows. It usualÌy

varies with D2l3, though this variation is rarely checked carefully by those who develop the

correlations. Variation of k with D2l3 does have some theoretical basis, a point explored

further in Chapter 13.

Example 8.3-1: Dissolution rate of a spinning disc A soÌid disc of benzoic acid

2.5 centimeters in diameter is spinning at 20 rpm and 25'C. How fast will it dissolve

in a large volume of water? How fast will it dissolve in a large volume of air? The diffusion

coefficients are 1.00. l0-s cm2/sec in water and 0.233 cm2Tsec in air. The solubil ity of

benzoic acid in water is 0.003 g/cmr: its equil ibrium vapor pressure is 0.30 mm Hg.

Solution Before starting this problem, try to guess the answer. Will the mass

transfer be higher in water or in air?
In each case, the dissolution rate is

Nr :  f tcr (sat)

where c1(sat) is the concentration at equilibrium. We can find k from Table 8.3-2:

t t u t l  2  r  U  r l  I
k : 0 . 6 2 D 1 - l  f  -  ì

\ r , , /  \ D /

For water. the mass transfer coefficient is

:  0 .90 .  l 0 -3  cm/sec

Thus the flux is

N1 :  (0.90.  l0  I  cmlsec)(0.003 g/cm3)

: 2 . 7  . 1 0  6  g / c m 2 - s e c

For air, the values are very different:

:  0 .11 cm/sec

2 
lsec

a l

cm

0*

.01
I' l

0
.00( ,

t12r)20160)(2r lsec
0'01 .tr'/r*(1: 0 . 6 2 ( 1 . 0 0 .  l 0  5  c m 2 7 s e c ,

) " '

sec) " '

/sec
sec

20160)(2r
0. l -5 . t"?(1:0.62(0.233 cm2lsec) r) cm2/sec

;"1/*.
l 5
;-) -)

0.
02

t , t  

(

E.-ì /  Cttrr,

:

!  r :mp l r

- - '
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Fig. 8.3- l. Gas scrubbing in a wetted-wall column. A water-soluble gas is being dissolve6 in
a falìing fi lm of water. The problem is to calculate the length of the c'olumn necessary ro
reach a liquid concentration equal to ten percenl saturatlon.

which is much larger than before. However, the flux is

N 1  :  ( 0 . 4 7 c m l s e c )  f  ( o ' :  m m H s  
\  (  I m o t  

\  ( 2 1 3 \  / 1 2 2 s \ l
L \ 7 6 0 m m H e /  \ 2 2 . 4 . t } t . r , /  \ 2 e 8 l  \  n o t  ) ]

: 0 . 9 .  l 0 - ó g / c m 2  s e c

The flux in air is about one-third of that in water, even though the mass transf-er coefficient
in air is about 500 times larger than that in water. Did you suess this?

Example 8.3-2: Gas scrubbing with a wetted-wall column Air containing a warer-
soluble vapor is flowing up and water is flowing down in the experimental column shown
in Fig' 8.3- l ' The water flow in the 0.07-centimeter-thick film is 3 centimeters per second,
the column diameter is l0 centimeters, and the air is essentially well mixed right up to the
interface' The diffusion coefficient in water of the absorbed vapor is 1.g . 10" 5 cà27sec.
How long a column is needed to reach a gas concentration in water that is ten percent of
saturation?

Solution The first step is to write a mass balance on the water in a differential
column height A: :

(accumulation) : (flow in minus flow out) * (absorption)

g : [ nd luuc f l ,  _ f rd lu0c i  ] : +a :  *  t dLzk l c t  ( sa t )  _c1 l

in which d is the column diameter, / is the film thickness, u is the flow, and c1 is the vapor
concentration in the water. This balance leads to

, 1  . . .

0  :  - / r 0 " , '  - . 1  k l c r ( s a U  - r . , l
dz
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Example 8.3-3: Measuring stomach flow Imagine we want to estimate the average flow
in the stomach by measuring the dissolution rate of a nonabsorbing solute present as a large
spherical pill. From in vitro experiments, we know that this pill's dissolution is accurately
described with a mass transfer coefficient. How can we do this?

