CHAPTER 2

Diffusion in Dilute Solutions

In this chapter, we consider the basic law that underlies diffusion and its application
to several simple examples. The examples that will be given are restricted to dilute solutions.
Results for concentrated solutions are deferred until Chapter 3.

This focus on the special case of dilute solutions may seem strange. Surely, it would seem
more sensible to treat the general case of all solutions and then see mathematically what the
dilute-solution limit is like. Most books use this approach. Indeed, because concentrated
solutions are complex, these books often describe heat transfer or fluid mechanics first and
then teach diffusion by analogy. The complexity of concentrated diffusion then becomes a
mathematical cancer grafted onto equations of energy and momentum.

I have rejected this approach for two reasons. First, the most common diffusion problems
do take place in dilute solutions. For example, diffusion in living tissue almost always in-
volves the transport of small amounts of solutes like salts, antibodies, enzymes, or steroids.
Thus many who are interested in diffusion need not worry about the complexities of con-
centrated solutions; they can work effectively and contentedly with the simpler concepts in
this chapter.

Second and more important, diffusion in dilute solutions is easier to understand in phys-
ical terms. A diffusion flux is the rate per unit area at which mass moves. A concentration
profile is simply the variation of the concentration versus time and position. These ideas
are much more easily grasped than concepts like momentum flux, which is the momentum
per area per time. This seems particularly true for those whose backgrounds are not in engi-
neering, those who need to know about diffusion but not about other transport phenomena.

This emphasis on dilute solutions is found in the historical development of the basic laws
involved, as described in Section 2.1. Sections 2.2 and 2.3 of this chapter focus on two simple
cases of diffusion: steady-state diffusion across a thin film and unsteady-state diffusion into
an infinite slab. This focus is a logical choice because these two cases are so common. For
example, diffusion across thin films is basic to membrane transport, and diffusion in slabs
is important in the strength of welds and in the decay of teeth. These two cases are the two
extremes in nature, and they bracket the behavior observed experimentally. In Sections 2.4
and 2.5, these ideas are extended to other examples that demonstrate mathematical ideas
useful for other situations.

2.1 Pioneers in Diffusion
2.1.1 Thomas Graham

Our modern ideas on diffusion are largely due to two men, Thomas Graham and
Adolf Fick. Graham was the elder. Born on December 20, 1805, Graham was the son of
+ successful manufacturer. At 13 years of age he entered the University of Glasgow with
‘he intention of becoming a minister, and there his interest in science was stimulated by
Thomas Thomson.
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Fig. 2.1-1. Graham’s diffusion tube for gases. This apparatus was used in the best early study of
diffusion. As a gas like hydrogen diffuses out through the plug, the tube is lowered to ensure
that there will be no pressure difference.

Graham’s research on the diffusion of gases, largely conducted during the years 1828 to
1833, depended strongly on the apparatus shown in Fig. 2.1-1 (Graham, 1829, 1833). This
apparatus, a “diffusion tube,” consists of a straight glass tube, one end of which is closed
with a dense stucco plug. The tube is filled with hydrogen, and the end is sealed with water,
as shown. Hydrogen diffuses through the plug and out of the tube, while air diffuses back
through the plug and into the tube.

Because the diffusion of hydrogen is faster than the diffusion of air, the water level in this
tube will rise during the process. Graham saw that this change in water level would lead to
a pressure gradient that in turn would alter the diffusion. To avoid this pressure gradient, he
continually lowered the tube so that the water leve] stayed constant. His experimental results
then consisted of a volume-change characteristic of each gas originally held in the tube.
Because this volume change was characteristic of diffusion, “the diffusion or spontaneous
intermixture of two gases in contact is effected by an interchange of position of infinitely
minute volumes, being, in the case of each gas, inversely proportional to the square root of
the density of the gas” (Graham, 1833, p. 222). Graham’s original experiment was unusual
because the diffusion took place at constant pressure, not at constant volume (Mason, 1970).

Graham also performed important experiments on liquid diffusion using the equipment
shown in Fig. 2.1-2 (Graham, 1850); in these experiments, he worked with dilute solutions.
In one series of experiments, he connected two bottles that contained solutions at different
concentrations; he waited several days and then separated the bottles and analyzed their
contents. In another series of experiments, he placed a small bottle containing a solution of
known concentration in a larger jar containing only water. After waiting several days, he
removed the bottle and analyzed its contents.

Graham's results were simple and definitive. He showed that diffusion in liquids was at
Jeast several thousand times slower than diffusion in gases. He recognized that the diffusion
process got still slower as the experiment progressed, that “diffusion must necessarily follow
a diminishing progression.”” Most important, he concluded from the results in Table 2.1-1
that “the quantities diffused appear to be closely in proportion ... to the quantity of sait in
the diffusion solution” (Graham, 1850, p. 6). In other words, the flux caused by diffusion
is proportional to the concentration difference of the salt.
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(a) (b)
Fig. 2.1-2. Graham’s diffusion apparatus for liquids. The equipment in (a) is the ancestor of
free diffusion experiments; that in (b) is a forerunner of the capillary method.

Table 2.1-1. Graham’s results for liquid diffusion

Weight percent of

sodium chloride Relative flux
1 1.00
2 1.99
3 3.01
4 4.00

Source: Data from Graham (1850).

2.1.2 Adolf Fick

The next major advance in the theory of diffusion came from the work of Adolf
Eugen Fick. Fick was born on September 3, 1829, the youngest of five children. His
father, a civil engineer, was a superintendent of buildings. During his secondary schooling,
Fick was delighted by mathematics, especially the work of Poisson. He intended to make
mathematics his career. However, an older brother, a professor of anatomy at the University
of Marlburg, persuaded him to switch to medicine.

In the spring of 1847, Fick went to Marlburg, where he was occasionally tutored by
Carl Ludwig. Ludwig strongly believed that medicine, and indeed life itself, must have
a basis in mathematics, physics, and chemistry. This attitude must have been especially
appealing to Fick, who saw the chance to combine his real love, mathematics, with his
chosen profession, medicine.

In the fall of 1849, Fick’s education continued in Berlin, where he did a considerable
amount of clinical work. In 1851 he returned to Marlburg, where he received his degree. His
thesis dealt with the visual errors caused by astigmatism, again illustrating his determination
to combine science and medicine (Fick, 1852). In the fall of 1851, Carl Ludwig became
professor of anatomy in Zurich, and in the spring of 1852 he brought Fick along as a
prosector. Ludwig moved to Vienna in 1855, but Fick remained in Zurich until 1868.

Paradoxically, the majority of Fick’s scientific accomplishments do not depend on diffu-
sion studies at all, but on his more general investigations of physiology (Fick, 1903). He did
outstanding work in mechanics (particularly as applied to the functioning of muscles), in
hydrodynamics and hemorheology, and in the visual and thermal functioning of the human
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body. He was an intriguing man. However, in this discussion we are interested only in his
development of the fundamental laws of diffusion.

In his first diffusion paper, Fick (1855a) codified Graham’s experiments through an
impressive combination of qualitative theories, casual analogies, and quantitative experi-
ments. His paper, which is refreshingly straightforward, deserves reading today. Fick’s
introduction of his basic idea is almost casual: “[T]he diffusion of the dissolved material
.. .1s left completely to the influence of the molecular forces basic to the same law . . . for
the spreading of warmth in a conductor and which has already been applied with such great
success to the spreading of electricity” (Fick, 18554, p. 65). In other words, diffusion can
be described on the same mathematical basis as Fourier’s law for heat conduction or Ohm’s
law for electrical conduction. This analogy remains a useful pedagogical tool.

Fick seemed initially nervous about his hypothesis. He buttressed it with a variety of
arguments based on kinetic theory. Although these arguments are now dated, they show
physical insights that would be exceptional in medicine today. Forexample, Fick recognized
that diffusion is a dynamic molecular process. He understood the difference between a
true equilibrium and a steady state, possibly as a result of his studies with muscles (Fick,
1856). Later, Fick became more confident as he realized his hypothesis was consistent with
Graham’s results (Fick, 1855b).

Using this basic hypothesis, Fick quickly developed the laws of diffusion by means of
analogies with Fourier’s work (Fourier, 1822). He defined a total one-dimensional flux
J| as

Ji = Aj :—AD% (2.1-1)
0z
where A is the area across which diffusion occurs, jj is the flux per unit area, ¢, is concentra-
tion, and z is distance. This is the first suggestion of what is now known as Fick’s law. The
quantity D, which Fick called “the constant depending of the nature of the substances,” is,
of course, the diftusion coefficient. Fick also paralleled Fourier’s development to determine
the more general conservation equation

861 (826'] 1 0A 8C1>
=D —

ot 072 * A 0z 9z 2.1-2)
When the area A is a constant, this becomes the basic equation for one-dimensional
unsteady-state diffusion, sometimes called Fick’s second law.

