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Diffusion in Dilute Solutions

In this chapter, we consider the basic law that underlies diffusion and its application

to several simple examples. The examples that will be given are restricted to dilute solutions.

Results for concentrated solutions are deferred until Chapter 3.

This focus on the special case of dilute solutions may seem strange. Surely, it would seem

more sensible to treat the general case of all solutions and then see mathematically what the

dilute-solution l imit is l ike. Most books use this approach. Indeed, because concentrated

solutions are complex, these books often describe heat transf'er or fluid mechanics first and

then teach diffision by analogy. The complexity of concentrated diffusion then becomes a

mathematical cancer grafted onto equations of energy and momentum'

I have rejected this approach for two reasons. First, the most common diffusion problems

do take place in dilute solutions. For example, diffusion in living tissue almost always in-

volves the transport of small amounts of solutes like salts. antibodies, enzymes, or steroids'

Thus many who are interested in diffusion need not worry about the complexities of con-

centrated solutions; they can work effectively and contentedly with the simpler concepts in

this chapter.
Second and more important, diffusion in dilute solutions is easier to understand in phys-

ical terms. A diffusion flux is the rate per unit area at which mass moves. A concentration

profìle is simply the variation of the concentration versus time and position. These ideas

are much more easily grasped than concepts like momentum flux, which is the momentum

per area per time. This seems particularly true for those whose backgrounds are not in engi-

neering, those who need to know about diftision but not about other transpol't phenomena.

This emphasis on dilute solutions is found in the historical development of the basic laws

rnvolved,asdescribedinSection2.L sections2.2and2.3ofthischapterfocusontwosimple

cases of {iffusion: steady-state diffusion across a thin film and unsteady-state diffusion into

.rn infinite slab. This focus is a logical choice because these two cases are so common. For

L'xample, diffusion across thin films is basic to membrane transport, and diffusion in slabs

rr important in the strength of welds and in the decay of teeth. These two cases are the two

r.xtretn€s in nature, and they bracket the behavior observed experimentally. In Sections 2'4

.tnd2.5. these ideas are extended to other examples that demonstrate mathematical ideas

Lrseful fbr other situations.

2.1 Pioneers in Diffusion

2.1.1 Thomas Graham

Our modern ideas on diffusion are largely due to two men, Thomas Graham and

\dolf Fick. Graham was the elder. Born on December 20, 1805, Graham was the son of
i successful manufacturer. At 13 years of age he entered the University of Glasgow with
:hc intention of becoming a minister, and there his interest in science was stimulated by
Thomas Thomson.
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Graham's research on the ditTusion of gases, largely conducted during the years 1828 to

I 833, depended strongly on the apparatus shown in Fig. 2. 1- I (Graham, 1829, | 833). This

apparatus, a "diffusion tube," consists of a straight glass tube, one end of which is closed

with a dense stucco plug. The tube is filled with hydrogen, and the end is sealed with water,

as shown. Hydrogen diflises through the plug and out of the tube, while air diffuses back

through the plug and into the tube.
Because the diffusion of hydrogen is faster than the diffusion of air, the water level in this

tube will rise during the process. Graham saw that this change in water level would lead to

a pressure gradient that in turn would alter the diffusion. To avoid this pressure gradient, he

continually lowered the tube so that the water level stayed constant. His experimental results

then consisted of a volume-change characteristic of each gas originally held in the tube.

Because this volume change was characteristic of diffusion, "the diffusion or spontaneous

intermixture of two gases in contact is effècted by an interchange of position of infinitely

minute volumes, being, in the case of each gas, inversely proportional to the square root of

the density of the gas" (Graham, 1833, p. 222). Gtaham's original experiment was unusual

because the diffusion took place at constant pressure, not at constant volume (Mason, 1970).

Graham also perfbrmed important experiments on liquid diffusion using the equipment

shown in Fig.2.l-2 (Graham, I 850); in these experiments, he worked with dilute solutions.

In one series of experiments, he connected two bottles that contained solutions at diffèrent

concentrations; he waiteil several days and then separated the bottles and analyzed their

contents. In another series ofexperiments, he placed a small bottle containing a solution of

kno'uvn concentration in a larger jar containing only water. After waiting several days, he

removed the bottle and analyzed its contents.
Graham's results were sirnple and definitive. He showed that diffusion in liquids was at

leasr several thousand times slower than diflision in gases. He recognized that the diffusion

process got still slower as the experiment progressed, that "diffusion must necessarily follow

a diminishing progression." Most important, he concluded from the results in Table 2.1-1

that "rhe quanrities diftised appear to be closely in proportion . . . to the quantity of salt in

the ditTusion solution" (Graham, 1850, p. 6). In other words, the flux caused by difTusion

is proportional to the concentration diffèrence of the salt.
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Fig.2.l-2. Graham's diffusion apparatus fbr liquids. The equipment in (a) is the ancestor of

fiee diffusion experiments; that in (b) is a forerunner of the capillary method.

Table 2.1- l. Graham's results for liquid difrusion

Weight percent of
sodium chloride Relative flux

r .00
1 .99
3 .01
4.00

Source: Data from Graham (1850).

2.1.2 Adolf Fick

The next major advance in the theory of diffusion came from the work of Adolf
Eugen Fick. Fick was born on September 3, 1829, the youngest of fìve children. His

father, a civil engineer, was a superintendent ofbuildings. During his secondary schooling,
Fick was delighted by mathematics, especially the work of Poisson. He intended to make
mathematics his career. However, an older brother, a professor of anatomy at the University
of Marlburg, persuaded him to switch to medicine.

In the spring of 1847, Fick went to Marlburg, where he was occasionally tutored by

Carl Ludwig. Ludwig strongly believed that medicine, and indeed life itself, must have

a basis in mathematics, physics, and chemistry. This attitude must have been especially
appealing to Fick, who saw the chance to combine his real love, mathematics, with his

ehosen profession. medicine.
In the fall of 1849. Fick's education continued in Berlin. where he did a considerable

irmount of clinical work. In 185 t he returned to Marlburg, where he received his degree. His
rhesis dealt with the visual errors caused by astigmatism, again illustrating his determination
tocomb inesc ienceandmed ic ine (F i ck ,  1852 ) .  I n the fa l l o f  185  l ,Ca r l Ludw igbecame
professor of anatomy in Zurich, and in the spring of 1852 he brought Fick along as a
prosector. Ludwig moved to Menna in 1855, but Fick remained in Zurich until 1868.

Paradoxically, the majority of Fick's scientifìc accomplishments do not depend on diffu-
.ion studies at all, but on his more general investigations of physiology (Fick, 1903). He did
outstanding work in mechanics (particularly as applied to the functioning of muscles), in

hydrodynamics and hemorheology, and in the visual and thermal functioning of the human

1
2
3
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body. He was an intriguing man. However, in this discussion we are interested only in his
development of the fundamental laws of difTusion.

In his first diffusion paper, Fick (1855a) codified Graham's experiments through an
impressive combination of qualitative theories, casual analogies, and quantitative experi-
ments. His paper, which is refreshingly straightforward, deserves reading today. Fick's
introduction of his basic idea is almost casual: "[T]he diffusion of the dissolved material
. . . is left completely to the influence of the molecular forces basic to the same law . . . for
the spreading of warmth in a conductor and which has already been applied with such great
successtothespreadingof  e lect r ic i ty" (F ick,  1855a,p.65) .  Inotherwords,d i f fus ioncan
be described on the same mathematical basis as Fourier's law for heat conduction or Ohm's
law for electrical conduction. This analogy remains a useful pedagogical tool.

Fick seemed initially nervous about his hypothesis. He buttressed it with a variety of
arguments based on kinetic theory. Although these arguments are now dated, they show
physical insights that would be exceptional in medicine today. For example, Fick recognized
that diffusion is a dynamic molecular process. He understood the difference between a
true equilibrium and a steady state, possibly as a result of his studies with muscles (Fick,
1856). Later, Fick became more confident as he realized his hypothesis was consistent with
Graham's resulrs (Fick, 1855b).

Using this basic hypothesis, Fick quickly developed the laws of diffusion by means of
analogies with Fourier's work (Fourier, 1822). He defined a total one-dimensional flux
./1 as
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(2.1-1)

where A is the area across which diffusion occurs, /1 is the flux per unit a;tal., c1 is concentra-
tion, and z is distance. This is the f,rst suggestion of what is now known as Fick's law. The
quantity D, which Fick called "the constant depending of the nature of the substances," is,
of course, the diffusion coefficient. Fick also paralleled Fourier's development to determine
the more general conservation equation

(2.1-2)

When the area A is a constant, this becomes the basic equation for one-dimensional
unsteady-state diffusion, sometimes called Fick's second law.

Fick next had to prove his hypothesis that diffusion and thermal conduction can be
described by the same equations. He was by no means immediately successful. First, he
tried to integrate Eq.2.l-2 for constant area, but he became discouraged by the numerical
effort required. Second, he tried to measure the second derivative experimentally. Like
many others, he found that second derivatives are difficult to measure: "the second difference
increases exceptionally the efTect of [experimental] errors."

His third effort was more successful. He used a glass cylinder containing crystalline
sodium chloride in the bottom and a large volume of water in the top, shown as the lower
apparatus in Fig. 2.1-3. By periodically changing the water in the top volume, he was able
to establish a steady-state concentration gradient in the cylindrical cell. He found that this
gradient was linear, as shown in Fig. 2. 1-3. Because this result can be predicted either from
Eq. 2.1-1 or from Eq.2.l-2, this was a triumph.
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Fig. 2 I -3. Fick's experimental results. The crystals in the bottom of each apparatus saturate the
adjacent solution, so that a fixed concentration gradient is established aìong the narrow, lower
partof theapparatus.  Fick 'scalculat ionof thecurvefor thefunnelwashisbestproofofFick 's
law.