Solution We first calculate the concentration c1 of the dissolving solute in the
stomach and then show how this is related to the flow. From a mass balance.

dc ,
V --; : rd'k[c1 (sat) - c1]

cl t

where V is the stomach's volume, nd2 is the pill's area, k is the mass transfer coefficient,
and c1(sat) is the solute's solubil ity. Because no solute is init ially present,

c r  : 0  w h e n  /  : 0

Inte-rrating,

, V / r ' 1 ( s a t ) \
A : - l n l - l

n d t t  \ c ' 1 ( s a t )  -  r ' 1  /

If rl e assume that stomach flow is essentially forced convection, we find, from Table 8.3-3,

From Table 8.3-2, we have

I  Pr r t l ' t12
k : 0 . 6 9 (  _  I\ z  /

We also know that the entering water is pure; that is, when

z : 0 ,  c l  : 0

Combining these results and integrating, we find

( r  _  |  - - l . 3 g ( D z / I 2 u o , t t / 2-  |  - (
c1 (sat)

Inserting the numerical values given,

/  l 2 u  \ l -  /  c ,  \ . l 2_ _ t _ | l n f  l _  t l
\ 1 . 9 0 D l L  \  . , ( s a t ) / l

/  0 .01  cm)2 (3  cm/sec )  \
:  I ' " ' " '  

- = ' ' ' . ^ " r " ' , _ - . '  
I  l t n t l  _ 0 . t ) 1 2

\  t  t  . oo r  l . 8  .  l o -5  cm2 lsec  /  "

:  4 .8 cm

This approximate calculation has been improved elaborately, even though its practical value
is small.

k l  / d u \ t " r r . , ' , ,- : 2 + 0 . 6 { - l  l - ì
D  \ u /  \ D /

\ . - t  /  C , , r r .

r r  here  r /  r r

flt-r* . Ctrn:i
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where d is the pill diameter, D is the diffusion coefficient, and u is the unknown stomach
flow. Combining and rearranging.

2 5 / v t : p : ' t \ f  V  /  c r ( s a r )  \  1 2t ' :  e  (  a  /  L " r * ' " ( ' .n " . l - ;  )  
- ' l

which is the desired result. Note the assumptions in this problem: The flow is due to forced
convection, the pill diameter is constant, and flow in and out of the stomach is negligible.

f t  :  0 .13 p- t /1v-s / t2  D213

z J l

Example 8.3-4: Gtucose uptake by red blood cells The uptake of glucose across the red
blood cell membrane has a maximum rate ranging from 0. I to 5 p*ov.rr-hr. Apparently,
these differences result from differences in experimental conditions. Using the correlation
for liquid drops in Table 8.3-2, estimate the effect of mass transfer in the bulk to see when it
could have affected these uptake rates. To make the estimation more quantitative, assume
that a typical experiment is made in a beaker containing 100 cm3 of red bl,ood cells suspended
in 1 liter of plasma. The beaker is stirred with a l/50-hp motor. The cells originally contain
little glucose. At time zero, radioactively tagged glucose is added and its uptake measured.
The diffusion coefficient of glucose is about 6 . 10-6 cm2 1sec, and the plasma viscosity is
approximately that of water.

Solution We are interested in the case in which glucose uptake is dominated
by mass transfer. In this case, glucose will diffuse to the membrane and then almost
instantaneously be taken into the cell. Thus

Nt :  kct

where cl is the bulk concentration. If we can calculate k, then we can estimate N1, the
desired quantity. we see from Tàble 8.3-2 that for a suspension of liquid drops,

(i)"'
: 0 . r 3  (  t l s o h p

\  l .  000 cmr

1.45 .  l }e g-cm2 \  
t /a 

1 1* y-tn

hp-secr /  \ . r ,  /

/ 0 .0 t  cm2  \  
- 5 l r 2

\ * . /

:  5 .7 .  l0  3 cm/sec :

,  t , 2 / 3
|  .  , ^ - r - c m ' \
t o . l u
\  s e c /

2I cmlhr

The flux is

Nt : (21 cmlhr)c1

Whether or not diffusion outside the cells is significant depends on c1, the amount of glucose
used. The flux equals 5 pmol/cmz-hr when c1 is about 0.3 mmol/liter. If c1 far exceeds
0.3 mmol/liter, then the flux due to diffusion will be much faster than that due to the cell
membrane. The measurements will then truly represent membrane properties. However,
if the glucose concentration is less than 0.3 mmol/liter, then the measurements will be
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functions both of the membrane and of mass transfer in plasma. Such restrictions can
compromise measurements in biological svstems.

