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7.1 INTRODUCTION Tab
Particulates constitute a major class of air pollutants. Particles have a diversity of shapes Size |
and sizes; they can be either liquid droplets or dry dusts, with a wide variety of physical and T_gc
chemical properties. They are emitted from many sources including both combustion and non- 5-10
combustion industrial processes. In addition, primary gaseous emissions may react in the atmos- 3.5
phere to form secondary species that nucleate to form particles or condense on preexisting ones.
An important class of industrial gas-cleaning processes remove particles from exhaust gas 1-3
streams, and such processes are the subject of the following chapters. This chapter presents infor- 0.5-1
mation about certain characteristics of particles and particulate behavior in fluids, with particular 0-0.5
emphasis on those that are relevant to the engineering task of separating and removing particles E
from a stream of gas.
1 Sourc
7.2 CHARACTERISTICS OF PARTICLES
E device
ciency
ciently
Your objectives in studying this section are to S
1. Understand the importance of an aerosol size distribution. SUSpes
9. Characterize an aerosol size distribution with data from a cascade 1 Air wi
impactor. shown
3. Develop and apply a log-normal size distribution function. . cessivs
stages
cascad
cal size

An aerosol is a suspension of small particles in air or another gas. Important aerosol
characteristics include size, size distribution, shape, density, stickiness, corrosivity, reactivity, and
toxicity. From the viewpoint of air pollution, the most important of these is the particle size distri
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bution. The most common aerosols cover a wide range of sizes—from 0.001 pm to 100 um. As
mentioned in Chapter 1, the effects of aerosols on human health and visibility are strongly size-
dependent, with particles in the range of 0.1 to 1.0 um being the worst.

In addition to average particle concentration per unit atmospheric volume, it is important
to note the size distribution by particle count and by mass. Such distributions for a typical atmos-
pheric particulate sample are shown in Table 7.1. From data in the last two entries, particles in the
0 to 1-um range constitute only 3% by mass. However, the number of particles in that range is
overwhelming compared with the rest of the sample. Particles of this size range are capable of
entering the lungs. From q heaith Standpoint, it is not so much a question of lowering the overall
atmospheric dust loading in an urban area but of decreasing the heavy particulate count in the
smaller size range.

Table 7.1 Particle Distribution of a Typical Atmospheric Sample

Size range (um) Average size (um) Particle count» Mass percent
10-30 20 1 27

5-10 735 112 53

3-5 4 167 12

1-3 2 555 3

0.5-1 0.75 4,215 2

0-0.5 0.25 56,900 il

2 Count of other sizes relative to count of 20-um size,
Source: Wark and Warner (1981).

As can be expected from such a wide range of sizes, one type of particulate collection
device might be better suited than others for a specific aerosol. Furthermore, the collection effi-
ciency of these devices depends on particle size, with bigger particles usually removed more effi-
ciently, as shown on Figure 7.1. Thus, to calculate the overall collection efficiency of a device, it
is imperative to have good information on the size distribution of the particles.

A good device to obtain this information is a cascade impactor. It separates and sizes
suspended particles in a manner similar to the way that sieves separate and size samples of sand.
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Integrating over all particle sizes:

1.0=f n(D,) dD, .1
0

The units of n (D) are um-1. The normalized distribution of particle mass with respect to
particle size is defined as follows:

nm(Dp)dD, = mass-fraction of particles having diameters in the range D, to D, + dD,

The cumulative frequency distribution function, F (Dp), is the fraction of the number of
particles with diameters smaller or equal to D,,. Therefore,

D,
F(DP) = f n(DP' ) dDy' 1.2
0

The cumulative mass distribution function, G(D,), is the mass-fraction of the particles
with diameters smaller or equal than D,. Then,

(7.3)

Because particle sizes in an aerosol population typically vary over several orders of mag-
nitude, it is often convenient to express the size distribution in terms of the natural logarithm of
the diameter, In D, In a particular incremental particle size range D, to D, + dD, the fraction of
particles is a certain quantity, and that quantity is the same regardless of how the size distribution

function is expressed. Thus,
n(Dp)dD,, = n (In Dp) d(In D) (7.4)
Because d(In D,) = dD,/D,

D,n(D,) = n(InD,) (1.5)
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The next question that arises is: What functions are commonly used to represent particle
size distributions? A popular function for this purpose is the log-normal distribution. If a quantity
u is normally distributed, the probability function for u obeys the Gaussian distribution:

et
n (u) = 1 exp {_ (u um) } (1.6)
2% G, 207 :
where
u,, is the mean value of the distribution
o, is the standard deviation

A quantity that is log-normally distributed has its logarithm governed by a normal distri-
bution. If the quantity of interest is particle diameter D,, then saying that an aerosol population is
log-normally distributed means that u = In D, satisfies Eq. (7.6):

In B, — In Dy )
) T2 In o, 2 (inc,)? T

The physical significance of the parameters D, and o, will be discussed shortly. It is
more convenient to express the size distribution function in terms of D, rather than In D,,.
Combining Egs. (7.5) and (7.7):

In D, —In Dy, )
gor Y (in D, - In Dy
(D) 2% Dyno, | 2(ingy)? (1.8)

For a normally distributed quantity, the cumulative frequency distribution function, F(u),
is

u

Lo e
T Oy u

—oo

To evaluate this integral, let | = (u’ — u,,)/212 G, then,
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£