Fick next had to prove his hypothesis that diffusion and thermal conduction can be
described by the same equations. He was by no means immediately successful. First, he
tried to integrate Eq. 2.1-2 for constant area, but he became discouraged by the numerical
effort required. Second, he tried to measure the second derivative experimentally. Like
many others, he found that second derivatives are difficult to measure: “the second difference
increases exceptionally the effect of [experimental] errors.”

His third effort was more successful. He used a glass cylinder containing crystalline
sodium chloride in the bottom and a large volume of water in the top, shown as the lower
apparatus in Fig. 2.1-3. By periodically changing the water in the top volume, he was able
to establish a steady-state concentration gradient in the cylindrical cell. He found that this
gradient was linear, as shown in Fig. 2.1-3. Because this result can be predicted either from
Eq. 2.1-1 or from Eq. 2.1-2, this was a triumph.
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Fig. 2.1-3. Fick’s experimental results. The crystals in the bottom of each apparatus saturate the
adjacent solution, so that a fixed concentration gradient is established along the narrow, lower
part of the apparatus. Fick’s calculation of the curve for the funnel was his best proof of Fick’s
law.

Table 2.1-2. Fick’s law for diffusion without convection

For one-dimensional diffusion in L Dic—'
Cartesian coordinates Si= dz
For radial diffusion in cylindrical ‘ de
coordinates —h =D

s dr

For radial diffusion in spherical , de
coordinates —h=D—>

s dr

Note: More general equations are given in Table 3.2-1.

But this success was by no means complete. After all, Graham’s data for liquids an-
<1pated Eq. 2.1-1. To try to strengthen the analogy with thermal conduction, Fick used
=< lower apparatus shown in Fig. 2.1-3. In this apparatus, he established the steady-state
- ‘ncentration profile in the same manner as before. He measured this profile and then tried
predict these results using Eq. 2.1-2, in which the funnel area A available for diffusion
~aried with the distance z. When Fick compared his calculations with his experimental
“2ults, he found the good agreement shown in Fig. 2.1-3. These results were the initial
-zrification of Fick’s law.

2.1.3 Forms of Fick’s Law

Useful forms of Fick’s law in dilute solutions are shown in Table 2.1-2. Each
-quation closely parallels that suggested by Fick, that is, Eq. 2.1-1. Each involves the
~ame phenomenological diffusion coefficient. Each will be combined with mass balances
©» analyze the problems central to the rest of this chapter.

One must remember that these flux equations imply no convection in the same direction
<~ the one-dimensional diffusion. They are thus special cases of the general equations
siven in Table 3.2-1. This lack of convection often indicates a dilute solution. In fact,
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Cy

Fig. 2.2-1. Diffusion across a thin film. This is the simplest diffusion problem, basic to perhaps
80% of what follows. Note that the concentration profile is independent of the diffusion
coefficient.

the assumption of a dilute solution is more restrictive than necessary, for there are many
concentrated solutions for which these simple equations can be used without inaccuracy.
Nonetheless, for the novice, I suggest thinking of diffusion in a dilute solution.

2.2 Steady Diffusion Across a Thin Film

In the previous section we detailed the development of Fick’s law, the basic relation
for diffusion. Armed with this law, we can now attack the simplest example: steady diffusion
across a thin film. In this attack, we want to find both the diffusion flux and the concentration
profile. In other words, we want to determine how much solute moves across the film and
how the solute concentration changes within the film.

This problem is very important. It is one extreme of diffusion behavior, a counterpoint to
diffusion in an infinite slab. Every reader, whether casual or diligent, should try to master
this problem now. Many will fail because film diffusion is too simple mathematically.
Please do not dismiss this important problem; it is mathematically straightforward but
physically subtle. Think about it carefully.

2.2.1 The Physical Situation

Steady diffusion across a thin film is illustrated schematically in Fig. 2.2-1. On
each side of the film is a well-mixed solution of one solute, species 1. Both these solutions
are dilute. The solute diffuses from the fixed higher concentration, located at z < 0 on the
left-hand side of the film, into the fixed, less concentrated solution, located at z > [ on the
right-hand side.

We want to find the solute concentration profile and the flux across this film. To do this,
we first write a mass balance on a thin layer Az, located at some arbitrary position z within
the thin film. The mass balance in this layer is

. . out of the layer
accumulation into the layer at z

< solute ) B ( rate of diffusion ) B rate of diffusion
atz + Az

Because the process is in steady state, the accumulation is zero. The diffusion rate is the




- L Solutions

- perhaps

.72 many
.7 ..ouracy.

S - . ro.dtion
ZiTiusion
_ciration
o omand

TToTToIntto

Taster
o oranaally.
- o —aand but

. 22-1. On
.~ .ations
on the

on the

~ 7 dothis,
= - within

~.12 1s the

2.2/ Steady Diffusion Across a Thin Film 19

2:tfusion flux times the film’s area A. Thus

0=Al: = Jilz+az) 2.2-1)
“wviding this equation by the film’s volume, AAz, and rearranging,
0= _ <J1 liva: — J1|:> (2.22)
(z+ A7)~z
“hen Az becomes very small, this equation becomes the definition of the derivative
d
0=——j 2.2-3
22 ( )
. 'mbining this equation with Fick’s law,
d .
—j=p™& (2.2-4)
dz
2 find, for a constant diffusion coefficient D,
d2 N
0=D="! (2.2-5)
dz*
i differential equation is subject to two boundary conditions:
=0, ca=cp (2.2-6)
= l, Cl =Cy (22—7)

- 24in, because this system is in steady state, the concentrations ¢ and ¢y; are independent
" time. Physically, this means that the volumes of the adjacent solutions must be much
Z~zater than the volume of the film.

2.2.2 Mathematical Results

The desired concentration profile and flux are now easily found. First, we integrate
=2 2.2-5 twice to find

cr=a+bz (2.2-8)

- e constants g and b can be found from Eqs. 2.2-6 and 2.2-7, so the concentration profile is
Z
¢ =c+ ey — ClO); (2.2-9)

. ~1s linear variation was, of course, anticipated by the sketch in Fig. 2.2-1.
The flux is found by differentiating this profile:

dCl
D—

J1 = — dz

D
= T(CIO —cn) (2.2-10)

>zcause the system is in steady state, the flux is a constant.

As mentioned earlier, this case is easy mathematically. Although it is very important, it
» often underemphasized because it seems trivial. Before you conclude this, try some of
¢ examples that follow to make sure you understand what is happening.
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Fig. 2.2-2. Concentration profiles across thin membranes. In (a), the solute is more soluble in
the membrane than in the adjacent solutions; in (b), it is less so. Both cases correspond to a
chemical potential gradient like that in (c).

Example 2.2-1: Membrane diffusion Derive the concentration profile and the flux for
a single solute diftusing across a thin membrane. As in the preceding case of a film, the
membrane separates two well-stirred solutions. Unlike the film, the membrane is chemically
different from these solutions.

Solution  As before, we first write a mass balance on a thin layer Az:

0= A(]l |" - jl |z+A:)
This leads to a differential equation identical with Eq. 2.2-5:
dzCl
dz?

However, this new mass balance is subject to somewhat different boundary conditions:

0=D

ZZO, C]:HC]()
ZZZ, C]:HC”

where H is a partition coefficient, the concentration in the membrane divided by that in the
adjacent solution. This partition coefficient is a equilibrium property, so its use implies that
equilibrium exists across the membrane surface.

The concentration profile that results from these relations is

¢y =HCqo+ H(Cy — Cl())%

which is analogous to Eq. 2.2-9. This result looks harmless enough. However, it suggests
concentration profiles likes those in Fig. 2.2-2, which contain sudden discontinuities at the
interface. If the solute is more soluble in the membrane than in the surrounding solutions,
then the concentration increases. If the solute is less soluble in the membrane, then its
concentration drops. Either case produces enigmas. For example, at the left-hand side of
the membrane in Fig. 2.2-2(a), solute diffuses from the solution at ¢;o into the membrane
at higher concentration.

This apparent quandary is resolved when we think carefully about the solute’s diffusion.
Diffusion often can occur from a region of low concentration into a region of high con-
centration; indeed, this is the basis of many liquid-liquid extractions. Thus the jumps in
concentration in Fig. 2.2-2 are not as bizarre as they might appear; rather, they are graphical
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accidents that result from using the same scale to represent concentrations inside and outside
membrane.