Table 2.1-2. Fick's law for diffu,sion without conNection

dc '- j t : D ,
a z

dc ,- j r : D ,
a r

dc ,- j t : D ,
a r

Nole.. More general equations are given in Table 3.2_ l.

But this success was by no means complete. After all, Graham's data for liquids an-
Jlpated Fq.2.l-1. To try to strengthen the analogy with thermal conduction, Fick used
- lower apparatus shown in Fig. 2.1-3. In this apparatus, he established the steady-state

- 'ncentration profìle in the same manner as before. He measured this profile and then tried
Dredict these results using Eq. 2.1-2,in which the funnel area A available for diffusion

,ned with the distance :. When Fick compared his calculations with his experimental
-r '.ults, he found the good agreement shown in Fig.2.l-3. These results were the init ial
. r 'r i l ìcation of Fick's law.

2.1.3 Forms of Fick's Inw

useful forms of Fick's law in dilute solutions are shown in Table 2.1-2. Each
r.lurìt ion closely parallels that suggested by Fick, that is, Eq. 2.1-I. Each involves the
'úrlle phenomenological diffision coefficient. Each will be combined with mass balances
, analyze the problems central to the rest of this chapter.

One must remember that these flux equations imply no convection in the same direction
',' the one-dimensional diffusion. They are thus special cases of the general equations
lr\en in Table 3.2-1. This lack of convection often indicates a dilute solution. In fàct.

For one-dimensional diffusion in
Cartesian coordinates

For radial diffusion in cylindrical
coordinates

For radial diffusion in spherical
coordinates
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Fig.2.2-1. Diîfusion across a thin fìlm. This is the simplest diffusion problem, basic to perhaps

80% of what follows. Note that the concentration profìle is independent of the diffusion
coelhcient.

the assumption of a dilute solution is more restrictive than necessary, for there are many
concentrated solutions for which these simple equations can be used without inaccuracy.
Nonetheless, for the novice, I suggest thinking of diffusion in a dilute solution.

2.2 Steady Diffusion Across a Thin Film

In the previous section we detailed the development of Fick's law, the basic relation
for diffusion. Armed with this law, we can now attack the simplest example: steady diffusion
across a thin film. In this attack. we want to find both the diffusion flux and the concentration
profile. In other words, we want to determine how much solute moves across the film and
how the solute concentration changes within the film.

This problem is very important. It is one extreme of diffusion behavior, a counterpoint to
diffusion in an infinite slab. Every reader, whether casual or diligent, should try to master
this problem now. Many will fail because film diffusion is too simple mathematically.
Please do not dismiss this important problem; it is mathematically straightforward but
physically subtle. Think about it carefully.

2.2.1 The Physical Situation

Steady diffusion across a thin film is illustrated schematically in Fig. 2.2-1. On
each side of the film is a well-mixed solution of one solute, species I . Both these solutions
are dilute. The solute diffuses from the fixed higher concentration, located at z < 0 on the
lefrhand side of the film, into the fixed, less concentrated solution, located at z > / on the
right-hand side.

We want to find the solute concentration profile and the flux across this film. To do this,
we first write a mass balance on a thin layer Az, located at some arbitrary position z within
the thin film. The mass balance in this layer is

Because the process is in steady state, the accumulation is zero. The diffusion rate is the

b,["s.
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.t'iusion flux times the film's area A. Thus

0  :  A ( j t l .  -  - / r  r . + r . 7

):i iding this equation by the fi lm's volume, AAz, and reaffanging,

(2.2-1)

(2.2-3)

( )  ) -4 \

r ?  ) - 5 1

(2.2-6)

(2.2-1)

( )  )  _a\

(2.2-10)

o : - ( r r  ' - r '  - / r l ' )  
r ) ) - ) t

\ ( : + A r ) - z l

" hen Az becomes very small, this equation becomes the definition of the derivative

d
0 : _ ; j t

47.
'  ,nrbining this equation with Fick's law,

d c t
- j t : D  

'
47.

.' find, for a constant diffusion coefficient D,

' 1 )  "

0  :  D ' ; ' , '

- 
:r. differential equation is subject to two boundary conditions:

z  : 0 ,  c r  :  c l o

z :  I ,  c l  :  c t !

:.:.rrn. because this system is in steady state, the concentrations c16 and c17 are independent
' lime. Physically, this means that the volumes of the adjacent solutions must be much
:'rter than the volume of the fìlm.

2.2.2 Muthematical Results

The desired concentration profile and flux are now easily found. First, we integrate
- ).2-5 twice to find

c t : a l b z (2 .2 -8)
- - ;' constants a and b can be found from Eqs. 2.2-6 and2.2-l , so the concentration profile is

c l : c l o + ( c l /  ' Z_  c1o )  
t

:r '  l i1s41 variation was, of course, anticipated by the sketch tnFig.2.2-1.
The flux is found by differentiating this profile:

dc ,  D
j t : - D  ,  : ; ( c r o - c r r )

07. I

r3.'rìuse the system is in steady state, the flux is a constant.
.\s mentioned earlier, this case is easy mathematically. Although it is very important, it

. ,itten underemphasized because it seems trivial. Before you conclude this, try some of
r' e\amples that fbllow to make sure you understand what is happening.
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(a) (b) (c)

Fig.2.2-2. Concentration profiles across thin membranes. In (a). the solute is more soluble in
the membrane than in the adjacent solutions; in (b), it is less so. Both cases conespond to a
chemical potential gradient like that in (c).

Exampfe 2.2-l: Membrane diffusion Derive the concentration profile and the flux for
a single solute diffising across a thin membrane. As in the preceding case of a fìlm, the
membrane separates two well-stirred solutions. Unlike the film, the membrane is chemically
different from these solutions.

Solution As before, we first write a mass balance on a thin layer Az:

0  :  A (  j t l .  -  , / r  l : + r : )

This leads to a differential equation identical with Eq. 2.2-5:

r )
O - C r

0 :  D -
az '

However, this new mass balance is subject to somewhat different boundary conditions:

z : 0 ,  c t : H C r c

z , :  I ,  c t :  H C t t

where 11 is a partition coeffìcient, the concentration in the membrane divided by that in the
adjacent solution. This partition coeffìcient is a equilibrium property, so its use implies that
equilibrium exists across the membrane surface.

The concentration profìle that results fiom these relations is

c t : H ( ' t l + H l C 1 1  - C , r ) ì

which is analogous to Eq. 2.2-9. This result looks harmless enough. However, it suggests
concentration profìles likes those inFig.2.2-2, which contain sudden discontinuities at the
interface. If the solute is more soluble in the membrane than in the surrounding solutions,
then the concentration increases. If the solute is less soluble in the membrane. then its
concentration drops. Either case produces enigmas. For example, at the lefi-hand side of
the membrane in Fig. 2.2-2(a), solute diffuses fiom the solution at r:y6 into the membrane
at hi phe r concentration.

This apparent quandary is resolved when we think carefully about the solute's diffusion.
Diffusion often can occur fiom a region of low concentration into a region of high con-
centration; indeed, this is the basis of many liquid-liquid extractions. Thus the jumps in
concentration inFig.2.2-2 are not as bizarre as they might appear; rather, they are graphical

.:cidents that result
'rembrane.
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accidents that result from using the same scale to represent concentrations inside and outside
membrane.

This type of diffusion can also be described in terms of the solute's energy or, more
exactly, in terms of its chemical potential. The solute's chemical potentiaÌ does not change
across the membrane's interface, because equilibrium exists there. Moreover, this poten-
tial, which drops smoothly with concentrarion, as shown in Fig. 2.2-2(c), is the driving
fbrce responsible for the diffusion. The exact role of this driving force is discussed more
completely is Sections 6.4 and1.2.

The flux across a thin membrane can be found by combining the foregoing concentration
profi le with Fick's law:

I D H l
, / t  : - - ( C 1 1 y  - C 1 1 . )

This is parallel to Eq. 2.2-10. The quantity in square brackers in this equation is called the
permeability, and it is ofien reported experimentally. Sometimes this same term is called
the permeability per unit length. The partition coefficient 11 is found to vary more widely
than the diffision coefficient D, so differences in diffusion tend to be less important than
the differences in solubilitv.

Example 2.2-2:Porous-membrane diffusion Determine how the results of the previous
example are changed if the homogeneous membrane is replaced by a microporous layer.

Solution The difference between this case and the previous one is that diffusion
is no longer one-dimensional; it now wiggles along the tortuous pores that make up the
rnembrane. Rather than try to treat this problem exactly, you can assume an effective
diffusion coefîcient that encompasses all ignorance of the pore's geometry. All the earlier
answers are then adopted; for example, the flux is

I  D-oHf
l r  :  l - , L l t C r o - C r r )

t t l

rvhere D.s i, u n"*, "effective" diffusion coefficient. Such a quantity is a flnction not only
of solute and solvent but also ofthe local seometrv.

Example 2.2-3: Membrane diffusion with fast reaction Imagine that while a solute
:s diffusing steadily across a thin membrane, it can rapidly and reversibly react with
Ither immobile solutes fìxed within the membrane. Find how this fast reaction affects
:he solute's flux.