(u um)/ V—O'u
Flu)= L f exp(-n2)dn (7.10)

oo

Integrating in terms of the error function, erf 1| (see Problem 6.1),

F(*)—l{lﬂff(uf::ﬂ s o et

For the log—ndrmal distribution, u = In D), so Eq. (7.11) can be expressed as

1(D,/Dyym)

Vzlncg :

AD,) =L+ Lerr
(p) ) 2e

(7.12)

It is evident from Eq. (7.12) that F(D om). = 0.5. Thus D, is the number median diameter
(NMD) defined as the diameter for-which exactly one-half the particles are smaller and one-half
are larger. To understand the s1gn1flcance of o, consider that diameter D, for which o, =
Dys/Dp,,. At that diameter 3

FDyo)=L+ Lerf [ L

g2 (VE)

=0.841 (71.13)

Thus, G is the ratio of the diameter below which 84.1% of the particles lie to the number
median diameter. D, is one standard deviation from the median, so O, is called the geometric

standard deviation.

It can be shown (Seinfeld and Flagan 1988) that if the number size distribution function
is log-normal, then the mass size distribution function is also log-normal with the same geometric
standard deviation and the mass median diameter (MMD) given by

In MMD = In NMD + 3 (In 5, (114

Therefore,
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In (D,/MMD)

G(D,)=1 + Lerf
(p) \Elncg

1
22

(7.15)

The log-normal distribution has the useful property that when the cumulative distribution
function, either F or G, is plotted against the logarithm of particle diameter on a special graph
paper with one axis scaled according to the error function, so-called log-probability paper, a
straight line results. Such a plot with actual data from an aerosol population obtained with a cas-
cade impactor serves two purposes: (1) to determine if the log-normal model fits the data, and (2)
if so, to estimate the parameters MMD and c,.

A plOt 4
straigh!
. ; tributic
Example 7.1 Analysis of data from a cascade impactor
The following data were obtained from a cascade impactor run on a sample from an aerosol 10C
population (Cooper and Alley 1986):
Size range (um) Mass (mg)
0-2 4.5 =
25 179.5 o
2
5-9 368 2
9-15 276
15-25 13.5
>25 : 18.5
Show that a log-normal distribution fits the data, and estimate the corresponding values of ]
MMD, NMD, and o,.
Solution
From F
Prepare a table of particle size versus cumulative mass fraction, G, less than the stated size, (7.14),1
as follows:
Comi
Althoug
tors hav
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|
Dp (um) G (%)
2.0 0.5
5.0 20.0
9.0 60.0
15.0 90.0
25.0 98.0

A plot of these data is presented in Figure 7.3, using log-probability scales. The resulting
straight line is evidence that a log-normal distribution is an adequate model for the size dis-

tribution function.
100
El
Ei 10 =
Q
¥V
v
1 Figure 7.3 Log-
= SRAn S5RE S 2 ; tion, data of
Cumulative mass percent, G (%) Example 7.1

From Figure 7.3, MMD = 8.0 um, Dy = 14 pm. Therefore, o, = 14/8 = 1.75. From Eq.
(7.14), NMD = 3.13 um.

Comments

Although there is no completely satisfactory theoretical explanation for it, many investiga-
tors have reported that the distribution of several quantities related to environmental pollu-

e A — —
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tion, such as particle size, ambient air quality data, indoor radon measurements, stream
water quality data, phosphorus in lakes, radio nuclides in soil, trace metals in human tissue,
lung function reaction to ozone, and others often appear log-normal (Larsen et al. 1991; Ott
1990).

Table 7.

Example 7.2 The log-bimodal size distribution function

It has been observed that frequently the log-normal size distribution becomes less accurate
to describe the end of the distribution representing fine particulate. Kerr (1989) suggested to
overcome this difficulty by breaking the size distribution into a fine and a coarse log-normal
distributions—a log-bimodal distribution. This is a five-parameter model given by:

)=RGf(Dp)+ G. (Dp)
R+1

G (D, (7.16)

where
R = mass ratio of fine particulate source to coarse particulate source

In (D,/MMD)
VE Ino of

GAD,) = L+§erf

N8}

100 =

Gc(Dp) =1 J1er M

{ i e
232

Valncsgc

MMD;and MMD, = mass median diameter for the fine and coarse fractions 10

Ogr and O, = geometric standard deviations for the fine and coarse fractions

This model can be fitted to actual data from an aerosol population through non-linear

Diameter (pm)

regression techniques. Software packages for performing this task are plentiful. Obviously,

the validity of this approach should be tested by calculating some criteria, such as the stan-

I\

dard error of the estimate, that tests the goodness of fit. Consider the data on Table 7.2 char- o=

acterizing an aerosol population. Figure 7.4 shows these data plotted on log-probability
scales. It is evident from it that the distribution is not log-normal. Using a nonlinear regres- 0.1

sion program a log-bimodal distribution is fitted to the data. The best estimate of the para-
meters are: R = 0.01023, MMDy = 0.5028 um, MMD, = 11.29 um, ogr=1.202, and 6, =
1.353. The standard error of the estimate is 0.42%. The solid line on Figure 7.4 corresponds
to the size distribution predicted by the log-bimodal model whereas the circles illustrate the
actual experimental data. The model is remarkably good. ‘

.001
01
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Table 7.2 Log-Bimodal Size Distribution Data