This type of diffusion can also be described in terms of the solute’s energy or, more
exactly, in terms of its chemical potential. The solute’s chemical potential does not change
across the membrane’s interface, because equilibrium exists there. Moreover, this poten-
tial, which drops smoothly with concentration, as shown in Fig. 2.2-2(c), is the driving
force responsible for the diffusion. The exact role of this driving force is discussed more
completely is Sections 6.4 and 7.2.

The flux across a thin membrane can be found by combining the foregoing concentration
profile with Fick’s law:

. |[DH]
1= —Z—(Cm - Cy)

This is parallel to Eq. 2.2-10. The quantity in square brackets in this equation is called the
permeability, and it is often reported experimentally. Sometimes this same term is called
the permeability per unit length. The partition coefficient H is found to vary more widely
than the diffusion coefficient D, so differences in diffusion tend to be less important than
the differences in solubility.

Example 2.2-2: Porous-membrane diffusion Determine how the results of the previous
example are changed if the homogeneous membrane is replaced by a microporous layer.

Solution The difference between this case and the previous one is that diffusion
15 no longer one-dimensional; it now wiggles along the tortuous pores that make up the
membrane. Rather than try to treat this problem exactly, you can assume an effective
diffusion coefficient that encompasses all ignorance of the pore’s geometry. All the earlier
answers are then adopted; for example, the flux is

J1= [&Ef—H} (Cio = Cyp)
where Deg is a new, “effective” diffusion coefficient. Such a quantity is a function not only
of solute and solvent but also of the local geometry.

Example 2.2-3: Membrane diffusion with fast reaction Imagine that while a solute
s diffusing steadily across a thin membrane, it can rapidly and reversibly react with
other immobile solutes fixed within the membrane. Find how this fast reaction affects
‘he solute’s flux.

Solution The answer is surprising: The reaction has no effect. This is an excellent
2xample because it requires careful thinking. Again, we begin by writing a mass balance
on a layer Az located within the membrane:

solute __{ solute diffusion in amount produced
accumulation / minus that out by chemical reaction

Because the system is in steady state, this leads to

0=AU1l: = jil:+a:) —riAAz
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Fig. 2.2-3. A diaphragm cell for measuring diffusion coefficients. Because the diaphragm has
a much smaller volume than the adjacent solutions, the concentration profile within the
diaphragm has essentially the linear, steady-state value.

or

d .
0= ji=n
where ry is the rate of disappearance of the mobile species 1 in the membrane. A similar
mass balance for the immobile product 2 gives

0= _dizjz + 7
But because the product is immobile, j» is zero, and hence #, is zero. As a result, the mass
balance for species 1 is identical with Eq. 2.2-3, leaving the flux and concentration profile
unchanged.

This result is easier to appreciate in physical terms. After the diffusion reaches a steady
state, the local concentration is everywhere in equilibrium with the appropriate amount of
the fast reaction’s product. Because these local concentrations do not change with time, the
amounts of the product do not change either. Diffusion continues unaltered.

This case in which a chemical reaction does not affect diffusion is unusual. For almost
any other situation, the reaction can engender dramatically different mass transfer. If the
reaction is irreversible, the flux can be increased many orders of magnitude, as shown in
Section 16.1. If the diffusion is not steady, the apparent diffusion coefficient can be much
greater than expected, as discussed in Example 2.3-3. However, in the case described in
this example, the chemical reaction does not affect diffusion.

Example 2.2-4: Diaphragm-cell diffusion One easy way to measure diffusion coeffi-
cients is the diaphragm cell, shown in Fig. 2.2-3. These cells consist of two well-stirred
volumes separated by a thin porous barrier or diaphragm. In the more accurate experiments,
the diaphragm is often a sintered glass frit; in many successful experiments, it is just a piece
of filter paper (see Section 5.5). To measure a diffusion coefficient with this cell, we fill
the lower compartment with a solution of known concentration and the upper compartment
with solvent. After a known time, we sample both upper and lower compartments and
measure their concentrations.

Find an equation that uses the known time and the measured concentrations to calculate
the diffusion coefficient.
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Solution An exact solution to this problem is elaborate and unnecessary. Such a
solution is known but never used (Barnes, 1934). The useful approximate solution depends
on the assumption that the flux across the diaphragm quickly reaches its steady-state value
(Robinson and Stokes, 1960). This steady-state flux is approached even though the concen-
trations in the upper and lower compartments are changing with time. The approximations
introduced by this assumption will be considered again later.

In this pseudosteady state, the flux across the diaphragm is that given for membrane
diffusion:

X DH
= (C110wer — Cl,upper)

2 «raragm has !
o the
Here, the quantity H includes the fraction of the diaphragm’s area that is available for
diffusion. We next write an overall mass balance on the adjacent compartments:
dCl.lo er .
Vlower—d[_w_ = _A.]l
dCl.upper .
<2 A similar Vapper T +Aji
vhere A is the diaphragm’s area. If these mass balances are divided by Vigwer and Vipper,
-espectively, and the equations are subtracted, one can combine the result with the flux
:quation to obtain
.- Th@ mass d
ol proﬁle E(Cl.lower - Cl‘upper) = Dﬁ(cl,upper - Cl,lower)
2 ~teady 1 which
- ount of AH 1 1
p="— +
e the [ Viower Vupper
T - 4lmost . a geometrical constant characteristic of the particular diaphragm cell being used. This
-.-=- If the ::fferential equation is subject to the obvious initial condition
L ATOWN In 0 0
~ ~2 much =0, Ciiower — Cl-UPPCT = Cl‘lower - Cl.upper
- —o~wnbedin - the upper compartment is initially filled with solvent, then its initial solute concentration
i1 be zero.
Integrating the differential equation subject to this condition gives the desired result:
1 coeffi- Cl‘lower - Cl.upper _ e_/-;D;
L= st 0 0 =
‘ "l_ stirred Cl.lower - Cl.upper
cLTonments, :
.~lapiece
S we fi 0 0
-2owe fill D= 1 Cl.lower - Cl.upper
<partment =M™\ oo o
N ,Bt Cllower — Cl.upper
-.7ents and
“ can measure the time ¢ and the various concentrations directly. We can also determine
calculate - . ceometric factor B by calibration of the cell with a species whose diffusion coefficient

. .nown. Then we can determine the diffusion coefficients of unknown solutes.
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There are two major ways in which this analysis can be questioned. First, the diffusion
coefficient used here is an effective value altered by the tortuosity in the diaphragm. Theo-
reticians occasionally assert that different solutes will have different tortuosities, so that the
diffusion coefficients measured will apply only to that particular diaphragm cell and will not
be generally usable. Experimentalists have cheerfully ignored these assertions by writing

€10

0
- Cl.upper

ﬁ/[ Cl.lowcr - CLupper

1 cY

1. lower
In

Small

diffusion

where f’ is a new calibration constant that includes any tortuosity effects. So far, the exper- coefficient

imentalists have gotten away with this: Diffusion coefficients measured with the diaphragm
cell do agree with those measured by other methods.

The second major question about this analysis comes from the combination of the steady-
state flux equation with an unsteady-state mass balance. You may find this combination to
be one of those areas where superficial inspection is reassuring, but where careful reflection
is disquieting. T have been tempted to skip over this point, but have decided that I had better
not. Here goes:

The adjacent compartments are much larger than the diaphragm itself because they
contain much more material. Their concentrations change slowly, ponderously, as a result
of the transfer of a lot of solute. In contrast, the diaphragm itself contains relatively
little material. Changes in its concentration profile occur quickly. Thus, even if this
profile is initially very different from steady state, it will approach a steady state before
the concentrations in the adjacent compartments can change much. As a result, the profile
across the diaphragm will always be close to its steady value, even though the compartment
concentrations are time dependent. .

These ideas can be placed on a more quantitative basis by comparing the relaxation time
of the diaphragm, {?/ D, with that of the compartments, 1/(Df). The analysis used here
will be accurate when (Mills, Woolf, and Watts, 1968)

12/ Degy < 1 1 )
1> = Vg +
1/(B Detr) voids Viower Vuppcr

Fig. 2.2-4. C:mien
the diffusiorn o o

sar film. a steacn -+

c ool the fos
S cOoneenirin

This type of “pseudosteady-state approximation” is common and will be found to underlie
most mass transfer coefficients.

Example 2.2-5: Concentration-dependent diffusion In all the examples thus far, we
have assumed that the diffusion coefficient is constant. However, in some cases this is not
true; the diffusion coefficient can suddenly drop from a high value to a much lower one.
Such changes can occur for water diffusion across films and in detergent solutions.