Solution The answer is surprising: The reaction has no efTect. This is an excellent
:rample because it requires careful thinking. Again, we begin by writing a mass balance
.rn a layer Az located within the membrane:

/  so lute \  /  so lute d i î fus ion in  \  /  amounr produced \
\ a c c u m u l a t i o " i :  \  m i n u s t h a r o u r  i  

*  
\ u v c h e m i c a l r e a c r i o n  /

Because the system is in steady state, this leads to

0 :  A( j r l :  -  , / r  l . :+r;)  -  rrAL.z

21
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Porous
Diaphragm

Fig. 2.2-3. A diaphragm cell for measuring diffusion coefîcients. Because the diaphragm has

a much smaller volume than the adjacent solutions. the concentration profile wìthin the

diaphragm has essentially the linear, steady-state value.

)
u

0 : - . . À - - r r
d Z

where rl is the rate of disappearance of the mobile species I in the membrane. A similar
mass balance fbr the immobile product 2 gives

, ' d
U - - . . / 1 f / ' 1

47.

But because the product is immobile, j2 is zerc, and hence 11 is zero. As a result, the mass
balance for species I is identical with Eq. 2.2-3,leaving the flux and concentration profìle
unchanged.

This result is easier to appreciate in physical terms. After the diffusion reaches a steady
state, the local concentration is everywhere in equilibrium with the appropriate amount of
the fast reaction's product. Because these local concentrations do not change with time, the
amounts of the product do not change either. Diffusion continues unaltered.

This case in which a chemical reaction does not affect diffusion is unusual. For almost
any other situation, the reaction can engender dramatically different mass transfer. If the
reaction is irreversible, the flux can be increased many orders of magnitude, as shown in
Section I 6.1. If the difTusion is not steady, the apparent diffusion coefficient can be much
greater than expected, as discussed in Example 2.3-3. However, in the case described in
this example, the chemical reaction does not affect diffusion.

Example 2,2-4: Diaphragm-cell diffusion One easy way to measure diffusion coefî-
cients is the diaphragm cell, shown in Fig. 2.2-3. These cells consist of two well-stirred
volumes separated by a thin porous barrier or diaphragm. In the more accurate experiments,
the diaphragm is ofien a sintered glass frit; in many successful experiments. it is just a piece
of filter paper (see Section 5.5). To measure a diffusion coefficient with this cell, we fill
the lower compartment with a solution of known concentration and the upper compartment
with solvent. After a known time, we sample both upper and lower compartments and
measure their concentrations.

Find an equation that uses the known time and the measured concentrations to calculate
the diffusion coeffi cient.
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Solution An exact solution to this problem is elaborate and unnecessary. Such a

solution is known but never used (Barnes ,1934). The useful approximate solution depends

on the assumption that the flux across the diaphragm quickly reaches its steady-state value

(Robinson and Stokes, 1960). This steady-state flux is approached even though the concen-

trations in the upper and lower compartments are changing with time. The approximations

introduced by this assumption will be considered again later.

In this pseudosteady state, the flux across the diaphragm is that given for membrane

diffusion:

I  D H I
/ r  : |  , - l t C r . r o * . r - C l  r p p . r )

t t l

Here, the quantity H includes the fraction of the diaphragm's area that is available for

Jiffusion. We next write an overall mass balance on the adjacent compartments:

dCt . l u * " ,
Vtower# -  -Aj t

d t

dCr.upp. ,
V u o o c r - - - . : : l A j t

" d Í

.vhere A is the diaphragm's area. If these mass balances are divided bY Vru*", and yuppcr,
-espectively, and the equations are subtracted, one can combine the result with the flux

tquation to obtain

d ^

;;{Cr 
tu*., - Ct.upp",) : Df(Ct,opp., - Cl.lo*.,)

r which

A H l  I  1 \
R - - l - r - lY -  

/  \ v t " * t ' ' v ' , , " )

. a geometrical constant characteristic of the particular diaphragm cell being used. This

-.l-ferential equation is subject to the obvious initial condition

/ : 0, Cl.ror.. - Ct.upp., : CÎ.to*.. - Cf.uno.t

- rhe upper comparrment is initially filled with solvent, then its initial solute concentration

:l l be zero.
Integrating the differential equation subject to this condition gives the desired result:

Cl. lo*" .  -  Cl .upp. , ^ - f tD r: (
Cî.,n*.. - C?.uoo"'

I  /  cP ' . , , .  
' t t  \

D : - l n |  
' ' c r - L l u P P c r I

p t  
\  

C ' . 'u * " ,  -  Cr .upper  
/

,-an measure the time r and the various concentrations directly. We can also determine

Seometric factor B by calibration of the cell with a species whose diffusion coeffìcient

ro.uvn. Then we can determine the diffusion coefficients of unknown solutes.
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There are two major ways in which this analysis can be questioned. First, the diffusion
coefficient used here is an effèctive value altered by the tortuosity in the diaphragm. Theo-
reticians occasionally assert that different solutes will have different tortuosities, so that the
diffusion coefficients measured will apply only to that particular diaphragm cell and will not
be generally usable. Experimentalists have cheerfully ignored these assertions by writing

|  / c 9 .  - c P  \
D -  -  r n 1 ' i h ' u c r ' l u P P e r  I

B ' t  \C ' . ' " * " ,  
-  C t . , p r , ,  /

where p' is a new calibration constant that includes any torluosity efTects. So far, the exper-
imentalists have gotten away with this: Diffusion coefficients measured with the diaphragm
cell do agree with those measured by other methods.

The second major question about this analysis comes from the combination of the steady-
state flux equation with an unsteady-state mass balance. You may find this combination to
be one ofthose areas where superfìcial inspection is reassuring, but where careful reflection
is disquieting. I have been tempted to skip over this point, but have decided that I had better
not. Here goes:

The adjacent compartments are much larger than the diaphragm itself because they
contain much more material. Their concentrations change slowly, ponderously, as a result
of the transfer of a lot of solute. In contrast, the diaphragm itself contains relatively
little material. Changes in its concentration profile occur quickly. Thus, even if this
profile is initially very diffèrent from steady state, it will approach a steady srate before
the concentrations in the adjacent compartments can change much. As a result, the profìle
across the diaphragm will always be close to its steady value, even though the compartment
concentrations are time dependent.

These ideas can be placed on a more quantitative basis by comparing the relaxation time
of the diaphragm, t2 1 o, with that of the comparrmenrs, 1l(Dp) The analysis used here
will be accurate when (Mills, Woolf, and Watts, 1968)
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This type of "pseudosteady-state approximation" is common and will be found to underlie
most mass transfer coefficients.

Example 2.2-5: concentration-dependent diffusion In all the examples thus far, we
have assumed that the diffusion coefficient is constant. However. in some cases this is not
true; the diffusion coeffìcient can suddenly drop from a high value to a much lower one.
Such changes can occur for water difTusion across fìlms and in detergent solutions.

Find the flux across a thin film in which diffision varies sharply. To keep the problem
simple, assume that below some critical concentration c1., diffusion is tast, but above this
concentration it is suddenly much slower.

Solution This problem is best idealized as two films that are stuck together
(Fi$.2.2-4). The interface between these fìlms occurs when the concentration equals c1..

l l

= t )
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'- j: tÌm. a steady-state mass balance leads to the same equation:

, d j t
dz

- -;.ult. the flux j1 is a constant everywhere in the film. However, in the leffhand film
- -': .oncentration produces a small diffusion coefficient:
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The unknown position 2,. can be found by recognizing that the flux

fi lms:

I
t' : o!!r-r-t'

l ( c 1 9  -  c 1 , . )

The flux becomes

is the same across both

D(c ' ro  -  c r , . )  *  D (c r ,  -  c t t )
. I l  

-

If the critical concentration equals the average of c1s and c11, then the apparent difTusion

coefficient will be the arithmetic average of the two diffusion coefficients.

In passing, we should recognize that the concentration profile shown in Fig' 2.2-4 im'

p l ic i t lyg ivestherat ioof  thedi f f is ioncoef f lc ients.  Thef luxacrossthef i lmisconstantand

is proportional to the concentration gradient. Because the gradient is larger on the left, the

difTusion coeffìcient is smaller. Because the gradient is smaller on the right, the diffusion

coefficient is larger. To test your understanding of this point, you should consider what

the concentration profìle will look like if the diffusion coeffìcient suddenly decreases as

the concentration drops. Such consi<lerations will help you understand the next and final

example in this section.

Example 2.2-6: Skin diffusion The diffusion of inert gases through the skin can cause

itching, burning rashes, which in turn can lead to vertigo and nausea. These symptoms are

believed to occur because gas permeability and diffision in skin are variable. Indeed, skin

behaves as if it consists of two layers, each of which has a different permeability (Idicula

et at., 1976). Explain how these two layers can lead to the rashes observed clinically.

Solution This problem is similar to Examples 2.2-l and2.2-5,but the solution

is very complex in terms of concentration. We can reduce this complexity by defining a

new variable: the gas pressure that would be in equilibrium w'ith the locctl concentration.

The "concentration profìles" across skin are much simpler in terms of this pressure' even

though it may not exist physically. To make these ideas more specific, we label the two

layers of skin A and B. For layer A,

Pt  :  Pt .gas + 
i ( t t t i  

-  Pt  go ' )

and for layer B,

z
p t  :  P t i  +  

f { r t . t i . . ue  
-  P l ; )
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can be found fiom the fàct that the flux through layer A equals that through layer B.
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Fig. 2.2-5. Gas difiusion across skin. The gas pressures shown are those in equilibriurn with
the actual concentrations. In the specifìc case considered here, gas 2 is more permeable in
layer B, and gas I is more permeable in layer A. The resulting total pressure can have major
physiologic effècts.