Particle size (um) G x 100
0.3 0.00252
0.5 0.4950
0.7 0.9579
1.0 0.9901
2.0 1.012
3.0 1.035
4.0 1.039
5.0 1.343
6.0 2.808
7.0 6.636
8.0 13.59
10.0 34.99
12.0 58.28
15.0 82.67
20.0 97.05
25.0 99.57
100
)
Lo~
g} 10
g
A1
-
Figure 7.4 Log-
0.1 bimodal particle size
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Comments

Pa

Flagan and Seinfeld (1988) observed that particulate size distributions in the flue gases of lution cont

pulverized-coal combustion systems exhibit two distinct peaks, one in the submicron-size electrostati

range, and one in the 3- to 50-jum range. According to them, submicron ash constitutes less the Surroun

than 2% of the total fly ash mass. Ash residue particles that remain when the carbon burns \ t1.onal', iner

out account for the large-diameter fraction, whereas ash volatilization followed by nucle- ?1rect10n of

em to pre’

e e S A

ation and coagulation into very small particles accounts for the fine fraction.
The following computer program, based on a very compact and efficient subroutine pre-
sented by Press et al. (1989), estimates the error function with a fractional error everywhere

control equ

less than 10-7.
7.3.1 Dra

PROGRAM ERFUNC

PRINT *, ¢ ENTER VALUE OF X * - &
READ *, X consider th
IF (X . GT. 0) THEN : equations ¢
ERF = 1.- ERFCC(X) ticle, a fori
ELSE

when visco

ERF = ERFCC(X) -1. or low-Rey
END IF Tt
PRINT *, ¢ THE VALUE OF ERE(X) IS °, ERF a sphere in
END exerted by
FUNCTION ERFCC(X) pressure fic
Z=ABS(X)

T=1./(14+0.5%Z)
ERFCC=T*EXP(-Z*Z-1.26551223+T*(1.00002368+T*(.37409196+
% T#(.09678418+T*(-.18628806+T*(27886807+T*(-1.13520398+
% T*(1.48851587+T*(-.82215223+T*.17087277))))))

IF (X.LT.0.) ERFCC=2.-ERFCC

RETURN m

St
7.3 DYNAMICS OF PARTICLES IN FLUIDS Stokes’a 48

account for
force in ter

where
Ur

Your objectives in studying this section are to

1. Apply Stokes’s law to the calculation of the drag force exerted by a
fluid on a moving particle.

2. Estimate the drag force when Stokes’s law does not apply.

3. Calculate the Cunningham correction factor for small particles.

4. Estimate the settling velocity of particles under the influence of gravity. dinticioi b

where A, i
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Particles are often separated from a fluid as part of a pollution control system. In air pol-
lution control, particles can be removed by gravity settlers, centrifugal collectors, fabric filters,
electrostatic precipitators, or wet scrubbers. In all of these devices, particles are separated from
the surrounding fluid by the application of one or more external forces. These forces—gravita-
tional, inertial, centrifugal, and electrostatic—cause the particles to accelerate away from the
direction of the mean fluid flow. The particles must then be collected and removed from the sys-
tem to prevent ultimate reentrainment into the fluid. Thus, design and operation of particulate
control equipment require a basic understanding of the dynamics of particles in fluids.

7.3.1 Drag Force

A good place to start to study the dynamical behavior of aerosol particles in a fluid is to
consider the drag force exerted on a particle as it moves in a fluid. To calculate this force, the
equations of fluid motion must be solved to obtain the velocity and pressure fields around the par-
ticle, a formidable task. These equations can be solved analytically only at very low velocities,
when viscous forces dominate inertial forces. The type of flow that results is called creeping flow
or low-Reynolds number flow

The solution of the equations of motion for the velocity and pressure distribution around
a sphere in creeping flow was first obtained by Stokes. The drag force, which is the net force
exerted by the fluid on the particle in the direction of flow, can be calculated once the velocity and
pressure fields are known. The result, known as Stokes’s law, is (Bird et al. 1960):

Fp =3nuD,u, (7.17)

where :
u, = relative velocity between the fluid and the particle
W = fluid viscosity

Stokes’s law is valid for Re = uDpp/i < 0.1. At Re = 1.0, the drag force predicted by
Stokes’s law is 13% low owing to the neglect of the inertial terms in the equation of motion. To
account for the drag force over the entire range of possible Reynolds numbers, express the drag
force in terms of an empirical drag coefficient Cp as

%
Fp=CpA,p o (7.18)

where A, is the projected area of the body normal to the flow. Thus, for a spherical particle of
diameter D, ;

T —— e e e
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5 smaller than that

Fp="Cpp Dp2 Ur (7.19) D, becomes small
4 2 Stokes’s law:

Table 7.3 summarizes some of the correlations available for the drag coefficient as a
function of the Reynolds number.