Find the flux across a thin film in which diffusion varies sharply. To keep the problem
simple, assume that below some critical concentration ¢, diffusion is fast, but above this
concentration it is suddenly much slower.

Solution  This problem is best idealized as two films that are stuck together
(Fig. 2.2-4). The interface between these films occurs when the concentration equals cy,.
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The unknown position z. can be found by recognizing that the flux is the same across both
films:

l
T Dlere — )
D(Cio ~ C1c)

The flux becomes

i = D(cio — c10) + Diere —cn)
) =
/

If the critical concentration equals the average of c¢1g and ¢y, then the apparent diffusion
coefficient will be the arithmetic average of the two diffusion coefficients.

In passing, we should recognize that the concentration profile shown in Fig. 2.2-4 im-
plicitly gives the ratio of the diffusion coefficients. The flux across the film is constant and
is proportional to the concentration gradient. Because the gradient is larger on the left, the
diffusion coefficient is smaller. Because the gradient is smaller on the right, the diffusion
coefficient is larger. To test your understanding of this point, you should consider what
the concentration profile will look like if the diffusion coefficient suddenly decreases as
the concentration drops. Such considerations will help you understand the next and final
example in this section.

Example 2.2-6: Skin diffusion The diffusion of inert gases through the skin can cause
itching, burning rashes, which in turn can lead to vertigo and nausea. These symptoms are
believed to occur because gas permeability and diffusion in skin are variable. Indeed, skin
behaves as if it consists of two layers, each of which has a different permeability (Idicula
et al., 1976). Explain how these two layers can lead to the rashes observed clinically.

Solution This problem is similar to Examples 2.2-1 and 2.2-5, but the solution
is very complex in terms of concentration. We can reduce this complexity by defining a
new variable: the gas pressure that would be in equilibrium with the local concentration.
The “concentration profiles” across skin are much simpler in terms of this pressure, even
though it may not exist physically. To make these ideas more specific, we label the two
layers of skin A and B. For layer A,

P1 = Plgas T li(pli - pl.gas)
A

and for layer B,

Z —1,4
pr=pi+ T_(pl.tissue - p1i)
B

The interfacial pressure

DsHy DgHpg
P1l.gas + P tissue
la lp

DisHy DgHpg

la Iy

P =

can be found from the fact that the flux through layer A equals that through layer B.
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Fig. 2.2-5. Gas diffusion across skin. The gas pressures shown are those in equilibrium with
the actual concentrations. In the specific case considered here, gas 2 is more permeable in
layer B, and gas 1 is more permeable in layer A. The resulting total pressure can have major
physiologic effects.

These profiles, which are shown in Fig. 2.2-5, imply why rashes form in the skin. In
particular, these graphs illustrate the transport of gas 1 from the surroundings into the tissue
and the simultaneous diffusion of gas 2 across the skin in the opposite direction. Gas 1
is more permeable in layer A than in layer B; as a result, its pressure and concentration
gradients fall less sharply in layer A than in layer B. The reverse is true for gas 2; it is more
permeable in layer B than in A.

These different permeabilities lead to a total pressure that will have a maximum at the
interface between the two skin layers. This total pressure, shown by the dotted line in
Fig. 2.2-5, may exceed the surrounding pressure outside the skin and within the body. If
it does so, gas bubbles will form around the interface between the two skin layers. These
bubbles produce the medically observed symptoms. Thus this condition is a consequence of
unequal diffusion (or, more exactly, unequal permeabilities) across different layers of skin.

The examples in this section show that diffusion across thin films can be difficult to
understand. The difficulty does not derive from mathematical complexity; the calculation
15 easy and essentially unchanged. The simplicity of the mathematics is the reason why
diffusion across thin films tends to be discussed superficially in mathematically oriented
books. The difficulty in thin-film diffusion comes from adapting the same mathematics
to widely varying situations with different chemical and physical effects. This is what is
difficult to understand about thin film diffusion. It is an understanding that you must gain
before you can do creative work on harder mass transfer problems.
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2.3 Unsteady Diffusion in a Semiinfinite Slab

We now turn to a discussion of diffusion in a semiinfinite slab. We consider a
volume of solution that starts at an interface and extends a very long way. Such a solution
can be a gas, liquid, or solid. We want to find how the concentration varies in this solution
as a result of a concentration change at its interface. In mathematical terms, we want to
find the concentration and flux as functions of position and time.

This type of mass transfer is often called free diffusion (Gosting, 1956) simply because
this is briefer than “unsteady diffusion in a semiinfinite slab.” At first glance, this situation
may seem rare because no solution can extend an infinite distance. The previous thin-film
example made more sense because we can think of many more thin films than semiinfinite
slabs. Thus we might conclude that this semiinfinite case is not common. That conclusion
would be a serious error.

The important case of an infinite slab is common because any diffusion problem will
behave as if the slab is infinitely thick at short enough times. For example, imagine that one
of the thin membranes discussed in the previous section separates two identical solutions,
so that it initially contains a solute at constant concentration. Everything is quiescent, at
equilibrium. Suddenly the concentration on the left-hand interface of the membrane is
raised, as shown in Fig. 2.3-1. Just after this sudden increase, the concentration near this
left interface rises rapidly on its way to a new steady state. In these first few seconds, the
concentration at the right interface remains unaltered, ignorant of the turmoil on the left.
The left might as well be infinitely far away; the membrane, for these first few seconds,
might as well be infinitely thick. Of course, at larger times, the system will slither into the
steady-state limit in Fig. 2.3-1(c). But in those first seconds, the membrane does behave
like a semiinfinite slab.

This example points to an important corollary, which states that cases involving an
infinite slab and a thin membrane will bracket the observed behavior. At short times,
diffusion will proceed as if the slab is infinite; at long times, it will occur as if the slab
is thin. By focusing on these limits, we can bracket the possible physical responses to
different diffusion problems.

2.3.1 The Physical Situation

The diffusion in a semiinfinite slab is schematically sketched in Fig. 2.3-2. The
slab initially contains a uniform concentration of solute ¢o. At some time, chosen as
time zero, the concentration at the interface is suddenly and abruptly increased, although
the solute is always present at high dilution. The increase produces the time-dependent
concentration profile that develops as solute penetrates into the slab.

We want to find the concentration profile and the flux in this situation, and so again we
need a mass balance written on the thin layer of volume AAz:

out of the layer (2.3-1)

atz + Az

solute accumulation \ [ rate of diffusion
in volume AAz ~ \ into the layer at z

) rate of diffusion

In mathematical terms, this is

9
5, (Adze) = AGhl: = Jilzrad) (2.3-2)
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Fig. 2.3-1. Unsteady- versus steady-state diffusion. At small times, diffusion will occur only
near the left-hand side of the membrane. As a result, at these small times, the diffusion will be

the same as if the membrane was infinitely thick. At large times, the results become those in
Tgoan the thin film.
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Fig. 2.3-2. Free diffusion. In this case, the concentration at the left is suddenly increased to
a higher constant value. Diffusion occurs in the region to the right. This case and that in
Fig. 2.2-1 are basic to most diffusion problems.
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We divide by AAz to find

oa _ [h 42z = Jilz (2.3-3)
ot (z+ Az) —z

We then let Az go to zero and use the definition of the derivative
dc aj
e on (2.3-4)
at 0z

Combining this equation with Fick’s law, and assuming that the diffusion coefficient is
independent of concentration, we get

3(’] 82('1

— =D— (2.3-5

ot 922 )
This equation is sometimes called Fick’s second law, and it is often referred to as one
example of a “diffusion equation.” In this case, it is subject to the following conditions:

t=0, allz, C1 = Cloc (2.3-6)
t>0, z=0 Cl = Clo (2.3-7)
=00, €] =Cix (2.3-8)

Note that both ¢, and ¢ are taken as constants. The concentration ¢ 1S constant because
it is so far from the interface as to be unaffected by events there; the concentration ¢ is
kept constant by adding material at the interface.

2.3.2 Mathematical Solution

The solution of this problem is easiest using the method of “combination of vari-
ables.” This method is easy to follow, but it must have been difficult to invent. Fourier,
Graham, and Fick failed in the attempt; it required Boltzman’s tortured imagination (Boltz-
man, 1894).