8.4 Dimensional Analysis: The route to Correlations

The correlations in the previous section provide a useful and compact way of
presenting experimental information. Use of these correlations quickly gives reasonable
estimates of mass transfer coefficients. However, when we find the correlations inadequate,
we will be forced to make our own experiments and develop our own correlations. How
can we do this?

The basic form of mass transtèr correlations is easily developed using a method called
dimensional analysis (Bridgeman, 1922;Becker, l9j6). This method is easily learned via
the two specifìc examples that follow. Before embarking on this description, I want to
emphasize that most people go through three mental states concerning this method. At
fìrst they believe it is a route to all knowledge, a simple technique by which any set of
experimental data can be greatly simplified. Next they become disillusioned when they
have difficulties in the use of the technique. These difficulties commonly result from efforts
to be too complete. Finally, they learn to use the method with skill and caution, benefiting
both from their past successes and from their frequent failures. I mention these three stages
because I am afraid many may give up at the second stage and miss the real benefits involved.
We now turn to the examples.

8.4.1 Aeration

Aeration is a common industrial process and yet one in which there is often serious
disagreement about correlations. This is especially true for deep-bed fermentors and for
sewage treatment, where the rising bubbles can be the chief means of stirring. We want
to study this process using the equipment shown schematically in Fig. g.4- I . we plan to
inject oxygen into a variety of aqueous solutions and measure the oxygen concentration in
the bulk with oxygen selective electrodes. We expect to vary the average bubble velocity
u, the solution's density p and viscosity Ér, the entering bubble diameter d, and the depth
of  the hed L.

We measure the steady-state oxygen concentration as a function of position in the bed.
These data can be summarized as a mass transfer coefficient in the following wav. From a
mass balance. we see that

-  dc ,
0  :  - ù E  r  k u l c l  ( s a t )  -  r ' 1  |

u'here zz is the total bubble area per column volume. This equation, a close parallel to the
nlany rîass balances in Section 8.1, is subiect to the init ial condition

:  : 0 ,  c r  : 0 (8.4-2)

Thus

t . . ,  _
u /- l n {
. : \-: \ cr (sat) - cr (z)

c1 (sat)

(8 .4 - l )

(8.4-3)
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Fig. 8.4- I . An experimental apparatus for the study of aeration. Oxygen bubbles from the
sparger at the bottom of the tower partially dissolve in the aqueous solution. The concentration
in this solution is measured with electrodes that are specific for dissolved oxygen. The
concentrations found in this way tlle interpreted in terrns ofmass transfer coefîcients; this
interpretation assumes that the solution is well mixed, except very near the bubble walls.

Ideally, we would like to measure ft and a independently, separating the effects of mass
transfer and geometry. This would be difficult here, so we report only the product ftd.

Our experimental results now consist of the following:

ka :  ka(u,  O,  p,  d,  z ' )

We assume that this function has the form

/s4 : [constant)uq pfl Ut 4t re

where both the constant in the square brackets and the exponents are dimensionless. Now
the dimensions or units on the left-hand side of this equation must equal the dimensions or
units on the right-hand side. We cannot have centimeters per second on the left-hand side
equaÌ to grams on the right. Because ka has dimensions of the reciprocal of time (1 lt), u
has dimensions of length/ttme (L lt), p has dimensions of mass per length cubed (M I Lr,
and so forth, we fìnd

1  / L \ "  / M \ f l-r:r (;i (z.j
The only way this equation can be dimensionally consistent is if the exponent on time on the
left-hand side ofthe equation equals the sum ofthe exponents on time on the right-hand side:

- l : - d - y

Similar equations hold for the mass:

0 : f _ t y

and for the length:

0 : a - 3 f l * y * 6 * e

Equations 8.4-1 to 8.4-9 give three equations for the five unknown exponents.