Table 7.3 Correlations for Drag Coefficient of Spherical Particles - ol i il
Millikan between
Range of Reynolds Number Correlation for Cp
Re < 0.1 (Stokes's law) %_
Re
24(14+3 9 R
0.1 <Re<?2 ——(1+*Re+———Re ]n?,Re)
. Rel 16 160 e 2Tga§’1§ 7.
atm an ;
2 < Re < 500 2i(1+0.15Re°‘687)
Re
500 < Re <2 x 105 0.44 Table 7.4 Ci
Source: Flagan and Seinfeld 1988. D, (wm)
0.01
0.05
7.3.2 Noncontinuum Effects 0.10
0.50
Aerosol particles are small. The particle size is often comparable to the distances that gas 1.00
molecules travel between collisions with other gas molecules. Consequently, the basic continuum 5.00
transport equations must be modified to account for non continuum effects. The Knudsen number, :
10.00

Kn = 2A,/D,, where M, is the mean free path of the gas, is the key dimensionless number in this

réspect.
The mean free path of a gas can be calculated from the kinetic theory of gases as

7.3.3 Gravitc

0.1145
D = i el
P M (7.20) For are
/& external force m

Newton’s seconc
where P is the gas pressure in kPa, and M is the gas molecular weight. For example, for air at 298
K and 1 atm the mean free path is 6.51 X 10-8 m = 0.0651 um. Stokes’s law derives from the

. equations of continuum fluid mechanics. When the particle diameter approaches the same order as
the mean free path of the suspending gas molecules, the resisting force offered by the fluid is
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smaller than that predicted by Stokes’s law. To account for this effect that becomes important as
D, becomes smaller, a slip factor, C., also called Cunningham correction factor, is introduced into
Stokes’s law:
3nuu.D,
Ce

Fp (7215

where an empirical correlation for C. was developed, based on experiments performed by
Millikan between 1909 and 1923, as (Allen and Raabe 1982)

. Co=1+Kn [ 1.257 + 0.40 exp (‘ %ﬂ (1.22)
n

Table 7.4 shows the value of the Cunningham correction factor for particles in air at 1
atm and 298 K.

Iable 7.4 Cunningham Correction Factor for Air at 1 atm and 298 K

D, (um) Knudsen number (Kn) Cunningham factor )
0.01 13.02 2057

0.05 2.60 5.06

0.10 1.30 291

0.50 0.26 1.337

1.00 0.13 1.168

5.00 0.026 1.034

10.00 0.013 1.017

7.3.3 Gravitational Settling

For a relative motion to exist between a fluid and a freely suspended particle, at least one
external force must exist. Considering an external force, F,, which is opposed by the drag force,
Newton’s second law of motion for a particle of mass mp can be written as

du
F,-Fp=m, %%
e P r (7.23)

S ————
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For a spherical particle in the Stokes’s region, Eq. (7.21) can be substituted into
Eq.(7.23) to yield

% + 187“ Uu,= _F__e 2
L 7.24
dt ppCch2 mpy ( )

Equation (7.24) can be rewritten as

duy  u_ Fe

7.25
gr T, (7.25)

where 7 is a characteristic time associated with the motion of the particle given by:

. DpzppCC
18u

. (7.26)

Equation (7.25) is the basic differential equation governing the motion of a particle in a
fluid when Stokes’s law applies. Consider, for example, the resultant motion when gravity is the
“only external force (the buoyancy force can be neglected when the fluid is a gas). Equation (7.25)
becomes

duy | uy_
e (7.27)

where g is the gravitational constant. If the initial relative velocity is zero, the solution to Eq.
(7.27) is

Uy=1g [1 - exp ( % ﬂ (7.28)
For t >> 7, the particle attains a constant velocity, called its terminal settling velocity, u,,
Dp2 PpCc8
Uy = T g: — (729)
18

Figure 7.5 illustrates the transient behavior of a particle settling under the influence of
gravity. After four characteristic times, the particle’s velocity is virtually equal to its terminal
velocity.
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The transient portion of a particle’s settling time is usually ignored. Table 7.5 shows the
terminal velocity and the characteristic time for several particles in the size range of interest in air
pollution control applications. Because t is so small, it is justified to assume that the terminal
velocity is attained almost instantaneously.

Table 7.5 Gravitational Settling of Unit Density Spheres in Air At 298

Kand 1 atm

D, (um) Characteristic time (1, s) Terminal velocity (m/s)
0.1 8.8x 108 8.6x 107

0.5 1.0x 10 1.0x 103

1.0 3.6x 106 3.5x 105

5.0 79 x 105 7.8 x 104

10.0 3.1 104 3.1x 103

For a particle larger than 10 to 20 pm settling at its terminal velocity, the Reynolds num-
ber is too high for the Stokes’s regime analysis to be valid. The drag coefficient is a useful way to
represent the drag force on a particle over the entire range of Reynolds number. Newton’s second
law of motion can be rewritten in terms of the drag coefficient:

duy _ 1 2
mp‘c‘i‘t‘r‘—Fe"'z'CDpAP Uy (7.30)
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If the external force is constant, the motion approaches a terminal velocity at which the
external force is exactly balanced by the drag force,

2F,
Cpu’ == 7.31
PAp e
For terminal settling owing to gravity of a spherical particle,
4D,p, 8
Cpu=—2"22 (1.32)

Because Cp depends on u, through Re, this equation can not be solved explicitly for u,.
Instead, Eq. (7.32) must be solved for u, by trial and error or through the following procedure.
Define a new dimensionless nurnber the Galileo number.

Ga= CpRe? =Cpu; ( pP)

m (7:33)
Substitutin; Eq=(7:32)-inEq::¢33);
! Dp3 PPp&
Ga= oy T (7.34)
Another useful felation between Cp and Re is:
RECRSGAL B (1.35)

Cp Ga 4gp,u

The following correlation due to Koch can be used to relate Re/Cp to Ga (Licht 1980):

o 3
In 4/ %9 =-3.194+2.153 1n Ga" - 0.238 {in Ga'* ) + 0.01068 (in Ga'”* ) o
D
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To calculate u, for a particle of any diameter, first calculate the value of Ga. Then, calcu-
late Re/Cp from Eq. (7.36) and finally obtain u, from Eq. (7.35).