The trick to solving this problem is to define a new variable

<

= (2.3-9)
¢ V4Dt
The differential equation can then be written as
dey (8 de; (90
da (00 _ pdan (0¢ (2.3-10)
dz \ ot dg? \ 9z
or
dzC[ dcl
42— =0 2.3-11
e +2¢ dc ( )

In other words, the partial differential equation has been almost magically transformed into
an ordinary differential equation. The magic also works for the boundary conditions; from
Eqg. 2.3-7,

=0, c1=cyp (2.3-12)
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2nd from Eqs. 2.3-6 and 2.3-8,

{ =00, ¢ =Cx (2.3-13)

“Aith the method of combination of variables, the transformation of the initial and boundary
. nditions is often more critical than the transformation of the differential equation.

The solution is now straightforward. One integration of Eq. 2.3-11 gives

d(,‘l —2

— =aqe (2.3-14)

d¢
~ere a is an integration constant. A second integration and use of the boundary condition

-TN

AT g (2.3-15)
Cloc — €10
T2re
2 c
erf ¢ = —— | ds (2.3-16)

NE

-histheerror function of ¢. This is the desired concentration profile giving the variation
. neentration with position and time.
.~ many practical problems, the flux in the slab is of greater interest than the concentration

- ¢ itself. This flux can again be found by combining Fick’s law with Eq. 2.3-15:

0 2
jr=-=D ;' = \/D/mte " *P!(c1p — 1) (2.3-17)

. carticularly useful limit is the flux across the interface at 7 = 0:

Jilz=0 =/ D/mt(c1o — ¢1o0) (2.3-18)

~- - “ux s the value at the particular time 7 and not that averaged over time. This distinction

-2 important in Chapter 13.

- = *his point, I have the same pedagogical problem I had in the previous section: I must
.2 you that the apparently simple results in Eqs. 2.3-15 and 2.3-18 are valuable.
. osults are exceeded in importance only by Egs. 2.2-9 and 2.2-10. Fortunately, the

“.matics may be difficult enough to spark thought and reflection; if not, the examples
© ~ow should do so.

Ewmple 2.3-1: Diffusion across an interface The picture of the process in Fig. 2.3-2
- - that the concentration at z = 0 is continuous. This would be true, for example, if

P

-~ O there was a swollen gel, and when z < 0 there was a highly dilute solution.
»over. a much more common case occurs when there is a gas—liquid interface at
= Ordinarily, the gas at z < 0 will be well mixed, but the liquid will not. How will
“criace affect the results given earlier?
Solution Basically, it will have no effect. The only change will be a new boundary
~. replacing Eq. 2.3-7:
P1o

=0, ¢ =c¢x;=c—
H
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where ¢ is the concentration of solute in the liquid, x; is its mole fraction, py is its partial
pressure in the gas phase, H is the solute’s Henry’s law constant, and c¢ is the total molar
concentration in the liquid.

The difficulties caused by a gas—liquid interface are another result of the plethora of
units in which concentration can be expressed. These difficulties require concern about
units, but they do not demand new mathematical weapons. The changes required for a
liquid—liquid interface can be similarly subtle.

Example 2.3-2: Free diffusion into a porous slab How would the foregoing results be
changed if the semiinfinite slab was a porous solid? The diffusion in the gas-filled pores is
much faster than in the solid.

Solution This problem involves diffusion in all three directions as the solute
moves through the tortuous pores. The common method of handling this is to define an
effective diffusion coefficient Dy and treat the problem as one-dimensional. The concen-
tration profile is then

C —C1o Z
=erf

Cloc — €10 4 Desst
and the interfacial flux is

Jilz=0 = v/ Dei/mt{c10 — C1o0)

This type of approximation often works well if the distances over which diffusion occurs
are large compared with the size of the pores.

Example 2.3-3: Free diffusion with fast chemical reaction In many problems, the
diffusing solutes react rapidly and reversibly with surrounding material. The surrounding
material is stationary and cannot diffuse. For example, in the dyeing of wool, the dye can
react quickly with the wool as it diffuses into the fiber. How does such a rapid chemical
reaction change the results obtained earlier?

Solution In this case, the chemical reaction can radically change the process
by reducing the apparent diffusion coefficient and increasing the interfacial flux of solute.
These radical changes stand in stark contrast to the steady-state result, where the chemical
reaction produces no effect.

To solve this example, we first recognize that the solute is effectively present in two
forms: (1) free solute that can diffuse and (2) reacted solute fixed at the point of reaction.
If this reaction is reversible and faster than diffusion,

¢ = Kc;

where ¢ is the concentration of the solute that has already reacted, ¢, is the concentration
of the unreacted solute that can diffuse, and K is the equilibrium constant of the reaction. If
the reaction is minor, K will be small; as the reaction becomes irreversible, K will become
very large.
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With these definitions, we now write a mass balance for each solute form. These mass
-~ slances should have the form

accumulation \ diffusion in amount produced by
in AAz ~ \ minus that out reaction in AAz

~or the diffusing solute, this is

0 . .
E[AAZCI] = A(l: = Jili+az) +r1AAzZ
-nere ry is the rate of production per volume of species 1, the diffusing solute. By arguments
-~alogous to Eqs. 2.3-2 to 2.3-5, this becomes
8C] D 32C1 4
! r
ot az° ]
22 term on the left-hand side is the accumulation; the first term on the right is the diffusion
- minus the diffusion out; the term r; is the effect of chemical reaction.
When we write a similar mass balance on the second species, we find

a
—|AAze)] = —rAAZ
at

aCZ
at
2 do not get a diffusion term because the reacted solute cannot diffuse. We get a reaction
:7m that has a different sign but the same magnitude, because any solute that disappears

-~ ~pecies | reappears as species 2.
To solve these questions, we first add them to eliminate the reaction term:

= —rl

d
Lo +ey=D""
at(cl c2) .

~2 now use the fact that the chemical reaction is at equilibrium:

a( + K )_D82C1
Z(c )= DL
ar ! : 9z2

8C1 D 82C1

Br 1+ K az2

~a1s result is subject to the same initial and boundary conditions as before in Egs. 2.3-6,
237, and 2.3-8. As a result, the only difference between this example and the earlier
~roblem is that D /(1 + K) replaces D.
This is intriguing. The chemical reaction has left the mathematical form of the answer
_changed, but it has altered the diffusion coefficient. The concentration profile now is
Cy — Cio Z

1) L. —
Cloo — Cl0 JAID/(1 4+ K]t
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and the interfacial flux is

Jilz=0 = /DU + K)/mt{c10 — C1oc)

The flux has been increased by the chemical reaction.

These effects of chemical reaction can easily be several orders of magnitude. As
will be detailed in Chapter 5, diffusion coefficients tend to fall in fairly narrow ranges.
Those coefficients for gases are around 0.3 cm?/sec; those in ordinary liquids cluster about
10~° cm? /sec. Deviations from these values of more than an order of magnitude are unusual.
However, differences in the equilibrium constant K of a million or more occur frequently.
Thus a fast chemical reaction can tremendously influence the unsteady diffusion process.

Example 2.3-4: Determining diffusion coefficients from free diffusion experiments
Diffusion into a semiinfinite slab is the geometry used for the most accurate measurement
of diffusion coefficients. These most accurate measurements determine the concentration
profile by interferometry. One relatively simple method, the Rayleigh interferometer, uses
a rectangular cell in which there is an initial step function in refractive index (Dunlop
et al. 1972). The decay of this refractive index profile is followed by shining collinated
light through the cell to give interference fringes. These fringes record the refractive index
versus camera position and time.
Find equations that allow this information to be used to calculate diffusion coefficients.
Solution The concentration profiles established in the diffusion cell closely ap-
proach the profiles calculated earlier for a semiinfinite slab. The cell now effectively contains
two semiinfinite slabs joined together at z = 0. The concentration profile is unaltered from
Eq. 2.3-15:

¢t —Cro Z
=erf
Cloo — C10 4Dt

where ¢19[= (C1x + C1—~c)/2] is the average concentration between the two ends of the cell.
How accurate this equation is depends on how exactly the initial change in concentration
can be realized; in practice this change can routinely be within 10 seconds of a true step
function. R

We must convert the concentration and cell position into the experimental measured
refractive index and camera position. The refractive index n is linearly proportional to the
concentration:

1 = Ryolvent + bC1

where fgopen 18 the refractive index of the solvent. Each position in the camera is propor-
tional to a position in the diffusion cell:

Z =az

where a is the magnification of the apparatus. Itis experimentally convenient not to measure

the position of one fringe but rather to measure the intensity minima of many fringes. These
minima occur when

n —ng J

Hoo —Nog  J/2
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where 1, and ng are the refractive indices at z = oo and z = 0, respectively; J is the total
number of interference fringes, and j is an integer called the fringe number. This number
'~ most conveniently defined as zero at z = (), the center of the cell. Combining these
2quations,
. 7
R Sl

J/2 a~/4Dt

~here Z; is the intensity minimum associated with the j™® fringe. Because a and ¢ are
sxperimentally accessible, measurements of Z;(j, J) can be used to find the diffusion
-vefficient D. While the accuracy of interferometric experiments like this remains unrivaled,
“1e use of these methods has declined because they are tedious.