( # ) ' ( L t ò (L t '

(8.4-4)

(8.4-5)

(8.4-6)

(8.4-1)

(8.4-8)

(8.4-e)



l- ' i+ 8 / Fundamentals of Mass Transfer

We can solve these equations in terms of the two key exponents and thus simplify
Eq. 8.4-5. We choose the two key exponents arbitrarily. For example, if we choose the
exponent on the viscosity y and that on column height e , we obtain

a : l - y

F : - y

(8.4- r 0)
(8 .4 - l  l )
(8.4-12)

(8.4-13)

(8.4-14)

A - _ " ,

(+)'(;)'/  k a d \

l ; /

- e - 1

Inserting these results into Eq. 8.4-5 and rearranging, we find

: [constant] (8 .4 -15)

The left-hand side of this equation is a type of Stanton number. The first term in parentheses
on the right-hand side is the Reynolds number, and the second such term is a measure of
the tank's depth.

This analysis suggests how we should plan our experiments. We expect to plot our
measurements of Stanton number versus two independent variables: Reynolds number and
zld. We want to cover the widest possible range of independent variables. Our resulting
correlation will be a convenient and compact way of presenting our results, and everyone
will live happily ever after.

Unfortunately, it is not always that simple for a variety of reasons. First, we had to assume
that the bulk liquid was well mixed, and it may not be. If it is not, we shall be averaging our
values in some unknown fashion, and we may find that our correlation extrapolates unreli-
ably. Second,wemayfindthatourdatadonotfitanexponential formlikeEq.8.4-5. Thiscan
happen if the oxygen transferred is consumed in some sort of chemical reaction, which is true
in aeration. Third, we do not know which independent variables are important. We might
suspect that ka varies with tank diameter, or sparger shape, or surface tension, or the phases
of the moon. Such variations can be included in our analysis, but they make it complex.

Still, this strategy has produced a simple method of correlating ourresults. The foregoing
objections are important only if they are shown to be so by experiment. Until then, we should
use this easy strategy.

8.4.2 The Artificial Kidney

The second example to be discussed in this section is the mass tn.,rsfer out of the
tube shown schematically in Fig. 8.4-2. Such tubes are basic to the artificial kidney. There,
blood flowing in a tubular membrane is dialyzed against well-stirred saline solution. Toxins
in the blood diffuse across the membrane into the saline, thus purifying the blood. This
dialysis is often slow; it can take more than 40 hours per week. Increasing the mass transfer
in this system would greatly improve its clinical value.

The first step in increasing this rate is to stir the surrounding saline rapidly. This mixing
increases the rate of mass transfer on the saline side of the membrane, so that only a small
part of the concentration difference is there, as shown in Fig. 8.4-2. In other words, we have
decreased the resistance to mass transfer on the saline side. The second step in increasing

8 .1  /  D i t t t t r
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B lood  f i ow

Fig. 8.4-2. Mass transf'er in an artificial kidney. Arterial blood flows through a dialysis tube that
is immersed in saline. Toxins in the blood diffuse across the tube wall and into the saline. If the
sallne is well stirred and if the tube wall is thin, then the rate of toxin removal depends on the
concentration gradient in the blood. Experiments'in this situation are easily correlated using
d imens iona l  una l ys i s .

the rate is to make the membrane as thin as possible. Although too thin a membrane would
rupture, existing membranes are already so thin that the membrane thickness has only a
minor effect. The result is that the concentration difference across the membrane is not the
largest part of the overall concentration difference, again as shown in Fig. 8.4-2.

The rate of toxin removal now depends only on what happens in the blood. We want to
correlate our measurements of toxin removal as a function of blood flow. tube size. and so
forth. To do this, we find the flux for each case:

amount transferred
flux N1 -

By definition,

(area) (t ime)
(8.4- r6)

N t : k ( c t - c n )

-  ^ L  I (8.4-17)

Because we know N1 and c1, we carì find the mass transfer coefficient ft.
As befbre, we recognize that the mass transfer coefficient of a particular toxin varies

with the system's properties:

k  :  k (u ,  p ,  I , r ,  D ,  d ) (8 .4 -18)

where u, p, and p are the velocity, density, and viscosity of the blood, D is the diffusion
coeffìcient of the toxin in blood. and d is the diameter of the tube. We assume that this
relation has the form

ft - [constant)u" pfr uv PdO' (8.4- l9)

where the constant is dimensionless. The dimensions or units on the left-hand side of this
equation must equal the dimensions or units on the right-hand side; so

(8.4-20)i,'(i)"(#)'(X)' (+)'"
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This equation will be dimensionally consistent only if the exponent on the length on the
left-hand side ofthe equation equals the sum ofthe exponents on the right-hand side:

l : a - 3 F - V * 2 3 + e

Similar equations must hold for mass:

0 : f * y

and fbr time:

- l  :  _ o  _  y  -  3

We solve these equations in terms of the exponents a and 6:

A : A

B : q l 3 - l

Y : 7 * a - 3

6 : ó

€ : a - l

We combine these results with Eq. 8.4-19 and collect tems:

k d o  / d u o \ " /  u  \  ó

l c o n s t a n t ì {  }  l r ^ l
t t  \ u /  \ p D /

( R  4 - )  l \

(8.4-22)

( 9 ,  L_ ) \ \

(8.4-24)

(8.4-25)

(8.4-26)

(8.4-21)

(8.4-28)

(8.4-2e)

Byconvention,wemultiplybothsidesofthisequationbythedimensionlessquarftity tt lpD
to obtain

(8.4-30)

This equation is the desired correlation. As in the first example, a key step in the analysis
is the arbitrary choice of the two exponents cv and 6. Any other pair of exponents could
have been chosen and would have given a completely equivalent correlation. However,
the particular manipulations here are made so that the dimensionless groups found are
consistent with traditional patterns. Such traditional patterns sometimes reflect experience
and sometimes merely mirror convention. Multiplying both sides of Eq. 8.4-29 plpD
involves these factors.

The trouble with this analysis is that it is not the whole story. From experiments at low
flow, we would f,nd that the mass transfer coeffìcient k does vary with the cube root of the
velocity u and with the two thirds power of the diffusion coefficient D. This suggests that
Eo. 8.4-30 can be rewritten

(8 .4 -31)

that  is .  thata:  ( l  -  ó)  :  l13.  However,  i f  wethenmeasuredf t  as afunct ionof  thetube
d iame te rd .wewou ld f i nd i t p ropo r t i ona l t o  d - t / 3 ,no td -2 /3  as  sugges tedbyEq .8 .4 -3  1 .
Afier a good start, our dimensional analysis is failing.

k c t  / c t u o \ "  /  u  \ ' o

, 
: lconstant] ( ' 

s- ) \A )

k d  / , 1 u \ r ' l- : l c o n s t a n t l  l - l
D  

- \ D /
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The reason fbr this failure is that we did not choose all the relevant variables at the very

beginning, in Eq. 8.4- l8. We should have included the tube length L; we could have omitted

the density p and viscosity tr. Had we done so, we would have obtained:

Iconstant] (8. ,1-32 )

which is the result quoted in Table 8.3-3. However, from dimensional analysis alone, w'e

have no reason to be critical of our original result in Eq. 8.4-30. We can only be critical

and make improvements as our experimental experience grows and as our physical insight

sharpens.

8.5 Mass T[ansfer Across Interfaces

In the previous sections, we used mass transfer coeffìcients as an easy way of

describing diffusion occurring from an interface into a relatively homogeneous solution.

These coefficients involved many approximations and sparked the explosion of defìnitions

exemplified by Table 8.2-2. Still, they are a very easy way to correlate experimental results

or to make estimates using the published relations summarized in Tables 8.3-2 and 8.3-3.

In this section. we extend these definitions to transfer across an interfàce. from one

well-mixed bulk phase into another different one. This case occurs much more frequently

than does transfèr from an interface into one bulk phase; indeed, I had trouble dreaming up

examples earlier in this chapter. Transfer across an interface again sparks potentially major

problems of unit conversion, but these problems are often simplifìed in special cases.

8.5.1 The Basic Flux Equation

Presumably, we can describe mass transfer across an interf'ace in terms of the same

type of flux equation as before:

N I  :  KAc r (8 .s-  1)

..,,here Nr is the solute flux relative to the interface, K is called an "overall mass transfer
qrr - : -: ":.-iJ Jcl is some appropriate concentrafton difference. Rut what is Act ?

CTr , - 
" 

-:n xppropriate value of Ac1 tums out to be difficult. To illustrate this, consider
LÙr',- '  ,.: i j irr ls shown in Fig. 8.5-1. In the f,rst term, hot benzene is placed on top of
fl r r : - i-,' benzene cools and the water warrns until they reach the same temperature.
itf '-,,:i.:irre is the criterion for equilibrium, and the amount of energy transferred
lD rr- - i ;rroportional to the temperature difference between the liquids. Everything
rcCI l lS  SOCUf9.