These profi les, which are shown in Fig. 2.2-5, imply why rashes form in the skin. In
particular, these graphs illustrate the transport ofgas I from the suffoundings into the tissue
and the simultaneous diffusion of gas 2 across the skin in the opposite direction. Gas I
is more permeable in layer A than in layer B; as a result, its pressure and concentration
gradients fall less sharply in layer A than in layer B. The reverse is true fbr gas 2; it is more
permeable in layer B than in A.

These different permeabilities lead to a total pressure that will have a maximum at the
rnterface between the two skin layers. This total pressure, shown by the dotted line in
Fig. 2.2-5, may exceed the surrounding pressure outside the skin and within the body. If
it does so, gas bubbles will form around the interface between the two skin layers. These
bubbles produce the medically observed symptoms. Thus this condition is a consequence of
unequal difTusion (or, more exactly, unequal permeabilities) across diffèrent layers of skin.

The examples in this section show that diffusion across thin films can be diffìcult to
understand. The difficulty does not derive from mathematical complexity; the calculation
rs easy and essentially unchanged. The simplicity of the mathematics is the reason why
Jrffusion across thin films tends to be discussed superfìcially in mathematically oriented
books. The difîculty in thin-film diffusion comes from adapting the same mathematics
ttr widely varying situations with different chemical and physical effects. This is what is
Jifîcult to understand about thin film diffusion. It is an understanding that you must gain
befbre you can do creative work on harder mass transfer problems.
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2.3 Unsteady Diffusion in a Semiinfinite Slab

We now turn to a discussion of diffusion in a semiinfìnite slab. We consider a

volume of solution that starts at an interface and extends a very long way' Such a solution

can be a gas, liquid, or solid. We want to find how the concentration varies in this solution

as a result of a concentration change at its interface. ln mathematical terms, we want to

fìncl the concentration and flux as functions of position and time'

This type of mass transfer is often called fiee diffusion (Gosting, 1956) simply because

this is briefer than "unsteady diffusion in a semiinfinite slab." At first glance, this situation

may seem rare because no solution can extend an infinite distance. The previous thin-film

example made more sense because we can think of many more thin films than semiinfinite

slabs. Thus we might conclude that this semiinfinite case is not common. That conclusion

would be a serious errol.
The important case of an infinite slab is common because any diffusion problem will

behave as if the slab is infinitely thick at shorl enough times. For example, imagine that one

of the thin membranes discussed in the previous section separates two identical solutions,

so that it initially contains a solute at constant concentration. Everything is quiescent, at

equilibrium. Suddenly the concentration on the leffhand interface of the membrane is

raìsed, as shown in Fig. 2.3-1. Just after this sudden increase, the concentration near this

left interf'ace rises rapidly on its way [o a new steady state. In these first few seconds, the

concentration at the right interface remains unaltered, ignorant of the turmoil on the left'

The left might as well be infinitely far away; the membrane, for these first few seconds,

might as *"ll b. infinitely thick. Of course, at larger times, the system will slither into the

steidy-state limit in Fig. 2.3-l(c). But in those first seconds, the membrane does behave

like a semiinfìnite slab.
This example points to an important corollary, which states that cases involving an

infinite slab an<l a thin membrane will bracket the observed behavior. At short times,

dif1ision will proceed as if the slab is infìnite; at long times, it will occur as if the slab

is thin. By focusing on these limits, we can bracket the possible physical responses to

different diflision Problems.

2.3.1 The PhYsical Situation

The diffusion in a semiinfinite slab is schematically sketched in Fig. 2'3-2' The

slab initially contains a uniform concentration of solute clÉ. At Some time, chosen as

time zero, the concentration at the interface is suddenly and abruptly increased, although

the solute is always present at high dilution. The increase produces the time-dependent

concentration profile that develops as solute penetrates into the slab.

We want to fìnd the concentration profile and the flux in this situation, and so again we

need a mass balance written on the thin layer of volume A Az:

/ solute accumulation \ - / rate of diffusion \ -
\ in volume AAz / 

- 
\ into thelaYer atz )

ln mathematical terms, this is

!o+urt1 
:  A(. i t l .  -  , / r  l .+r . )

f rate of diffusion \

[*:::'l'i1"' /
(2.3-r)

12.3-2)
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Concen î ro t i on  p ro f i l e  i n
o  membrone  o l  equ i l i b r i um

Concen t ro f  i on  p ro f  i l e  s l i gh î  l y
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îhe  l e f î  i s  r o i sed

I ncreose

L i  m i î i n g  c o n c e n l r o l i o n
p r o f  i  l e  o f  l o r g e  f  i m e

Fig. 2.3- I . Unsteady- versus steady-state diffusion. At small times, difTusion will occur only
near the lefrhand side of the membrane. As a result. at these small times. the diffusion will be
the same as if the membrane was infinitely thick. At large times, the results become those in
the thin fìim.

Fig.2.3-2. Free diffusion. ln this case, the concentration at the left
a higher constant value. Diflìsion occurs in the region to the right
Fig.2.2-1 are basic to most diffusion problems.

is suddenly increased to
This case and that in
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We divide by AA: to find

Dc r  (  j t l , + t ,  -  , r r  l .  \
: - l - l

a t  \ ( : + a : ) - : /
We then let A: go to zero and use the definition of the derivative

^  ^ 1
d C r  d ' C t' - D  

:
At  'ò :2

àcr  _ _ à/ r

3 t  3 :
(2.3-4)

Combining this equation with Fick's law, and assuming that the diffusion coefficient is
independent  o l '  concentra l ion.  we get

(2.3-3)

(2.3-s)

(2.3- r 0)

tr'î 'î : "".

'rrom r*'

:IIlr :".

q L  r U  " *

This equation is sometimes called Fick's second law, and it is often referred to as one
example of a "diffusion equation." In this case, it is subject to the following conditions:

/ : 0 ,  a l l  : ,  c l : c r e

/ > 0 .  z : 0 .  c l : c t o

i : @ ,  c l  : c l x

(2.3-6)

(2.3-1)

(2.3-8)

Notethatbothc l6ÀDdct0aretakenasconstants.  Theconcentrat ioncl - isconstantbecause
it is so fàr fiom the interfàce as to be unaffècted by events there; the concentration c1e is
kept constant by adding material at the interface.

2.3.2 Mathematical Solution

The solution of this problem is easiest using the method of "combination of vari-
ables." This method is easy to fbllow, but it must have been difficult to invent. Fourier,
Graham, and Fick failed in the attempt; it required Boltzman's tortured imagination (Boltz-

man,  1894).
The trick to solving this problem is to define a new variable

'/4Dt
( 2.-r-9)

The differential equation can then be w

d t ,  / à ( \  d l , ,  / ; t .  1 :
.  I  l : D , - ; t . ,  It i 1  \ à t  /  d ( -  \ a z l

or
, ,  ,

d ' c  r  d  r : t'  |  1 r  -  n
L t< '  d<

ntten as

nu

'ffius**(2 .3 -  r  l )

In other words, the partial diff'erential equation has been almost magically transformed into
an ordinary differential equation. The magic also works for the boundary conditions; from
F,q.2.3-7,

( : 0 '  c l : c r o (2.3-12)
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nd fiom Eqs. 2.3-6 and 2.3-8,

( : o o ,  c l : c t n (2.3-13)

'\ ith the method of combination of variables, the transformation of the initial and boundary
,nditions is often more critical than the transformation of the differential equation.
The solution is now straightforward. One integration of Eq. 2.3-1 I gives

:ere a is an integration constant. A second integration and use ofthe boundary condition
.  - \

dc:1
-  : a e  \ '

d <

c r  -  c l o
- È r t r

c l c  -  c l u

: ' f  t

) r q
e r f  1 : l :  I  e  " d s

t/Í .lo

A r ,
j ,  : -O'i) : 1/OJ"t, 

: ' l4Dt(crc - cr-)
t 1 1

:.rrticularly useful limit is the flux across the interface at z - 0:

( )  7 -14 \

(2.3- l  s)

(2.3-t6)

(2.3-t7)

- ir is the error function of {. This is the desired concentration profile giving the variation
- rìcentration with position and time.

nrany practical problems, the flux in the slab is ofgreater interest than the concentration
' .: i tself. This flux can again be found by combining Fick's law with Eq. 2.3-15:

. / r l : : o :  f  D l r t ( c 1 1 ' - c r ! )  ( 2 . 3 - 1 8 )

- ' . ' lr is the value at the particular time / and not that averaged over time. This distinction
, -,' ulÌportant in Chapter 13.

- . ::ris point, I have the same pedagogical problem I had in the previous section: I must
'.e vou that the appzrently simple results in Eqs. 2.3-15 and 2.3-18 are valuable.

-'" 
. . , :r ' \ults are exceeded in importance only by Eqs.2.2-9 and 2.2-10. Fortunately, the

î.- - :ìr.rtics may be difficult enough to spark thought and reflection; if not, the examples
r,- .,rrl shcluld do so.

[,r,--nple 2.3-1: Diffusion across an interface The picture of the process in Fig. 2.3-2
nr- - -. ihat the concentration at z : 0 is continuous. This would be true, for example, if
*  " .  - '  ( ) t he rewas  aswo l l en  ge l ,  andwhenz  <  0 the re  was  ah igh l yd i l u te  so lu t i on .

-- : r\ er. a much more common case occurs when there is a gas-liquid interfàce at
- = t lrtlinarily, the gas at ; < 0 will be well mixed. but the liquid will not. How will
î i ::.rce rffect the results given earlier?