2.4 Three Other Examples

The two previous sections describe diffusion across thin films and in semiinfinite
-.abs. In this section, we turn to discussing mathematical variations of diffusion problems.
This mathematical emphasis changes both the pace and the tone of this book. Up to now,
+¢ have consistently stressed the physical origins of the problems, constantly harping on
~atural effects like changing liquid to gas or replacing a homogeneous fluid with a porous
-lid. Now we shift to the more common textbook composition, a sequence of equations
- metimes as jarring as a twelve-tone concerto.

In these examples, we have three principal goals:

(1) We want to show how the differential equations describing diffusion are derived.

(2) We want to examine the effects of spherical and cylindrical geometries.

(3) We want to supply a mathematical primer for solving these different diffusion
equations.

"~ all three examples, we continue to assume dilute solutions. The three problems examined
~2xt are physically important and will be referred to again in this book. However, they are
~troduced largely to achieve these mathematical goals.

2.4.1 Decay of a Pulse (Laplace Transforms)

As a first example, we consider the diffusion away from a sharp pulse of solute
-xe that shown in Fig. 2.4-1. The initially sharp concentration gradient relaxes by diffusion
= the z direction into the smooth curves shown (Crank, 1975). We want to calculate the
-nape of these curves. This calculation illustrates the development of a differential equation
21d its solution using Laplace transforms.
As usual, our first step is to make a mass balance on the differential volume AAz as
“own:

solute solute solute
accumulation | = | diffusion into | — [ diffusion out of (2.4-1)
in AAZ this volume this volume
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Fig. 2.4-1. Diffusion of a pulse. The concentrated solute originaily located at z = 0 diffuses as

the Gaussian profile shown. This is the third of the three most important cases, along with those
in Figs. 2.2-1 and 2.3-2.

In mathematical terms, this is

9 : ,
ElAAzcl] = Ajil: — Ajilzvaz (2.4-2) _
Dividing by the volume and taking the limit as Az goes to zero gives - -
ac aj
s (2.4-3) ‘
ar 9z
Combining this relation with Fick’s law of diffusion, o
9 3¢ -
o ptd (2.4-4)
at 0z°

This is the same different equation basic to the free diffusion considered in the previous
section. The boundary conditions on this equation are as follows. First, far from the pulse,
the solute concentration is zero:

t>0, z=o00, ¢ =0 (2.4-5)
Second, because diffusion occurs at the same speed in both directions, the pulse in sym-
metric:
dcy
9z
This is equivalent to saying that at z = 0, the flux has the same magnitude in the positive
and negative directions. L T

The initial condition for the pulse is more interesting in that all the solute is initially amine BRI
located at z = O: s

t>0, z=0, =0 (2.4-6) ! Z4l N

M
t=0, c= X(S(z) (2.4-7)

where A is still the cross-sectional area over which diffusion is occurring, M is the total W
amount of solute in the system, and §(z) is the Dirac function. This can be shown to be a W -
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“-asonable condition by a mass balance:
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oC

—0(Adz =M (2.4-8)
o A
* this integration, we should remember that 4(z) has dimensions of (length) !,
To solve this problem, we first take the Laplace transform of Eq. 2.4-4 with respect to
e
-0 2=
d
5‘5‘1—’6“1([:0):1) a

dz?

“ere ¢ is the transformed concentration. The boundary conditions are

(2.4-9)
M/A
— = _M/A (2.4-10)
Z 2D
z=00, ¢ =0 (2.4-11)
~ e first of these reflects the properties of the Dirac function, but the second is routine.
- -aation 2.4-9 can then easily by integrated to give
& =aeVS/Pz | p=/s/Dz (2.4-12)
“ere g and b are integration constants. Clearly, a is zero by Eq. 2.4-11. Using Eq. 2.4-10,
< find b and hence ¢,:
M/A
o =M = \/s5IDz (2.4-13)
2D
~2 inverse Laplace transform of this function gives
o= A 2
VA Dt

“ich is a Gaussian curve. You may wish to inte
“tem to check that the total solute present is M.

This solution can be used to solve man
- 14l conditions (Crank, 1975). More im
" rollutants, especially in the air, as disc

(2.4-14)
grate the concentration over the entire

y unsteady diffusion problems that have unusual

portant, it is often used to correlate the dispersion
ussed in Chapter 4.
2.4.2 Steady

Dissolution of a Sphere (. Spherical Coordinates)
Our second example, which is easier mathematically,

is the steady dissolution of
~urrounding solvent, so that solute’s concentration

sparingly soluble material,
- -cause the sphere is immersed in a very large fluid vol
TIere is zero.

aterial quickly dissolves in
at the sphere’s surface is saturated.

ume, the concentration far from the

The goal is to find both the dissolution rate and the concentration profile around the

"nere. Again, the first step is a mass balance. In contrast with the previous examples,

~ mass balance is most conveniently made in spherical coordinates ori ginating from the
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Fig. 2.4-2. Steady dissolution of a sphere. This problem represents an extension of diffusion
theory to a spherically symmetric situation. In actual physical situations, this dissolution can be
complicated by free convection caused by diffusion (see Chapter 12).

center of the sphere. Then we can make a mass balance on a spherical shell of thickness Ar
Jocated at some arbitrary distance r from the sphere. This spherical shell is like the rubber
of a balloon of surface area 47r? and thickness Ar.

A mass balance on this shell has the same general form as those used earlier:

solute accumulation | diffusion _ diffusion (2.4-15)
within the shell ~ \ into the shell out of the shell '
In mathematical terms, this is

;—t(4nr2Arc1) = 0= (@rrij), — @Garij)rear (2.4-16)
The accumulation on the left-hand side of this mass balance is zero, because diffusion is
steady, not varying with time. Novices frequently make a serious error at this point by
canceling the r? out of both terms on the right-hand side. This is wrong. The term r?jy is
evaluated at r in the first term; that is, it is r2(j1l,). The term is evaluated at (r + Ar) in
the second term; so it equals (7 + Ar)?(iilr+ar)-

If we divide both sides of this equation by the spherical shell’s volume and take the limit
as Ar — 0, we find

1 .
0=~ (2.4-17)

Combining this with Fick’s law and assuming that the diffusion coefficient is constant,

_ D d 2dC1

S S 2.4-18
rzdrzr dr ( )
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This basic differential equation is subject to two boundary conditions:
r=Ry, ¢ =c(sat) (2.4-19)
= OO’ Cr = O (24-20)

If the sphere were dissolving in a partially saturated solution, this second condition would
be changed, but the basic mathematical structure would remain unaltered. One integration
of Eq. 2.4-18 yields
dcy a
== 2.4-21
dr  r? ( )
where a is an integration constant. A second integration gives
a
co=b— = (2.4-22)
’

Use of the two boundary conditions gives the concentration profile

Ry
c; = cy(sat) — (2.4-23)
r
The dissolution flux can then be found from Fick’s law:
X dCl DRO
Ji=—D— = ——c(say) (2.4-24)
dr r2
which, at the sphere’s surface, is
D
J1 = —cy(sat) (2.4-25)
Ry

If the sphere is twice as large, the dissolution rate per unit area is only half as large, though
the total dissolution rate over the entire surface is doubled.

This examples forms the basis for such varied phenomena as the growth of fog droplets
and the dissolution of drugs. It is included here to illustrate the derivation and solution
»f differential equations describing diffusion in spherical coordinate systems. Different
coordinate systems are also basic to the final example in this section.

2.4.3 Unsteady Diffusion Into Cylinders (Cylindrical Coordinates and
Separation of Variables)

The final example, probably the hardest of the three, concerns the diffusion of a

-olute into the cylinder shown in Fig. 2.4-3. The cylinder initially contains no solute. At

:me zero, itis suddenly immersed in a well-stirred solution that is of such enormous volume

‘nat its solute concentration is constant. The solute diffuses into the cylinder symmetrically.
“roblems like this are important in the chemical treatment of wood.

We want to find the solute’s concentration in this cylinder as a function of time and

cation. As in the previous examples, the first step is a mass balance; in contrast, this mass

- :lance is made on a cylindrical shell located at r, of area 27 Lr, and of volume 27 Lr Ar.