As a second example, shown in Fig. 8.5- 1 (b), imagine that a benzene solution of bromine
is placed on top of water containing the same concentration of bromine. After a while, we
find that the initially equal concentrations have changed, that the bromine concentration in
the benzene is much higher than that in water. This is because the bromine is more soluble
in benzene, so that its concentration in the final solution is higher.

This result suggests which concentration difference we can use in Eq. 8.5- I . Vy'e should
not use the concentration in benzene minus the concentration in water; that is initially zero,
and yet there is a flux. Instead, we can use the concentration actually in benzene minus the

kd

D

(  r 1 2 u \ t t l

\ D L l
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Fig. 8.5-1. Driving fbrces across interfaces. In heat transfer, îhe amount ofheat transfèrred
depends on the temperature difference between the two l'iquids, as shown in (a). In mass
transfèr, the amount of solute that ditfuses depends on the solute's "solubility" or, more exactly,
on its chemical potential. Two cases are shown. In (b), bromine diffuses from water into
benzene because it is much more soluble in benzene; in (c), bromine evaporates until its
chemical potentials in the solutions are equal. This behavior compìicates analysis of mass
transtèr.

concentration that would be in benzene that was in equilibrium with the actual concentration
in water. Svmbolicallv.

Nr : Klcr(in benzene) - Hc(inwater)] (8.5-2)

where rY is a partition coefficient, the ratio at equilibrium of the concentration in benzene
to that in water. Note that this does predict a zero flux at equilibrium.

A better understanding of this phenomenon may come from the third case, shown in
Fig. 8.5-1(c)' Here, bromine is vaporized from water into air. Initially, the bromine's
concentration in water is higher than that in air; afterward, it is lower. Of course, this
reversal of the concentration in the liquid might be expressed in moles per liter and that in
gas as a partial pressure in atmospheres, so it is not surprising that strange things happen.

As you think about this more carefilly, you will realize that the units of pressure or
concentration cloud a deeper truth: Mass transfer can be described in terms of more funda-
mental chemical potentials. If this were done, the peculiar concentration differences would
disappear. However, chemical potentials turn out to be very difficult to use in practice, and
so the concentration differences for mass transfer across interfaces will remain complicated
by units.

8.5.2 The Overall Mass Transfer Cofficient
'We 

want to include these qualitative observations in more exact equations. To do
this, we consider the example of the gas-liquid interface in Fig. 8.5-2. In this case, gas on
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Fig. 8.5-2. Mass transfer across a gas-liquid interface. In this example, a solute vapor is
diffusing from the gas on the left into the liquid on the right. Because the solute concentration
changes both in the gas and in the liquid, the solute's flux must depend on a mass transfer
coefficient in each phase. These coefficients are combined into an overall flux equation in the
text.

the left is being transferred into the liquid on the right. The flux in the gas is

N t : k p ( p r c - p n ) (8.5-3)

where ftr, is the gas-phase mass transfer coefficient (typically in mol/cmr-sec-atm), p1e is
the bulkpressure, and p11 is the interfacial pressure. Because the interfacial region is thin,
the flux across it will be in steady state, and the flux in the gas will equal that in the liquid.
Thus.

Nr :  kr  (cr i  -  cro) (8.5-4)

where the liquid-phase mass transfer coefficient k1 is typically in centimeters per second
and c1; and c10 are the interfacial and bulk concentrations, respectively.

We now need to eliminate the unknown interfacial concentrations from these equations.
In almost all cases, equilibrium exists across the interface:

P t i  :  H c t i (8.5-5)

where 11 is a type of Henry's law or partition constant (here in cmr-atm/mol). Combining
Eqs. 8.5-3 through 8.5-5, we can find the interfacial concentrations

P r i  k r P n  *  k t c r c
"  H  k n H l k l

and the flux

(8.s-6)

(8.s-7)
I

* t  : , I t ,  
*  u l , r r ( p r c  

-  H c r c )

You should check the derivations ofthese results.
Before proceeding further, we make a quick analogy. This result is often compared to

an electric circuit containinq two resistances in series. The flux corresponds to the current.
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and the concentration difference prc - Hcrc conesponds to the voltage. The resistance is
then I f k,, + H lkL, which is roughly a sum of two resistances in series. This is a good way
of thinking about these effects. You must remember, however, that the resistances l/kn
and 1 I kl are not directly added, but always weighted by partition coefficients like t1.