Solution Basically, it will have no effect. The only change will be a new boundary

P r o
tl
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where c I is the concentration of solute in the liquid, x I is its mole fraction, p ro is its partial
pressure in the gas phase, H is the solute's Henry's law constant, and c is the total molar
concentration in the liquid.

The difficulties caused by a gas-liquid interface are another result of the plethora of
units in which concentration can be expressed. These diffìculties require concern about
units, but they do not demand new mathematical weapons. The changes required for a
liquid-liquid interface can be similarly subtle.

Example 2.3-2: Free diffusion into a porous slab How would the foregoing results be
changed if the semiinfinite slab was a porous solid? The diffusion in the gas-filled pores is
much faster than in the solid.

Solution This problem involves diffusion in all three directions as the solute
moves through the tortuous pores. The common method of handling this is to define an
effective diffision coefficient D.6 and treat the problem as one-dimensional. The concen-
tration profile is then

l{lllnri;n,.'*

ltb nu"^,
nÌ

urt-

( ' t  -  c to 
" î  

z .- : e
( ' r \ - c r u  " J 4 D , r l

and the interfacial flux is

--*:-
, l r l r :o  :  1 /  D.x lnt (crc -  c1r)

This type of approximation often works well if the distances over which diffusion occurs
are large compared with the size of the pores.

Example 2.3-3: Free diffusion with fast chemical reaction In many problems, the
diffusing solutes react rapidly and reversibly with sunounding material. The surrounding
material is stationary and cannot diffuse. For example, in the dyeing of wool, the dye can
react quickly with the wool as it diffuses into the fiber. How does such a rapid chemical
reaction change the results obtained earlier?

Solution In this case, the chemical reaction can radically change the process
by reducing the apparent diffusion coeflìcient and increasing the interfacial flux of solute.
These radical changes stand in stark contrast to the steady-state result, where the chemical
reaction produces no elTect.

To solve this example, we first recognize that the solute is effectively present in two
forms: (l) free solute that can diffuse and (2) reacted solute fixed at the point of reaction.
If this reaction is reversible and faster than diffusion.

c 2 :  K c t

where c2 is the concentration of the solute that has already reacted, c1 is the concentration
of the unreacted solute that can diffuse, and K is the equilibrium constant of the reaction. If
the reaction is minor, K will be small; as the reaction becomes irreversible, K will become
verv larse.
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With these definitions, we now write a mass balance fbr each solute form. These mass
--,lances should have the form

/ accumulat ion \  /  d i f fus ion in  \  /  amount  oroduced bv \
I  l -  |  |  J  |  

, "  l\  in  AA:  /  \  m inus  tha t  our  )  
'  

\  reac t ion  in  AA:  /
- ,r the diffusing solute, this is

À
-  [AAzcr l  :  A( j t l .  -  , t r  l .+ r . )  +  r lALz
d t

. :irre r; is the rate of production per volume of species I, the diffusing solute. By arguments
- r.rÌogous to Eqs. 2.3-2 to 2.3-5, this becomes

d ( r  r l ' ( ' t

*  : D  u  t i ' t
d I  d 7 '

:r' term on the left-hand side is the accumulation; the first term on the right is the diffusion
" nrinus the diffusion out; the term 11 is the effect of chemical reaction.

\\'hen we write a similar mass balance on the second species, we find

À
- [AAec2 ]  :  - r rALz
o t

ocz

A t

'1 -' do not get a diffusion term because the reacted solute cannot diffuse. We get a reaction
:::l that has a different sign but the same magnitude, because any solute that disappears
-. 'pecies I reappears as species 2.

To solve these questions, we first add them to eliminate the reaction term:

ò  à2c ,
I t  '  - l -  r ' r )  :  D-

d t  d z '

,r i now use the fàct that the chemical reaction is at equilibrium:

3 iJ  lc ,
- ( t r i K c l l : D -
dt dz.'

dc t  D  ò2 ,  t
A r  l f K  0 : 2

.:.ri\ result is subject to the same initial and boundary conditions as before in Eqs. 2.3-6,
- -ì-7. and 2.3-8. As a result, the only difference between this example and the earlier
:oblem is that D/(1 f K) replaces D.

This is intriguing. The chemical reaction has left the mathematical form of the answer
-:r;hanged, but it has altered the diffusion coefficient. The concentration profile now is

c t  - c t o  
_ - . , -  z

( r \ - ( r o  - ' J q ù i + - R Í l l
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and the interfacial flux is

, / r l : : o :  V 6 i  r  K l l " t ( (  r o  -  (  r à )

The flux has been increased by the chemical reaction.
These effects of chemical reaction can easily be several orders of magnitude. As

will be detailed in Chaprer 5, diffusion coeffìcients tend to fall in fairly narrow ranges.

Those coefficients for gases are around 0.3 cm2/sec; those in ordinary liquids cluster about

l0-5cm2/sec. Deviationsfromthesevaluesofmorethananorderofmagnitudeareunusual.
However, differences in the equilibrium constant K of a million or more occur frequently.

Thus a fast chemical reaction can tremendously influence the unsteady diffusion process.

Example 2.3-4: Determining diffusion coefficients from free diffusion experiments

Diffusion into a semiinfinite slab is the geometry used for the most accurate measurement

of diffusion coefficients. These most accurate measurements determine the concentration

profile by interferometry. One relatively simple method, the Rayleigh interferometer, uses

a rectangular cell in which there is an initial step function in refractive index (Dunlop

et al. 1912). The decay of this refiactive index profile is followed by shining collinated

light through the cell to give interference fringes. These fringes record the refractive index

versus camera posi t ion and t ime.
Find equations that allow this information to be used to calculate diffusion coefficients.

Solution The concentration profìles established in the diffision cell closely ap-

proach the profiles calculated earlier for a semiinfinite slab. The cell now effectively contains

two semiinfinite slabs joined together at z : 0. The concentration profile is unaltered from

Eq.2.3-15

c t - c l g  -  7 ,
: e f l  , -

c t x  -  c t o  
" / 4D t

wherecle[ :  (cr -*cr- - ) /2 ]  is theaverageconcentrat ionbetweenthetwoendsof thecel l .
How accurate this equation is depends on how exactly the initial change in concentration

can be realízed in practice this change can routinely be within 10 seconds of a true step

function.
We must convert the concentration and cell position into the experimental measured

refractive index and camera position. The refractive index n is linearly proportional to the

concentratron:

p : 4 . o 1 u " n , f / r r . 1

where nro1u.n1 is the refractive index of the solvent. Each position in the camera is propor-

tional to a position in the diffusion cell:

Z : a z ,

where a is the magnification of the apparatus. It is experimentally convenient not to measure

the position of one fiinge but rather to measure the intensity minima of many fringes. These

minima occur when

n - n o  l
t t x - t t o  J 1 2

Threr  t

iffi*r;
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\\'here r?{ and r?0 are the refiactive indices at z - oo and z - 0, respectively; ./ is the total
number of interference fringes, and j is an integer called the fringe number. This number
r\ most conveniently defìned as zero at í - 0, the center of the cell. Combining these
iquations,

j  , "  z i
é r l  -

J 12 
' "  

uJ4a

.there Zlis the intensity minimum associated with the 7th ti inge. Because a and t are
-'\perimentally accessible, measurements of 210. "/) can be used to find the diffusion
- Lrefficient D. While the accuracy of interferometric experiments like this remains unrivaled,
ic use ofthese methods has declined because they are tedious.

2.4 Three Other Examples

The two previous sections describe difTusion across thin films and in semiinfinite
..lbs. In this section, we turn to discussing mathematical variations of diffusion problems.
. his mathematical emphasis changes both the pace and the tone of this book. Up to now,
. e have consistently stressed the physical origins of the problems, constantly harping on
-itural effects like changing liquid to gas or replacing a homogeneous fluid wìth a porous

. 'lid. Now we shift to the more common textbook composition, a sequence of equations

. ,metimes as jarring as a twelve-tone concerto.
In these examples, we have three principal goals:

( I ) We want to show how the diff-erential equations describing diffusion are derived.
(2) We want to examine the effects of spherical and cylindrical geometries.
(3) We want to supply a mathematical primer for solving these different diffusion

equations.

:: all three examples, we continue to assume dilute solutions. The three problems examined
'.j\t are physically important and will be referred to again in this book. However, they are
-rroduced largely to achieve these mathematical goals.

\

2.4.1 Decay of a Pulse (Inplace Transforms)

As a first example, we consider the diffusion away from a sharp pulse of solute
rc that shown in Fig.2.4-l. The initially sharp concentration gradient relaxes by diffusion
:r the z direction into the smooth curves shown (Crank, 1975). We want to calculate the
. rape of these curves. This calculation illustrates the development of a differential equation
.-:rii its solution using Laplace transforms.

As usual, our first step is to make a mass balance on the differential volume AAz as
-  1r lwn:

/  so lute \

l"::r'f:"',)
/  solute \  /  solute \

:  I  ai t fusion inro |  
-  

|  a ir iusion out of I  Q.4-t l

\  th is volume /  \  this volume /
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Oî l t ,

rb le  cond

I

. - . l : L ' g f J I I '

.  . ' ,  e  t h r -

Fig. 2.4- l. Diffusion of a pulse. The concentrated solute originally located at z : 0 diffuses as

theGaussianprof i leshown. This isthethi rdof  thethreemost importantcases,alongwiththose

in Figs.  2.2- l  and2.3-2.