Example 7.3 Gravitational Settling Velocity

Estimate the terminal settling velocity of a spherical particle with a diameter of 100 um and

a density of 2,600 kg/m?3 falling through air at 373 K and 1 atm under the influence of gravi-
ty. Calculate the terminal Reynolds number, Re;, and the terminal drag force on the particle.

Solution

For air at 373 K and 1 atm, p = 0.947 kg/m3, 1 = 2.1 x 10-5 kg/m-s. From Eq. (7.34), Gal’?
=4.174. Equation (7.36) yields (Re/Cp)'3 = 0.564. From Eq. (7.35), u;= 0.522 m / s.
Calculate Re; = uD,p/p = 2.35. There are two ways to calculate the terminal drag force.
The eaéy way is to notice that when the particle attains constant velocity, the drag force is
perfectly balanced by the external force, gravity in this case. Therefore, the drag force is
equal to the weight of the particle: Fpp = m,g = 1.33 x 10-8 N. Remember that this is true

only at the terminal velocity. A more general approach to calculate the drag force is through
Eq. (7.19). Calculate the drag coefficient with the corresponding correlation from Table 7.2:

Cp= 24Re(1+0.15R"7) _ 1507, Substituting in Eq. (7.19), Fp = 1.32 x 10-8 N,
There is a slight difference between the two results due to the use of Eq. (7.36), an approxi-
mate correlation, as part of the procedure to calculate the terminal velocity.

7.3.4 Collection Of Particles By Impaction, Interception, and Diffusion

When a flowing fluid approaches a stationary object such as a fabric filter thread, a large
water droplet , or a metal plate, the fluid flow streamlines will diverge around that object. Because
of their inertia, particles in the fluid will tend to continue in their original direction. If the particles
have enough inertia and are located close enough to the stationary object, they will collide and be
collected by it.

Impaction occurs when the center of mass of a particle that is diverging from the fluid
streamlines strikes a stationary object. Inferception occurs when the particle’s center of mass
closely misses the object, but, because of its finite size, the particle strikes the object. Collection
of particles by diffusion occurs when small particles (which are subject to random motion about
the mean path) diffuse toward the object while passing near it. Once striking the object by any of

i A M




312 Chap.7 Fundamental of Particulate Emissions Control

these means, particles are collected only if there are short-range forces strong enough to hold
them to the surface.

A simple means to explain impaction is with the concept of stopping distance. If a sphere
in the Stokes’s regime is projected with an initial velocity uo into a motionless fluid, its velocity as
a function of time (ignoring all but the drag force) is

—tlt

Hp = (7.37)
The total distance traveled by the particle before it comes to rest is
xs,oI,:f U, dt =upT (7.38)
. -

If the particle stops before striking the object, it can be swept around the object by the
altered fluid flow. Because 7T is very small, Xy, is also small. For example, if a 1.0-um particle

with unit density is projected at 10 m/s into air, it will travel only 36 pm.
An impaction parameter, N;, can be defined as the ratio of the stopping distance of a par-

ticle (based on the upstream fluid velocity) to the diameter of the stationary object, dy, or:

_ *siop
= T

If N, is large, most of the particles will strike the object, otherwise, most will follow the
fluid flow around it.

N (1.39)

7.4 EFFECTIVENESS OF COLLECTION

Your objectives in studying this section are to

1. Define fractional efficiency, overall efficiency based on particle
number, overall efficiency based on particle mass, and penetration.

2. Develop a relation between overall mass collection efficiency and
fractional efficiency for a log-normal aerosol population.

3. Apply Gauss-Hermite quadrature formulas to the evaluation of overall
mass collection efficiencies.

4. Estimate the fractional and overall collection efficiencies of settling
chambers operating in the turbulent flow regime.

5. Calculate the overall collection efficiency of two or more particulate
collection devices operating in series.

Sec. 7.4
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The success of a particulate collection system may be expressed either in terms of the
amount of aerosol removed from the air stream, or the amount permitted to remain in it. The col-
lection or removal efficiency of a device may be defined in various ways. For instance, the frac-
tional or grade efficiency 1| (D,) is defined as:

Tl(D ) 2 number of particles of diameter D, out
) = 1.~

number of particles of diameter D, in (7.40)

This efficiency can be expressed in terms of the particle size distribution functions at the
inlet and outlet sides of the device:

Min (Dp)de ~ Mow (Dp) ab,
D=
T'l( P) - (DP) dD, (7.41)

The overall efficiency based on particle number 1y is defined as

number of particles out

S ok .
number of particles in e
In terms of the particle size distribution functions, the overall efficiency is
f Now (D) dD,
My=1-=
- 7.43
f nin (D,) dD, e
0
Combining Egs. (7.41) and (7.43):
f n(Dp) Nin (Dp) db,
0
My =

f nin (D) dD, (7.44)
0

i
il
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The overall efficiency based on particle mass 1, is defined as

mass of particles out

My =1-
mass of particles in (7.45)

For spherical particles of uniform density:

3
f N(Dp) Dy nin (Dy) dD,
==
= (7.46)
j nin (D) D; dD,
0

The overall collection efficiency by mass is usually the easiest to measure experimental-
ly. The inlet and outlet streams may be sampled by a collection device, such as a filter, that col-
lects virtually all of the particles.