We now want to write Eq. 8.5-7 in the form of Eq. 8.5- 1. We can do this in two wavs.
First. we can write

N r  : K z ( r : ì - c r o ) (8.s-8)

where

K r : (8.5-e)
l  l k t  - l  I  l kpH

and

(8.5- r 0)

K1 is called an "overall liquid-side mass transfer coefficient," and ci is the hypotheticat
liquid concentration that would be in equilibrium with the bulk gas. Alternatively,

N y :  K p ( p n  -  p i ) (8 .5-  l  r )

where

.  D t r r

' H

I
K . -  _' '  l l k r +  H / k L

(8.s- l2)

and

Pî :  Hcut (8 .s-  l3)

K2 is an "overall gas-side mass transfer coefficient," and pi is the hypothetical gas-phase
concentration that would be in equilibrium with the bulk liquid.

We now turn to a variety of examples illustrating mass transfer across an interface. These
examples have the annoying characteristic that they are initially diffìcult to do, but they are
trivial after you understand them. Remember that most of the difficulty comes from that
ancient  but  common curse:  uni t  convers ion.

Example 8.5-1: Oxygen mass transfer Estimate the overall liquid-side mass transfer
coeffìcient at 25'C for oxygen from water into air. In this estimate, assume that each
individual mass transfer coefficient is

k :  
D

0 .01  cm

This re lat ion is  just i f ied in  Sect ion 13.1.
Solution For oxygen in air, the diffusion coefficient is 0.23 cm2lsec; for oxygen

in water. the diffusion coefficient is 2.1 . l0-5 cm2/sec. The Henry's law constant in this
case is 4.,1 . 101 atmospheres. We need only calculate ft1- and k, andplug these values into
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Eq. 8.5-9. Finding ft1 is easy

D,
"  0 .01  cm

: 2 . 1  . 1 0  3  c m / s e c

Finding kn and H is harder because of unit conversions. From Eq. 8.5-3 and Table 8.2-2

k6 D6

2 . 1  . 1 0 - 5  c m 2 / s e c

0.01 cm

(0 .01  cm)(RZ)

0.23 cm2 lsec

t_
K p :

:

R T

(0.01 cmX82 cm3-atm/g-mol-'K)(298"K)

: 9.4 . l0-a g-mol/cm2-sec-atm

From the units of the Henry's law constant, we see that the value given implies

P t r  :  H ' r t i

By comparison with Eq. 8.5-5,

p 1 ;  : H c 1 ;  : ( H c ) x 1 ;

Thus

/  H ' \  4 .4  '  lOa  a tm
H  :  |  -  I  -  - ,  : J . 9 .  l 0 '  a t m - c m ' / g - m o l

\ ,  /  l g - m o l / l 8 c m r

Inserting these results into Eq. 8.-5-9, we find

I
K r - _"  l l k t + l l k p H

I

t l
t l  l o l . r n / * .  

-  
e |1

:  2.1 .  10-3 cm/sec

The mass transfer is dominated by the liquid-side resistance. This would also be true if we
calculated the overall gas-side mass transfer coeffìcient, a consequence of the slow diffusion
in the liquid state. It is the usual case fbr problems of this sort.

Example 8.5-2: Perfume extraction Jasmone (CllHl60) is a valuable material in the
perfume industry, used in many soaps and cosmetics. Suppose we are recovering this
material from a water suspension of jasmine flowers by an extraction with benzene. The
aqueous phase is continuousl the mass transfer coefficient in the benzene drops is 3.0' l0 +

centimeters per second; the mass transfèr coefficient in the aqueous phase is 2.4. l0 l

centimeters per second. Jasmone is about 170 times more soluble in benzene than in the
suspension. What is the overall mass transfer coeffìcient?
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Solution For convenience, we designate all concentrations in the benzene phase

with a prime and all those in the water without a prime. The flux is

Nr :  k(cro -  cr , )  :  k '  (c ' r ,  -  c1o)

The interfacial concentrations are in equilibrium:

c ' l i  :  Hc l i

Eliminating these interfacial concentrations, we find

t t l
N ,  : l  l ( H c , n - t : , ^ l

L l l k ' +  H l k j  "

The quantity in square brackets is the overall coefficient K' that we seek. This coeffìcient

is based on a driving force in benzene. Inserting the values,

K , :
+ lz0

3.0.  10-1 cm/sec 
'  

2 .4.  10-3 cm/sec

:  1 . 3 .  1 0  ' c m / s e c

Similar results for the overall coefficient based on a driving force in water are easily found.