In mathematical terms, this is

a
; l A A : r ' 1  l :  A i r l .  -  A . l r  l ,  r  r .
d t

Dividing by the volume and taking the limit as Au goes to zero gives

3r'r }jt

àt ò2.

Combining this relation with Fick's law of diffusion,

t )  L - ) \

r )  4 - 7 t

(2.4-4)

(2.4-6)

(2.4-1)

lfilL : -

tLa t ''

0c '  à2c ,' - D  
. '

At à z.'

This is the same different equation basic to the free diffusion considered in the previous

section. The boundary con<litions on this equation are as follows' First, far from the pulse,

the solute concentration is zero:

/  > 0.  :  :  oQ, cr  :0  Q'4-5)

Second. because diffusion occurs at the same speed in both directions, the pulse in sym-

metric:

r > 0 ,  ' : 0 ,
d c t - o
o z

This is equivalent to saying that at z : 0, the flux has the same magnitude in the positive

and negative directions.
The initial condition for the pulse is more interesting

l o c a t e d a t z : 0 :

in that all the solute is initially

M
/  :  0 ,  c r  :  - ó ( : )

where A is still the cross-sectional area over which diffusion is occurring, M is the total

amount of solute in the system, and 6(z) is the Dirac function. This can be shown to be a

F@ut
*ttrr

ile*-

Posi î ion z
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.li tìuses as
:  u i th those

r 1 4 ) t

(2 .4 -3)

| 2.4_4)

previous
hr' pulse,

r l .4-5)

in sym-

t2 .4-6)

ìi positive

. init ially

\ 2 .4 -7 )

. rhe total
' , n t o b e a

:  'Tltrer 
Otl ter Erttrt t l t le.s

3 l

,rronabl€ condition b1, a mass balance:

/ -  f ' M

. /  .  
t ,  A t t : : . /  

,  i u , . t A d z :  
M

this integration, we should remember that ó(z) has dimensions of (length)-r.

,,ll 
rotur this problem, we fìrsr take rhe t-uptu." rransfbrm of Eq. z.+r+with respect ro

. . " 0
' t t ' t  - . ! . t ( t ' _  0 ,  -  o ?

a7 '  
Q '4 -g \

':e re c-1 is the transformed concentration. The boundary conditions are

(2.4-8)

(2.4_10)

(2.4_r1)

the second is routine.

(2 .4 - t2 )

Using Eq. 2.4-10,

(2.4-13)

(2 .4 -11)

z  - ( ' l
d | t  _  _M/A
dz  2D

a  :  oc ,  f ' t  : 0

- 
;' first of these reflects the properties of the Dirac function, bul' -.ration 2.4-9 can then easily by integrated to give

cr  :  aey 's lDz r  be- /4 nz

-:re a and ó are integration constants. Clearly, a is zero by Et1.2.4_11.
: fìnd à and hence lr:

M / E  T ,: 
';; 

yro-1tr- 1/ s / Dz.

Laplace transform of this function gives

_  M / A , - z 2 1 4 1 n t

lq; Dt-

c l

- 
.: inversc

l:ch is a Gaussian curve. You may wish to integrate the concentration over the entire.rcm to check that the total solute presentis M.
This solution can be used to solve many unsteady diffusion problems that have unusual' ral conditions (crank, l9?5). More important, it is often ur.à to corelate the dispersion' rollutants, especially in the air, as discussed in Chapter 4.

2'4'2 steady Dissorution of a sphere (sphericat coordinates)
our second example, which is easier mathematicary, is the steady dissorution of':herical particle, as shown inFig.2.4-2. The sphere is of a sparingly sorubre materiar,hat the sphere's size does not change much. However, this materiar quickly dissorves in': rulroul.ìding solvent' so that solute's concentration at the sphere's surfàce is saturated.r"ause the sphere is immersed in a very large fluid volume, ,l..on."nirltion far from the-:r-re ls zero.

The goal is to find both the dissolution rate and the concentration profile around the-rere' Again, the fìrst step is a mass barance. In contrast with the pi.urou, exampres,' nlass balance is most conveniently made in spherical coordinates o'rigrnating from the
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Dis tonce f rom
sDhere  s  cen ie r

Fig.2.4-2.steadydissolut ionof asphere. Thisproblemrepresentsanextensionof dif fusion

thJory to a spherically symmetric siìuation. In actual physical situations, this dissolution can be

complicated by fiee convection caused by diffision (see Chapter 
'12)

center of the sphere. Then we can make a mass balance on a spherical shell of thickness ar

located at some arbitrary clistance r from the sphere. This spherical shell is like the rubber

of a balloon of surface area 4T rz and thickness Ar'

A mass balance on this shell has the same general fbrm as those used earlier:

/ solute accumulation \
\ within the shell )

In mathematical terms, this is

a "
fi6rrt 

tru) : o : (4trr2 i;, - (4trr2 i),*6,

The accumulation on the left-hand side of this mass balance is zero' because diffusion is

steady, not varying with time. Novices frequently make a serious efror at this point by

;";""li"g the ,i oit of both terms on the righlhand side. This is wrong. The term r2;1 is

evaluatecl at r in the first term; that is,-it is r21;r l,). The term is evaluated at (r + Ar) in

the second tem; so it equals (r * Lr)'( ir l '+a').

If we divide both sides of this equation by the spherical shell's volume and take the Imit

as Ar '+ 0. we find

t d
0 : - , ; ( r ' j 1 )

r a r

S o l u t e  f l u x
owoy

This basic differe

r : R o .

the sphere werr

rhanged, but t l

E q . 2 . 4 - l 8  f  i e l

d c t

dr
'  - ' :e a is an inte

c 1  : f i -

.  : t h e t $ o L ' .

\ t  -  r

_ (  d i f r u s i o n  \ _ l  a i [ 1 s i o 1  . , )  \ 2 . 4 - t 5 )-  
\  i n to  t he  she l l /  \ ou t  o l  t he  she l l  /

t2.4-17)

Combinins this with Fick's law and assuming that the diffusion coefficient is constant'

\2 .4- r6)

(2.4-18)D  d  . d c t
o -  - - y ' -"  

1 2  d r 2  d r
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This basic differential equation is subject to two boundary conditions:

r : Ro, ct : ct (sat)

r : @ ,  c t : 0

(2.4-19)

( )  4 - ) O \

( )  4 - ) 1 1

( )  4 - )4 \

t )  4 - ) 5 \

(2.4-26)

- l  \  1On

,n can be

,  \neSS Ar

.:re rubber

r.-1- l5)

l . :1- I 6)

, :  : ius ion is
. point by

r : l l l  r lJr t  is
- -1,r) rn

. . r  the l imi t

t  ) . 1 -17 )

l i  \ tant ,

r l . ; 1 -18 )

If the sphere were dissolving in a partially saturated solution, this second condition would
be changed, but the basic mathematical structure would remain unaltered. One integration
of Eq. 2.4- 18 yields

dct  a

dr  12

where a is an integration constant.

( )  4 - ) 1 t

A second integration gives

( )  4 i ) \
r

Use of the two boundary conditions gives the concentration profile

.  . R 0
c l  :  t l ( s a t )  -

r

The dissolution flux can then be found from Fick's law:

dc,  D R, ,
j r : _ D ,  : _ j r . 1 ( s a t )

a r

which, at the sphere's surface, is

D
l r  :  - c r ( s a l )

R6

ifthe sphere is twice as large, the dissolution rate per unit area is only halfas large, though
the total dissolution rate over the entire surface is doubled.

This examples forms the basis for such varied phenomena as the growth of fog droplets
.rnd the dissolution of drugs. It is included here to illustrate the derivation and solution
rf differential equations describing diffusion in spherical coordinate systems. Different
.oordinate systems are also basic to the final example in this section.

2.4.3 Unsteady Diffusinn Into Cylinders (Cylindrical Coordinates and
S ep aratio n of Variable s )

The final example, probably the hardest of the three, concerns the diffusion of a
.olute into the cylinder shown in Fig.2.4-3. The cylinder init ially contains no solute. At
:me zero, it is suddenly immersed in a well-stirred solution that is of such enormous volume
iet its solute concentration is constant. The solute diffuses into the cylinder symmetrically.
ri-oblems like this are important in the chemical treatment of wood.

We want to find the solute's concentration in this cylinder as a function of time and
Jation. As in the previous examples, the first step is a mass balance; in contrast, this mass
.,ìance is made on a cylindrical shell located at r, of area 2r Lr, and of volume 2n Lr Lr.

-re 
basic balance

.o lute accumulat ion \  _
n th is  cy l indr ica l  shel l  /

/ solute diffusion \- 
\ out of the shell /

/ solute diffusion \
\ into the shell /
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( c  )
z

tr
É.
F
z
trj

z
o

F ig .2 .4 -3 .Wa te rp roo f ì nga fencepos t .Th i sp rob lem ismode ledasd i f f us i on inan in f i n i t e
.yiin.l.r, and so represents an extenslon to a cylindrically symmetrìc situation. In reality, the

ends ofthe post must be considered, especially because diffusion with the grain is faster than

across the grain.

becomes in mathematical terms

LPrrLLrc, l  :  (2 t rL j ) ,  -  (2rrL11) , ' ,6 ,  Q'4-27)
d t

we can now divide by the shell's volume and take the limit as ̂ r becomes small:

a  l a
'ò t " :  - i  

u ' l '
combining this expression with Fick's law gives the required differential equation

à c t  _ D _ r , . d !
'ò t  r  òr  òr

which is subject to the fbllowing conditions:

1 < 0 ,  a l l r ,  c t : 0

/ > 0, r : Ro, ct : ct (surface)

Ac
r : 0 ,  = l : oo r

t )  4 - ) ? \

(2.4-2e)

r  )  4-30ì

(2.4-3r)

t )  l - 7 ) \

POSI f  toN
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t ) .4 -29)

(1.4-30)

\2.4-31)

t2.4-32)

- : / Three Other Examples

-. lhese equations, c1(surface) is the concentration at the cylinder's surface and Rs is the
-. :nder's radius. The fìrst of the boundary conditions results from the large volume of
-l\)unding solution, and the second reflects the symmetry of the concentration profiles.