The collection efficiency is frequently expressed in terms of penetration. The penetration
is based on the amount emitted rather than on the amount collected; based on particle mass, it is
just Pty=1-mpu.

The fractional efficiency n(D)) is, for most collectors, a unique single-valued function
for a particular set of operating conditions. It depends on such parameters as the nature and design
dimensions of the collector, and the rate of flow and particulate loading of the gas stream. The fol-
lowing chapters will develop the fractional efficiency function for the most common devices used
for particulate removal from gaseous streams.

For a log-normal particle size distribution, Eq. (7.46) can be written as

j N(u) € nin (u) du

—o0

- 747
f nin (1) e3* du g

—00

Ny =

Sec. 7.4
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j () 3% e~ - 1202 4

—oo

% (7.48)
f 3 g (u-m)'1202 gy,

—oo

Ny =

where u = In D,, u,, = In NMD and 6, = In ;. The denominator of Eq. (7.48) is easily evaluated
(see Problem 7.7), leading to: :

f (1) 34 e~ (=) 1207 gy ;
& (7.49)

V21 o, €31 £90:12

Nm =

Equation (7.49) can be further simplified (see Problem 7.12):

f nw) e (u-u)*r202 Jui :
- : (7.50)

Ny = S
V2n o,

where 1 = In MMD. Define a new variable v such that:

u—-u

o : (7.51)

y =

In terms of this variable, Eq. (7.50) becomes:

f ’q(v)e“’zdv

— o0

MM =

(7.52)
Vo

For a given fractional efficiency function, the integral of Eq. (7.52) can be approximated
numerically using the Gauss-Hermite quadrature method (Carnahan et al. 1969). Kerr (1981,




316 Chap.7 Fundamental of Particulate Emissions Control

1989) and Benitez (1988) have used this technique where the log-normal distribution applies. The
integral becomes:

o N
f nw)e” dv = > wimvi) (1.53)

o i=1

where w; and v; are the weight factors and roots of the Nth degree Hermite polynomial
(Abramowitz and Stegun 1972). As a general rule, the accuracy of the numerical integration
increases with increasing polynomial degree. Benitez (1988) suggested that an 8-point formula
was adequate for preliminary design purposes.

Example 7.4 Overall Mass Collection Efficiency Calculations

The fractional efficiency function of a particulate removal device is given by:

n(D,) = 1 - exp|- 0.000651 D) (7.54)

where D, is in microns. The device processes a log-normally distributed aerosol with a
MMD of 50 um and o, of 2.5. Estimate the overall mass collection efficiency. Use an 8-
point Gauss-Hermite quadrature formula to estimate the integral.

Solution

The procedure to estimate the overall mass collection efficiency is as follows:

e Choose the number of quadrature points to use, N.

e Obtain the values of the roots, v;, and weight factors, w;, of the corresponding
Hermite polynomial either from a mathematical table or from a computer
program provided subsequently.

e For each of the roots, calculate the corresponding u; from Eq. (7.51).

e Calculate D,,; = exp u;.

e Calculate 1 (D) from Eq. (7.54).

e Calculate w; (D) fori=1, 2, ..., N.

e Calculate ny, from Eqgs. (7.52) and (7.53).

The following table summarizes the calculations for an aerosol population with MMD = 50

um and 6, =2.5.

Sec.7.4
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-~

—-2.93063
-1.98165
-1.15719
-0.38119
0.38119
1.15719
1.98165
2.93063
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vi Dpi (um) n (Dpi) wi Wi (Dpi) !
-2.93063 1.12 0.0008 0.00020 0 ‘
-1.98165 3.83 0.0095 0.01708 0.00016 |
-1.15719 11.16 0.0779 0.207802 0.01619 |
-0.38119 30.51 0.4545 0.66115 0.30050
0.38119 81.94 0.9870 0.66115 0.65260 1
1.15719 223.97 1.0000 0.207802 0.20780
1.98165 651.89 1.0000 0.01708 0.01708 |
2.93063 2,246.10 1.0000 0.00020 0.00020
% = 1.19453, |
i

Nur= 1.19453/r12 = 0.6739 (67.39%)

Comments

Notice the symmetry of the roots and weight functions of the Hermite polynomials. This
characteristic simplifies computer implementation of the method. The following is a com-
puter subroutine to calculate the roots and weight factors of the Nth degree Hermite polyno-
mial.

SUBROUTINE HERMIT(NN,X,A,EPS)

CALCULATES THE ZEROES X(I) OF THE NN-TH ORDER

HERMITE POLYNOMIAL. ALSO CALCULATES THE CORRESPONDING

WEIGHT FACTOR A(I) FOR GAUSS-HERMITE QUADRATURE

DIMENSION X(50), A(50)
FN = NN
N1 =NN-1
N2 = (NN+1)/2
CC = 1.7724538509*GAMMA (FN)/(2.#*N1)
S = (2.%FN+1.)**.16667
DO 111I=1,N2

IF (I.EQ. 1) THEN

XT = S**3 - 1.85575/S
ELSE IF (I .EQ. 2) THEN
XT = XT- 1.14*%FN** 426/XT
ELSE IF (I .EQ. 3) THEN
XT = 1.86*XT-0.86%X(1)
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ELSE IF (I .EQ. 4) THEN
XT = 1.91¥XT-91#X(2)
_ELSE
XT = 2.#XT-X(1-2)
END IF
CALL HROOT(XT,NN,DPN,PN1,EPS)
X(D) = XT
A(T) = CC/DPN/PN1
NI = NN-I+1
X(NI) = -XT
AN = A(T)
11 CONTINUE
.~ RETURN
END
FUNCTION GAM(Y)

o0 R

—

GAM = (((((((0.035868343*Y- 1193527818)*Y + .482199394)*Y-
1 756704078)*Y + .918206857)*Y - 897056937)*Y + .988205891)*Y
2 -577191652)*Y + 1.0
RETURN
END
FUNCTION GAMMA(X) ]
ee COMPUTES THE GAMMA FUNCTION OF X FOR X BETWEEN 0 AND 35.