~7e basic balance

__( solute diffusion solute diffusion

a ( into the shell ) B <0ut of the shell) (2.4-26)

solute accumulation
:n this cylindrical shell
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Fig. 2.4-3. Waterproofing a fence post. This problem is modeled as diffusion in an infinite
cylinder, and so represents an extension to a cylindrically symmetric situation. In reality, the
ends of the post must be considered, especially because diffusion with the grain is faster than
across the grain.

becomes in mathematical terms

d

E(QJTI‘LAVC]) = (ZJTVle)r — (27TI’Lj1)r+Ar (24-27)
We can now divide by the shell’s volume and take the limit as Ar becomes small:

ad 19

[ 2.4-28

ot “ ror T ( )
Combining this expression with Fick’s law gives the required differential equation

dey D3 3o (2.4-29)

ot ror 9r
which is subject to the following conditions:

t <0, allr ;=0 (2.4-30)

t>0, r=Ry ¢ =c (surface) (2.4-31)

0
=0, Zl_y (2.4-32)

ar




JJ1ONnS

2427

(2.4-30)
(2.4-31)

(2.4-32)
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-~ these equations, ¢;(surface) is the concentration at the cylinder’s surface and Ry is the
- inder’s radius. The first of the boundary conditions results from the large volume of
--Tounding solution, and the second reflects the symmetry of the concentration profiles.
Problems like this are often algebraically simplified if they are written in terms of di-
~ensionless variables. This is standard practice in many advanced textbooks. I often find
- procedure confusing, because for me it produces only a small gain in algebra at the

- nense of a large loss in physical insight. Nonetheless, we shall follow this procedure here

lustrate the simplification possible. We first define three new variables:

dimensionless concentration : § = 1 — _a (2.4-33)
¢ (surface)
dimensionless position : £ = R; (2.4-34)
0
. . . Dt
dimensionless time : T = — (2.4-35)
0
" . Jifferential equation and boundary conditions now become
a0 18 00
—=—-—%f— (2.4-36)
ot £ Q& 0¢&
110
=0, allé, 6 =1 (2.4-37)
T>0, £€=1 6=0 (2.4-38)
a6
£=0. —=0 (2.4-39)
13

- * 72 novice, this manipulation can be more troublesome than it looks.

- ~olve these equations, we first assume that the solution is the product of two functions,

“ time and one of radius:

B(r, &) = g(1) f(§) (2.4-40)

-7 Egs. 2.4-36 and 2.4-40 are combined, the resulting tangle of terms can be separated
o oston with g(T) f(&):

dg(t)  g(v) d _df®)
dt & d&° de
| dg(o) _ 1 ddf@
¢(r) dr §f(&)dE" d&
.7 one fixes & and changes 7, f (&) remains constant but g(7) varies. As a result,

I dg
g0 _ 2 (2.4-42)
o(t) dt

(&)

(2.4-41)

"- + Ix aconstant. Similarly, if we hold 7 constant and let £ change, we realize

b od dfe . (2.4-43)
SrEydES dE
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Thus the partial differential equation 2.4-36 has been converted into two ordinary differential
equations 2.4-42 and 2.4-43.
The solution of the time-dependent part of this result is easy:

gty =de ™" (2.4-44)

where @’ is an integration constant. The solution for f (£) is more complicated, but straight-
forward:

f(&) = alo(aé) + bYo(af) (2.4-45)

where J, and Y, are Bessel functions and a and b are two more constants. From Eq. 2.4-39
we see that b = 0. From Eq. 2.4-38, we see that

0 =aJlo(e) (2.4-46)
Because a cannot be zero, we recognize that there must be an entire family of solutions for
which

Jola,) =0 (2.4-47)

The most general solution must be the sum of all solutions of this form found for different
integral values of n:

B(r.6) =Y (aa), Jo(a,)e " (2.4-48)

n=1

We now use the initial condition Eq. 2.4-37 to find the remaining integration constant (aa'),:

L= (aa)Joaé) (2.4-49)

n=1

We multiply both sides of this equation by & Jy(«,&) and integrate from & = 0to & = 1 to
find (aa’). The total result is then

o0

2 . )
0=2 [W} Jol@ng)e (2.4-50)

n=1

or, in terms of our original variables,

C1 -1 _226 O(Olnr/ 0) (24_51)

Ci (surface) B Un Jl ((X,, "/R())

n=1

This is the desired result, though the ¢, must still be found from Eq. 2.4-47.

This problem clearly involves a lot of work. The serious reader should certainly work
one more problem of this type to get a feel for the idea of separation of variables and for the
practice of evaluating integration constants. Even the serious reader probably will embrace
the ways of avoiding this work described in the next chapter.

23 0 g e
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Y/
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at which solute Direction of
concentration is diffusion
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$XD I~  at which solute
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Fig. 2.5-1. Steady diftusion in a moving film. This case is mathematically the same as diffusion
across a stagnant film, shown in Fig. 2.2-1. It is basic to the film theory of mass transfer
described in Section 11.1.

2.5 Convection and Dilute Diffusion

In many practical problems, both diffusion and convective flow occur. In some
- .. 2specially in fast mass transfer in concentrated solutions, the diffusion itself causes the
- - -ction. This type of mass transfer, the subject of Chapter 3, requires more complicated
..d] and mathematical analyses.
~ere is another group of important problems in which diffusion and convection can be
— - zasily handled. These problems arise when diffusion and convection occur normal to
:..~ ther. In other words, diffusion occurs in one direction, and convective flow occurs in
. ~rendicular direction. Two of these problems are examined in this section. The first,
=~ .~:onacross a thin flowing film, parallels Section 2.2; the second, diffusion into a liquid
- :~ a less obvious analogue to Section 2.3. These two examples tend to bracket the
--.mved experimental behavior, and they are basic to theories relating diffusion and mass
m.--er coefficients (see Chapter 13).

¥

2.5.1 Steady Diffusion Across a Falling Film

The first of the problems of concern here, sketched in Fig. 2.5-1, involves diffusion
-~~~ a thin, moving liquid film. The concentrations on both sides of this film are fixed by
. :.-rochemical reactions, but the film itself is moving steadily. T have chosen this example
" ~ecause it oceurs often but because it is simple. I hope that readers oriented toward the
--..uival will wait for later examples for results of greater applicability.
7 solve this problem, we make three key assumptions:

.1 The liquid solution is dilute. This assumption is the axiom for this entire chapter.

2)  The liquid is the only resistance to mass transfer. This implies that the electrode
reactions are fast.
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(3) Mass transport is by diffusion in the z direction and by convection in the x direction.
Transport by the other mechanisms is negligible.

It is the last of these assumptions that is most critical. It implies that convection is negligible
in the z direction. In fact, diffusion in the z direction automatically generates convection
in this direction, but this convection is small in a dilute solution. The last assumption also
suggests that there is no diffusion in the x direction. There may be such diffusion, but it is
assumed much slower and hence much less important in the x direction than convection.

This problem can be solved by writing a mass balance on the differential volume
W Ax Az, where W is the width of the liquid film, normal to the plane of the paper:

solute accumulation \ _ ( solute diffusing in at z minus
in WAxAz solute diffusing out at z + Az

(2.5-1)

solute flowing in at x minus
solute flowing out at x + Ax

or, in mathematical terms,
0 . .
B;(CIWAXAZ) = [(jiWAx), — (HWWAX)1a:]

+ [(crvyWAZ) — vy WAZ) 1 ax] (2.5-2)

The term on the left-hand side is zero because of the steady state. The second term in square
brackets on the right-hand side is also zero, because neither | nor v, changes with x. The
concentration ¢, does not change with x because the film is long, and there is nothing that
will cause the concentration to change in the x direction. The velocity v, certainly varies
with how far we are across the film (i.e., with ), but it does not vary with how far we are
along the film (i.e., with x).