Problems like this are often algebraically simplified if they are written in terms of di-
- :rrionlesq variables. This is standard practice in many advanced textbooks. I ofien find
- ' procedure confusing, because for me it produces only a small gain in algebra at the

-  r3nseofa largelossinphysical ins ight .  Nonetheless,weshal l fo l lowthisprocedurehere
lustrate the simplification possible. we first define three new variables:

d imens ion lessconcen t ra t i on ' . 0  : l  -  
( ' l

c I (surface)

dimensionless position : f :

d imens ion less t ime :z :

liflerential equation and boundary conditions now become

(2.4-36)

4 l

r

&

(2.4-33)

(2.4-34)

(2.4-3s)
Dt.-..-
Ré

a 0  _ l  a  , l ) e
ò ' - 4 a f t a 6

r : 0 ,  a l l { .  0 : l
r > 0 ,  f  : 1 ,  0 : 0

'Àe
È : 0 .  : "  -  g

o E

(2.4-37)

(2.4-38)

(2.4-39)

r'novice, this manipulation can be more troublesome than it looks.
'olve these equations, we first assume that the solution is the product of two functions,
: time and one of radius:

p ( r , € ) :  
S i : t ) J ( € ) (2.4-40)

Eqs. 2.4-36 and2.4-40 are combined, the resulting tangle of terms can be separated
.ron wi th SG) f ' (€ ' ) :

î , - . d R ( r )  K { t t  d  . d f ( E t
J ' 5 t - ,  :  - . . q  

.  
-

d r  € d q  d €

t  ds ( r ) 1  d  
"d f  

( t )

€. f  G) d€'  d€e ( r )  d r

: rrne fìxes f and changes ,, ./(6) remains constant but g(z) varies. As a result.

I  dg ( t )  )
( ( r )  d t

(2.4-4t)

t )  4 - 4 )  \

(2.4-43)

i\ a constant. Similarly, if we hold z constant and let f change, we realize

1  n  , l f t t \,  u  
F u . ,  

r s  /  
2-  - ,

- ' r  (€ )  r iq '  r /6
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Thus the partial differential equation 2.4-36 has been converted into two ordinary differential

equations 2.4-42 and 2.4-43.
The solution of the time-dependent part of this result is easy:

(2.4-44)

where a'is an integration constant. The solution for /(6) is more complicated, but straight-

forward:

J G) :  a lo@t)  - r  bYo@O (2 '4-45)

where -/s and Is are Bessel functions and a and b are two more constants. From F,q.2.4-39

we see thaf b :0. From Eq. 2.4-38. we see that

0 :  a l o @ ) (2.4-46)

Because d cannot be zero, we recognize that there must be an entire family of solutions for

which

Je(a , )  :  Q (2.4-41)

The most general solution must be the sum of all solutions of this form found for different

integral values of n:

Ét  r .  È )  :  f  ( .1 , r ' . ) ,  Js1a, ,€, \e ' l ' '
1 - "
n : l

We now use the initial conditionF,q.2.4-37 to find the remaining integration constant (aa'),,'.

ú..
.llllll",,

ù :

We multiply both sides of this equation by f Je(cv,,f ) and integrate from f :0 to t : 1 to

flnd (aa'\. The total result is then

o : i I  t  l r n . , - .É )e -o , , 't -  La , , J1 (a , , )  ]

or, in terms of our original variables,

ll,llf."! f

(2.4-48)

(2.4-4e)

(2.4-50)

(2.4-5r)

t-f !;

Jll ill r

- I

[" -

Aú,i nirrrl

ù u - u  I

_  |  _ ) {  e - D o Î t l R i h @ , l l n o )
(  t (sur face)  

-  
, t - ,  u , ,J1(u , , t ' f  R11 l

@ h '  - ' -

i[],--. --

mtul-

1lîr' i'This is the desired result, though the cy, must still be founcl from 8q.2.4-41 .

This problem clearly involves a lot of work. The serious reader should certainly work

one more problem of this type to get a feel for the idea of separation of variables and for the

practice of evaluating integration constants. Even the serious reader probably will embrace

the ways of avoiding this work described in the next chapter. rem-i :
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Fig. 2.5- l. Steady diflision in a moving lìlm. This case is mathematically the same as diffusion
across a stagnant 1ìlm, shown in Fig. 2.2-1. It is basic to the film theory of mass tlanstèr
ciescribed in Section I l. L

2.5 Convection and Dilute Diffusion

In many practicaì problems, both diffusion and convective flow occur. In some
-- . . .specia l ly in f -astmasstransfer inconcentratedsolut ions, thedi f fus ioni tse l fcausesthe
- :,tion. This type of mass transfer, the subject of Chapter 3, requires more complicated
r'- -.rl and mathematical analyses.

:'re is another group of important problems in which diffusion and convection can be
: '. :rsily handled. These problems arise when diffusion and convection occur normal to
: ". 

- ther. In other words, diffusion occurs in one direction, and convective flow occurs in
. -':-:c'ndicular direction. Two of these problems are examined in this section. The first,

- ..-:f)n across a thin fowing f1m, parallels Section 2.2;the second, diffusion into a l iquid
' .\ a less obvious analogue to Section 2.3. These two examples tend to bracket the

- . :,. e d experimental behavior, and they are basic to theories relating diffusion and mass
:- .::r coefficients (see Chapter I 3).

2.5.1 Steady Diffusion Across a Falling Film

The first of the problems of concern here, sketched in Fig. 2.5- 1 , involves diffusion
- .- a thin, moving liquid film. The concentrations on both sides of this film are fixed by
, ::.rchemical reactions, but the fìlm itself is moving steadily. I have chosen this example
' îr'ccuSe it occurs ofien but because it is simple. I hope that readers oriented toward the
-:Lial will wait for later examples for results of greater applicability.
. , solve this problem, we make three key assumptions:

. r The liquid solution is dilute. This assumption is the axiom for this entire chapter.
I r The liquid is the only resistance to mass transfer. This implies that the electrode

reactions are fast.
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(3) Mass transport is by diffusion in the z direction and by convection in the x direction'

Transport by the other mechanisms is negligible.

It is the last of these assumptions that is most critical. It implies that convection is negligible

in the z direction. ln fact, diffusion in the z direction automatically generates convection

in this direction. but this convection is small in a dilute solution. The last assumption also

suggests that there is no difTusion in the x direction. There may be such diffusion, but it is

assumed much slower and hence much less important in the x direction fhan convectton.

This problem can be solved by writing a mass balance on the differential volume

W Lx Lz, where W is the width of the liquid film, normal to the plane of the paper:

/  so lute accumulat ion \  -  /  so lute d i f fus ing in  at  z  minus \
\  in  WA,r 'A. :  i  

-  
\  so lute d i f fus ing out  at  .  r  Lz.  )

, / solute flowing in at x minus \
r 

\ sof ute flowing out at r + Lr )
(2 .s-  1)

r ?  5 - 3 1

(2.s-4)

r ?  5 - 5 ì

(2.s-6)

(2.s-7)

(2.s-8)

*  [ (cru. ,  W Az)- .  -  (cr  u. ,  WAz), .+ l ' l (2.s-2)

The term on the left-hand side is zero because of the steady state. The second term in square

brackets on the right-hand side is also zero, because neither cl nor ur changes with x. The

concentration c1 <loes not change with x because the fìlm is long, and there is nothing that

will cause the concentration to change in the x direction. The velocity u., certainly varies

with how far we are across the film (i.e., with z), but it does not vary with how far we are

along the fi lm (i.e., with -r).
After dividing by lVA,rA: and taking the limit as this volume goes to zero, the mass

balance in Eq. 2.5-2 becomes

or, in mathematical terms,

(l

^  ( c r l { A r A : ) :  [ ( l r W L x ) .  -  ( 7 1 W A r ) . * o . l
( t t

. I :

^  u J 1

47.

This can be combined with Fick's law to give

r )
O - C l

0 -  D
, 1a 7.-

This equation is subject to the boundary conditions

z : 0 ,  ( ' r : c l o

z :  I ,  c r  :  c l t

When these results are combined with Fick's law, we have exactly the same problem as that

in Section 2.2. The answers are

c l  : t ' l n t t C t i - { l g l 7

D
j r : - ( . c n - c t t )

I

The flow has no effèct. Indeed, the answer is the same as if the fluid was not flowing. lb uaunl,:
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L i q  u  i d
so l  ven  t

S o l u  î e  g o s

L i q u i d  w i t h
d  i  s s o l v e d
s o l u l e  g o s

F ig .2 .5 -2 .  uns teady-s ta ted i f fus ion in toa fa l r ing f ì rm.  Th isana lys is tu rnsout tobe
mathematically equivalent to fiee diflusion lsee Fig. 2.3-2). rtis basic to the penetratron theoryof mass transfèr described in Section I 1.2.