Z=X
IF (Z LE.0.0 .OR.Z .GT. 35.) THEN
GAMMA = 0.
ELSE IF ( Z .EQ.1.) THEN
GAMMA=1. - :
ELSEIF (Z .LT. 1.0) THEN
GAMMA = GAM(Z)/Z
ELSE IF (Z .GT. 1.0) THEN
ZA=1.
10 L=Z =13
IF (Z EQ.1)THEN
GAMMA =ZA
ELSE IF (Z .GT. 1.0) THEN
ZA =ZA*Z
GOTO 10 ? : Examj
&5 ELSE IF (Z .LT. 1.0) THEN
GAMMA = ZA*GAM(Z)
END IF
END IF
RETURN

END
SUBROUTINE HROOT(X,NN,DPN,PN1,EPS)

o T — ot~ |
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IMPROVES THE APPROXIMATE ROOT X
DPN = DERIVATIVE OF HN) AT X
PN1 = VALUE OF H(N-1) AT X

0.0 0

ITER =0
ITER=ITER +1
CALL HRECUR(P,DP,PN1,X,NN)
D =P/DP
X=X-D ;
IF( ABS(D) .GT. EPS .AND. ITER .LT. 10) THEN
GOTO 1 ]
ELSE
DPN =DP
END IF 7
END
SUBROUTINE HRECUR(PN,DPN,PN1,X,NN)
pl=1.
p=X
DP1=0.
DP=1.
DO 17=2,NN
~ FI=J
FI2 = (FI-1.)/2.
Q = X*P-FI2*P1
DQ = X*DP + P - FI2*DP1
P1=P
P=Q
DP1 =DP
DP=DQ
1 CONTINUE
PN=P
DPN = DP
PN1=PI
RETURN
END

—

Example 7.5 QOverall Mass Collection Efficiency of Settling Chamber

| The settling chamber is perhaps the simplest of all air pollution control devices. Its main
usefulness lies in serving as a preliminary screening device for a more efficient control sys-
tem. Where the mass of the larger particles is huge, the settling chamber can remove much
of the mass of the particulate population which would otherwise choke up the other control
device, impairing its operation or requiring too frequent cleaning. ;
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The use of several trays improves the collection efficiency of a settling chamber since the Considoe s
particles have a much shorter distance to travel before reaching the bottom of the passage air at 298 ]
between trays. Figure 7.6 shows a settling chamber in which trays are provided. :
The flow in a rectangular channel, such as the ones in a settling chamber with trays, is tur- The densit
bulent if the Reynolds number, Re, > 4,000 (McCabe and Smith, 1976). For the situation the S

depicted in Figure 7.6, the Reynolds number is (Crawford 1976)

Solution

Res= & The first s
u(Nt,W + H) (7.55) For air at

dimensior

where N, is the number of trays, including the bottom surface of the chamber. For turbulent means ful

flow, the fractional efficiency for particulate collection by a settling chamber is given by becomes
(see Problem 7.13):

To illustr
overall cc
lated bec:
At the lo
calculatic

(7.56)

)1 -] -]

Q

where u, is the terminal velocity of a particle of diameter D,,. Notice that N, LW = A, where
A, is the total area available for particle collection. Therefore, Eq. (7.56) can be rewritten as

I ————
Vi

Tl(Dp) =1-exp {— Aol ut} (1.57) —1.65068

Q ~0.5246:
! 0.52465
Top view 1.65068

M=

-

5 = Frequ
series. The oy
of each devic

£ g .
’L ‘ Figure 7.6 Schematic diagram deVllce, b“t.,—th‘
\L of a settling chamber with totaling .
system, Py, 1
trays

- [ —— Alley 1986).

Side view
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Consider a 5-m long settling chamber with 10 square trays. The device processes 10 m3/s of
air at 298 K and 101.3 kPa, carrying a log-normal aerosol with MMD = 25 pm and 6, = 2.0.

The density of the particles is 2,000 kg/m3. The total height of the chamber is 3 m. Estimate
the overall mass collection efficiency of the chamber.

Solution

The first step in the solution is to determine if the flow through the chamber is turbulent.

For air at 298 K and 101.3 kPa, p = 1.185 kg/m3 and p = 1.84 X 10-5 kg/m-s. The chamber
dimensions are: L=W=5m., H=3m. For N,, = 10, Eq. (7.55) yields Re, = 24,300 which

means fully developed turbulent flow. Calculate A, = (10) (5)2 = 250 m2. Equation (7.57)
becomes

n(D,)=1-exp [~ 25u) (7.58)

To illustrate the concept, choose a 4-point quadrature formula to relate the fractional and
overall collection efficiencies. The terminal velocities in Eq. (7.58) must be carefully calcu-
lated because Stokes’s law is not valid at the higher end of the particle size range covered.
At the lower end of the range, the Cunningham correction factor must be included in the

calculations.