After dividing by W AxAz and taking the limit as this volume goes to zero, the mass
balance in Eq. 2.5-2 becomes

dji
0= - 2.5-3
dz ( )
This can be combined with Fick’s law to give
d2 .
0=pL! (2.5-4)
dz*
This equation is subject to the boundary conditions
7= 0, 1 =Clo (25—5)
z=1, C1 = Cyqy (25-6)

When these results are combined with Fick’s law, we have exactly the same problem as that
in Section 2.2. The answers are

cp=cpo+ (cy — Cl())% (2.5-7)

. D
h= 7(6'10 —cy) (2.5-8)

The flow has no effect. Indeed, the answer is the same as if the fluid was not flowing.
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12.5-2)
Ax Diffusion
- .Tsquare
K = x. The /
ing that Liquid with
T ovanes dissolved
Tarawe are solute gas
‘he mass Fig. 2.5-2. Unsteady-state diffusion into a falling film. This analysis turns out to be
’ > mathematically equivalent to free diffusion (see Fig. 2.3-2). It is basic to the penetration theory
of mass transfer described in Section 11.2.
12.5-3) . . . . S .
This answer is typical of many problems involving diffusion and flow. When the solutions
-~ lilute, the diffusion and convection often are perpendicular to each other and the solution
~raightforward. You may almost feel gypped; you girded yourself for a difficult problem
(2.5-4) -" - found an easy one. Rest assured that more difficult problems follow.
2.5.2 Diffusion Into a Falling Film
(2.5-5)
The second problem of interest is illustrated schematically in Fig. 2.5-2 (Bird,
(2.5-6) * -art, and Lightfoot, 1960). A thin liquid film flows slowly and without ripples down a

*.urface. One side of this ilm wets the surface; the other side is in contact with a gas,
* .his sparingly soluble in the liquid. We want to find out how much gas dissolves in the
~d

-~ ~iem as that

(2.5-7) - solve this problem, we again go through the increasingly familiar litany; we write a
~ -+~ balance as a differential equation, combine this with Fick’s law, and then integrate
- 2o find the desired result. We do this subject to four key assumptions:
(2.5-8)

-1 The solution are always dilute.

Ling. -1 Mass transport is by z diffusion and x convection.
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(3) The gas is pure.
(4) The contact between gas and liquid is short.

The first two assumptions are identical with those given in the earlier example. The third
means that there is no resistance to diffusion in the gas phase, only in the liquid. The final
assumption simplifies the analysis.

We now make a mass balance on the differential volume W in width, shown in the inset
in Fig. 2.5-2:

mass flowing in at x minus
mass flowing out at x + Ax

mass accumulation | _ ( mass diffusing in at z minus
within WAxAz / — \ mass diffusing out at z + Az

(2.5-9)

)

This result is parallel to those found in earlier sections:

d
[E(cleAzW)} = [(WAxj1): — (WAj1)sac]
+ [(WAzeyvy), — (WAZC v aran] (2.5-10)

When the system is at steady state, the accumulation is zero. Therefore, the left-hand side

of the equation is zero. No other terms are z€ro, because j; and ¢, vary with both z and x.
If we divide by the volume W Ax Az and take the limit as this volume goes to zero, we find |

(2.5-11)

We now make two further manipulations; we combine this with Fick’s law and set v, equal
to its maximum value, a constant. This second change reflects the assumption of short
contact times. At such times, the solute barely has a chance to cross the interface, and it
diffuses only slightly into the fluid. In this interfacial region, the fluid velocity reaches the
maximum suggested in Fig. 2.5-2, so the use of a constant value is probably not a serious
assumption. Thus the mass balance is

326‘1
072

3C1 .
9 (x /Umax)
The left-hand side of this equation represents the solute flow out minus that in; the right-hand

side is the diffusion in minus the diffusion out.
This mass balance is subject to the following conditions:

(2.5-12)

x=0, allg ¢ =0 (2.5-13
x>0 z=0 ¢ =c(say (2.5-14
z=1[, ¢ =0 (2.5-15

where ¢ (sat) is the concentration of dissolved gas in equilibrium with the gas itself, and/
is the thickness of the falling film in Fig. 2.5-2. The last of these three boundary conditions

is replaced with

x>0, z=o00, ¢ =0

(2.5-16
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This again reflects the assumption that the film is exposed only a very short time. As a
result, the solute can diffuse only a short way into the film. Its diffusion is then unaffected
oy the exact location of the other wall, which, from the standpoint of diffusion, might as
well be infinitely far away.

This problem is described by the same differential equation and boundary conditions as
Jiffusion in a semiinfinite slab. The sole difference is that the quantity x /v,y replaces the
time ¢. Because the mathematics is the same, the solution is the same. The concentration
profile is

Cl <

=1-—erf

¢ (sat) VADX [Umax

and the flux at the interface is

Jili=0 = V Dy /T xC) (sat) (2.5-18)

These are the answers to this problem.

These answers appear abruptly because we can adopt the mathematical results of Sec-
tion 2.2. Those studying this material for the first time often find this abruptness jarring.
Stop and think about this problem. It is an important problem, basic to the penetration
theory of mass transfer discussed in Section 13.2. To supply a forum for further discussion,
we shall now consider this problem from another viewpoint.

The alternative viewpoint involves changing the differential volume on which we make
the mass balance. In the foregoing problem, we chose a volume fixed in space, a volume
through which liquid was flowing. This volume accumulated no solute, so its use led
10 a steady-state differential equation. Alternatively, we can choose a differential volume
floating along with the fluid at a speed vmay. The use of this volume leads to an unsteady-state
differential equation like Eq. 2.3-5. Which viewpoint is correct?

The answer is that both are correct; both eventually lead to the same answer. The fixed-
coordinate method used earlier is often dignified as “Eulerian,” and the moving-coordinate
picture is described as “Langrangian.” The difference between them can be illustrated by
the situation of watching fish swimming upstream in a fast-flowing river. If we watch the
fish from a bridge, we may see only slow movement, but if we watch the fish from a freely
floating canoe, we realize that the fish are moving rapidly.

(2.5-17)

2.6 A Final Perspective

This chapter is very important, a keystone of this book. It introduces Fick’s law for
dilute solutions and shows how this law can be combined with mass balances to calculate
concentrations and fluxes. The mass balances are made on thin shells. When these shells
are very thin, the mass balances become the differential equations necessary to solve the
various problems. Thus the bricks from which this chapter is built are largely mathematical:
shell balances, differential equations, and integrations in different coordinate systems.

However, we must also see a different and broader blueprint based on physics, not
mathematics. This blueprint includes the two limiting cases of diffusion across a thin film
and diffusion in a semiinfinite slab. Most diffusion problems fall between these two limits.
The first, the thin film, is a steady-state problem, mathematically easy and sometimes
physically subtle. The second, the unsteady-state problem of the thick slab, is a little harder
to calculate mathematically, and it is the limit at short times.
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In many cases, we can use a simple criterion to decide which of the two central limits is Further

more closely approached. This criterion hinges on the magnitude of the Fourier number C. (1934). ¢
L U 349).

(length)? _ R.B., Stewart.
diffusion ] :mann, L. (189-
<coefﬁcient> (time) . (975). T
. P J., Steele.
This variable is the argument of the error function of the semiinfinite slab, it determines eds. G.We
the standard deviation of the decaying pulse, and it is central to the time dependence of 1 E. (18520, .
diffusion into the cylinder. In other words, it is a key to all the foregoing unsteady-state ~ E. (18554
problems. Indeed, it can be easily isolated by dimensional analysis. = E. (18556
This variable can be used to estimate where limiting case is more relevant. If it is much = E. (1856
larger than unity, we can assume a semiinfinite slab. If it is much less than unity, we - E (1902
should expect a steady state or an equilibrium. If it is approximately unity, we may be - 1BU(I82Z
forced to make a fancier analysis. For example, imagine that we are testing a membrane < Lodoress
for an industrial separation. The membrane is 0.01 centimeters thick, and the diffusion T (182v
coefficient in it is 10~ 7cm?/sec. If our experiments take only 10 seconds, we have an T(IR3:
unsteady-state problem like the semiinfinite slab; it they take three hours we approach a TooIns
steady-state situation. . Gruves D
In unsteady-state problems, this same variable may also be used to estimate how far or e fel
how long mass transfer has occurred. Basically, the process is significantly advanced when AT
this variable equals unity. For example, imagine that we want to guess how far gasoline AR
14 -7

has evaporated into the stagnant air in a glass-fiber filter. The evaporation has been going
on about 10 minutes, and the diffusion coefficient is about 0.1cm?/sec. Thus

(length)? B

(0.1 cm?2/sec)(600sec)

1; length = 8cm

Alternatively, suppose we find that hydrogen has penetrated about 0.1 centimeter into nickel.
Because the diffusion coefficient in this case is about 1078 cm? /sec, we can estimate how
long this process has been going on:

(107" em?) _
(10-8 cm?/sec) (time)

1; time = 10 days

This sort of heuristic argument is often successful.
A second important perspective between these two limiting cases results from comparing
their interfacial fluxes given in Egs. 2.2-10 and 2.3-18:

. D .
Jj1= TACI (thin film)

J1=+/D/mtAc, (thick slab)

Although the quantities D/I and (D/mt)!/? vary differently with diffusion coefficients.
they both have dimensions of velocity; in fact, in the life sciences, they sometimes are
called “the velocity of diffusion.” In later chapters, we shall discover that these quantities
are equivalent to the mass transfer coefficients used at the beginning of this book.
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