.fhisansweristypical 
ofmanyproblemsinvolvingdiffusionandflow. Whenthesolut ions

lilute' the diffusion and convection often are perpendicular to each other and the solution
":aightfbrward. You may armost feer gyppediyou girded yourserf tbr a diffìcurt probrem- iound an easy one. Rest assured that more diflìcutt problems follow.

2.5.2 Diffusion Into a Falling Fitm

The second problem of interest is iilustrated schematicaily in Fig. 2.5-2 (Bird,' 'irr' and Lightfoot, r 960). A thin liquid film flows slowly and wirhour ripptes down a'urlàce. one side of this firm wets the surfàce; the other side is in contact with a gas,'h is sparingly solubre in the l iquid. we want to find out how much gas crissorves in theJ
' ' solve this problem, we again go through the increasingry familiar ritany; we write a" balance as a differential equation, combine this with Fick's law, and then integrate'r fìnd the desired resurt. we do this subject to four key assumptions:

. r The solution are always dilute.
I Mass transport is by 3 diffusion anc.l r convection.

Con vec l  i  on
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(3)  The gas is  Pure.
(4) The contact between gas and liquid is short'

The fìrst two assumptìons are identical with those given in the earlier example' The third

means that there ls no resistance to diffusion in the gas phase, only in the liquid. The final

assumption simplif ies the analysis.

we now make a mass balance on the differential volume IV in width, shown in the inset

in  F is .  2.5-2:

/ mass accumulation \
\  w i t h i n  WAxA:  I

This result is parallel to those found in earlier sections:

/ mass <liffusing in at z minus \: 
\ r-t-tuts diffusing out at ̂ z + Lz. )

_ / mass flowing in at x minus 
) tr., , l- 

\ mass flowing out at x -l Lx /

rs again reflects the
.ult, the solute can di
the exact location o
Ì be infinitely far au
lhis problem is desc
..rsion in a semiinfìn
, t. Because the ml

p  l e i s

t t  
: l -

c1 (sat)

c flux at the inte:

: Y D

,rre the answef\ '

-r answers apPi
l .  Those studr :
J think about :
i mass transfe:
now consider

-" 
.tetnative vier'

balance. ln t
. ,h ich l iqu id
:. -state differ

,ng with the
. equation l i
. .r er is that t
- nethod use
, : .cr ibed a:
': of watchi
- : idge.  ue

3. \\ 'e rea

\ Fina

. .rnd :l
'  ,,nd tl l

:3  l l lS :
- '  T h r
- . : : e re
:  ì - - J i

.  -  ' : : ì '

:  [ (WAjr / r ) :  -  ( IVA/r) .+r . ]

*  [ ( l4zAzcru ' ) '  -  (W Lzctu. ) , .+1. , ]

when the system rs at steady state, the accumulation is zero. Therefore, the left-hand side

of the equaiion is zero. No otherterms are zero, because 71 and c1 vary with both z andx'

tf we divide by the volume lv ax az and take the limit as this volume goes to zero, we find

, l

o l 1  o
0 : - ; .  -  ^  ( l u i

dz. dx

We now make two further manipulations; we combine this with Fick's law and set u' equal

to its maximum vaìue, a consùnt. This second change reflects the assumption of short

contact times. At such times, the solute barely has a chance to cross the interface' and ìt

diffuses only slightly into the fluid. In this interfacial region' the fluid velocity reaches the

maximum suggested in Fig. 2.5-2, so the use of a constant value is probably not a serious

assumption. Thus the mass balance is

,òct 
: DA:r-:

0 (.r/u-"*) dz'

The left-hand side of this equation represents the solute flow out minus that in; the right-hand

side is the diffusion in minus the diffusion out'

This mass balance is subject to the following conditions:

(2.5- l3r

(2.5- l4r

- - t  ' ' - ( t  ( 2 ' 5 - 1 5
(  I  

-  \ ' ,

where c1(sat) is the concentration of dissolved gas in equilibrium with the gas itself, and /

is the thickness of the falling film in Fig. 2.5-2. The last of these three boundary conditions

is replaced with

x > 0 .  z : o o ,  c l : 0 (2.5-t6

l à  |
|  - t c 1 a , l  l : l v )  I
t d t  ì

(2 .s-  l0)

(2.5- r r )

(2.5-12l

. r  : 0 .  a l l : ,  . r  : 0

r > 0 .  z : 0 ,  c r : c t ( s a t )
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This again reflects the assumption that the film is exposed only a very short time. As a
:esult, the solute can diffuse only a short way into the film. Its diffusion is then unaffected
îy the exact location of the other wall, which, from the standpoint of diffusion, might as
n ell be infinitely far away.

This problem is described by the same differential equation and boundary conditions as
Jiffusion in a semiinfinite slab. The sole difference is that the quantity x /u^u"replaces the
lime /' Because the mathematics is the same, the solution is the same. The concentration
profile is

c t  
:  l - e r f - è

c1 (sat  )  J4Dx f  u^r^

. rnd the f lux at  the in ter lace is

. t r  l .  -o  :  V 'Dr^^J," -cr(sat)

(2.s-11)

(2.5-  l8)
These are the answers to this problem.

These answers appear abruptly because we can adopt the mathematical results of Sec-
rion 2'2. Those studying this material for the first time often find this abruptness jarring.
Stop and think about this problem. It is an important problem, basic to the penetration
theory of mass transfer discussed in Section 13.2. To supply a forum for further discussion,
rve shall now consider this problem from another viewpoint.

The alternative viewpoint involves changing the differential volume on which we make
the mass balance. In the foregoing problem, we chose a volume fixed in space, a volume
rhrough which liquid was flowing. This volume accumulated no solute, so its use led
to a steady-state differential equation. Alternatively, we can choose a differential volume
f loat ingalongwi ththef lu idataspeedu-"* .  Theuseof th isvolumeleadstoanunsteady-state
differential equarion like Eq. 2.3-5. Which viewpoint is conect?

The answer is that both are correct; both eventually lead to the same answer. The fixed-
coordinate method used earlier is often dignified as "Eulerian," and the movrng-coordinate
plcture is described as "Langrangian." The difference between them can be illustratecl by
the situation of watching fish swimming upstream in a fast-flowing river. If we watch the
tìsh from a bridge, we may see only slow movement, but if we watch the fish from a freelv
floating canoe, we realize that the fìsh are moving rapidly.

2.6 A Final Perspective

This chapter is very important, a keystone of this book. It introduces Fick's law for
dilute solutions and shows how this law can be combined with mass balances to calculate
concentratlons and fluxes. The mass balances are made on thin shells. When these shells
are very thin, the mass balances become the ditferential equations necessary to solve the
Various problems. Thus the bricks from which this chapter is built are largely mathematical:
shell balances, diffèrential equations, and integrations in different coord-inate systems.

However, we must also see a different and broader blueprint based on physics, not
mathematics. This blueprint includes the two limiting cases of'diffusion across a thin fìlm
and diffision in a semiinfinite slab. Most diffusion problems fall between these two limits.
The first, the thin fìlm, is a steady-state problem, mathematically easy and sometimes
physically subtle. The second, the unsteady-state problem of the thick slab, is a little harder
to calculate mathematically, and it is the limit at short times.
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In many cases, we can use a simple criterion to decide which of the two central limits is
more closely approached. This criterion hinges on the magnitude of the Fourier number

(length)2

/ diffusion \
I  

-  
; .  . -  .  l l t ime )\ coelnclent /

This variable is the argument of the error function of the semiinfinite slab, it determines
the standard deviation of the decaying pulse, and it is central to the time dependence of
diffusion into the cylinder. In other words, it is a key to all the foregoing unsteady-state
problems. Indeed, it can be easily isolated by dimensional analysis.

This variable can be used to estimate where limiting case is more relevant. If it is much
larger than unity, we can assume a semiinfinite slab. If it is much less than unity, we
should expect a steady state or an equilibrium. If it is approximately unity, we may be
forced to make a fancier analysis. For example, imagine that we are testing a membrane
for an industrial separation. The membrane is 0.01 centimeters thick, and the diffusion
coefficient in it is l0 7cm2/sec. If our experiments take only 10 seconds, we have an
unsteady-state problem like the semiinfinite slab; it they take three hours we approach a
steady-state situation.

In unsteady-state problems, this same variable may also be used to estimate how far or
how long mass transfer has occurred. Basically, the process is significantly advanced when
this variable equals unity. For example, imagine that we want to guess how far gasoline
has evaporated into the stagnant air in a glass-fiber filter. The evaporation has been going
on about 10 minutes, and the diffusion coefficient is about 0. lcm2/sec. Thus

( length )2 -  l ;  l eng th :  8cm
(0.I cm2/sec)(600 sec)

Alternatively, suppose we find that hydrogen has penetrated about 0. 1 centimeter into nickel
Because the diffusion coefficient in this case is about l0-8 cm2lsec. we can estimate hou
long this process has been going on:

( 1 0 - 1 c m 2 )

(10-8 cmzlsec)(time)
:  l :  t i m e  :  l O d a y s

This sort ofheuristic argument is often successful.
A second important perspective between these two limiting cases results from compering

their interfacial f luxes given in Eqs. 2.2-10 and 2.3-18:

D
jr : 

7 
tcr (rhin fitm)

i, : f D 1nt Lc1 (rhick slab)

Although the quantities Dll and (Dlrt;l/2 vary differently with diffusion coefficients.
they both have dimensions of velocity; in f'act, in the lifè sciences, they sometimes are
called "the velocity of diffusion." In later chapters, we shall discover that these quantities
are equivalent to the mass transfer coefficients used at the beginning ofthis book.
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