Two points about this problem deserve mention. First, the result is a complete parallel

to Eq. 8.5- 12, but for a liquid-liquid interface instead of a gas-liquid interface. Second,

mass transfer in the water dominates the process even though the mass transfer coefficient

in water is larger because jasmone is so much more soluble in benzene.

Example 8.5-3: Overall mass transfer coefficients in a packed tower 
'We 

are studying

gas absorption into water at 2.2 atmospheres total pressure in a packed tower contain-

ing Berl saddles. From earlier experiments with ammonia and methane, we believe that

for both gases the mass transfer coefficient times the packing area per tower volume is

l8 lb-mol/hr-ft3 for the gas side and 530 lb-molftrr-ftr for the liquid side. The values for

these two gases may be simiìar because methane, and ammonia have similar molecular

weights. However, their Henry's law constants are different: 9.6 atmospheres for ammonia

and 41,000 atmospheres fbr methane. What is the overall gas-side mass transfer coefficient

for each gas?
Solution This is essentially a problem in unit conversion. Although you can

extract the appropriate equations from the text, I always feel more confident if I repeat parts

of the derivation.
The quantity we seek, the overall gas-side transfer coefficient K., is defined by

N1a  :  K , . r u  t 1  10  -  r ' i )

:  kra( .yro -  yr , )

:  k ,a(xt i  -  r 'n)

where r'1 and 11 are the gas and liquid mole fractions.
The interfacial concentrations are related by Henry's Ìaw:

/ ) 1 ,  
-  p J  t ,  

-  H x t i
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When these interfacial concentrations are eliminated, we find that

1  1  H l o
- - - - L

K r o -  k r u '  k r a

In passing, we recognize that yi must equal Hxrclp.
We can now fìnd the overall coefficient fbr each sas. For ammonia,

9.6 atmlZ.2 atm
- l . T

["d |  6 lb-mot/hr-I t- 530 1b-mol/hr-ft3

K,.a - l6 1b-mol/hr-ft3

The gas-side resistance controls the rate. For methane,

1 41.000 atntl2.2 atmI

Kr"

K,'a

The coefficient
coefficient.

- - ] _
l8 1b-mol/hr-ft'

: 0.03 lb-mol/hr-ft3

for methane is smaller

530Ib-molftr-ft3

and is dominated by the liquid-side mass transf.er

8.6 Conclusions

This chapter presents an alternative model for diffusion, one using mass transfer
coefficients rather than diffusion coefficients. The model is most useful for diffusion across
phase boundaries. It assumes that large changes in the concentration occur only very near
these boundaries and that the solutions far from the boundaries are well mixed. Such a
description is called a lumped-parameter model.

In this chapter, we have shown how experimental results can be converted into mass
transfer coefficients. We have also shown how these coeffìcients can be efficiently orga-
nized as dimensionless correlations, and we have cataloged published correlations that are

commonly useful. These correlations are compromised by problems with units that come

out of a plethora of closely related definitions.
Mass transfer coeffìcients provide especially useful descriptions of diffusion in complex

niultiphase systems. They are basic to the analysis and design of industrial processes

ìike absorption, extraction, and distillation. They should fìnd major applications in the
.tudy of physiologic processes like membrane diffusion. blood perfusion. and digestion;
physiologists and physicians do not often use these models but would benefit from doing so.

Mass transfer coeffìcients are not useful in chemistry when the focus is on chemical
kinetics or chemical change. They are not useful in studies of the solid state, where

;oncentrations vary with both position and time, and lumped-parameter models do not help

ntuch. However, mass transfer coeffìcients are used in analyzing etching processes. like

those used in making sil icon chips.
All in all, the material in this chapter is a solid alternative for analyzing diffusion near

rnterfaces. It is basic stuff for chemical engineers, but it is an unexplored method for many
,rthers. It reDavs careful studv.