Vi Dyi (um)  u;(m/s) Re N (Dpi) wi win(Dpi)
-1.65068 5 0.0015 0.0002 0.0368 0.08131 0.0030
-0.52465 15 0.0118 0.0113 0.2548 0.80491 0.2051
0.52465 41.8 0.1020 0.275 0.9220 0.80491 0.7421
1.65068 126 0.6220 5.05 1.0000 0.08131 0.0813

= 10315

nu = 1.0315/vx = 0.582 (58.2%)

Frequently, a particulate collection system consists of two or more devices operating in
series. The overall collection efficiency is not simply the sum nor the product of the efficiencies
of each device. Each device’s efficiency is based on the mass loading of particles entering that
device, but the overall system efficiency is based on the total mass collected as a fraction of the
total mass entering the first device. It can be easily shown that the overall penetration of such a
system, Pt,, is simply the product of the penetrations of all of the individual devices (Cooper and

Alley 1986).
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n
Pt, = Pt;
¢ I=-[1 : (1.59) Abrame
F ormuh
The overall collection efficiency of the system is Ty = 1 - Pt,. Allen, !
Benite:
Example 7.6 Overall Collection Efficiency with Two Control Devices in Partict
Series Meetir
A particulate control system consists of a settling chamber with an overall mass collection Bird.
efficiency of 65%, followed by an electrostatic precipitator with an overall mass collection York,
efficiency of 95%. Calculate the overall collection efficiency for the system. :
arn:
Solution e
Calculate the penetrations of the individual devices: Pt; = 1 —0.65 = 0.35,Pt,=1-095= (éoq
0.05. From Eq. (7.59), Pt, = (0.35) (0.05) = 0.0175. Therefore, the overall efficiency for the .
system is My = 0.9825 (98.25%) Cra
Fla
Ha
7.5 CONCLUSION
Removal of particulate matter from exhaust gases is a very important enginecring task Pe
because particles constitute a major class of air pollutants. The most important characteristic of an
aerosol population is its size distribution function. Not only are the deleterious effects of particu- K

lates dependent on their size, but the nature and design of the pollution control device appropriate
for a given aerosol are highly dependent on the characteristics of the size distribution function. K
Most aerosols of interest in air pollution control are log-normally distributed, which is fortunate
because such a function is easily characterized in terms of only two parameters.

Most particulate collection devices depend on an external force to impart on the particles
a velocity component that is normal to the direction of the gas flow. Settling chambers depend on
gravity for that purpose. The following chapters explore the mechanisms through which the most
popular particulate control devices operate, and derive the corresponding fractional efficiency
equations. Sizing and costing of particulate control equipment are covered in detail.
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The problems at the end of each chapter have been grouped into (b) Fra
four classes (designated by a superscript after the problem num-

~ ber).
7.3b. Modal

An img
defined as tk
eter is locate

distribution,

Class a: Illustrates direct numerical application of the formulas in the
text. -

Class b: Requires elementary analysis of physical situations, based on
the subject material in the chapter.

Class c: Requires somewhat more mature analysis.

Class d: Requires computer solution.

7.12, Analysis of data from a cascade impactor Estimife te

The following data were obtained when a sample of an aerosol population was ana-
lyzed with a cascade impactor:

7.44, Log-b
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Size range (Wm) Mass (mg) ;
0-4 RS 1‘
4-8 125 ‘
8-16 100 ; I
16-30 : 75 ‘
30-50 30 |
>50 5 i

Determine whether a log-normal distribution fits this data and, if so, estimate |
MMD, NMD, and G,. ; \‘

Answer: MMD = 10.8 ym |

7.2b. Log-normal distribution
For the aerosol population of Problem 7.1, calculate the following:

(a) Mass-fraction of particles with diameters between 5 and 10 pm.
Answer: 32.3%

(b) Fraction of the total number of particles with diameters between 1 and 5 pm.
Answer: 74.6%

7.3b, Modal diameter of a log-normal distribution

An important parameter of a size distribution function is the modal diameter, Dymos
defined as the diameter at which the greatest number of particles is clustered. This diam-
eter is located at the maximum point of the curve for n (Dp). Show that, for a log-normal
distribution, !

Dysio=NMD exp | (in o)’ |

Estimate the modal diameter for the aerosol population of Problem 7.1.
Answer: 1.58 um

7.44, Log-bimodal size distribution
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The following data were obtained with a cascade impactor

.

Dy (Lm) G (%)
0.5 54
1.0 14.4
2.0 23.4
4.0 37.0
8.0 55.1
10.0 61.4
15.0 72T
20.0 79.6
25.0 84.6
50.0 94.8

Fit a log-bimodal distribution function to these data and comment on the goodness
of fit of the model.

7.5 Log-bimodal size distribution

An aerosol population results from the combination of particulate matter from two
distinct sources. The coarser source is log-normally distributed with MMD = 10 um and
G, =3.0. The finer source is also log-normally distributed with 6, = 2.5, but unknown
MMD. Twenty-three percent of all the mass originates at the fine particle source. It was
found experimentally that the combined, cumulative mass fraction up to 3 um was
30.8%. Estimate the value of MMD for the fine source.

7.62. Urban aerosols

The size distribution of urban aerosols containing photochemical smog are usually
bimodal. The “fine particle” mode—Iless than 2um—contains from one-third to two-
thirds of the total mass, with the remainder in the “coarse particle” mode. The fine parti-
cles are produced by photochemical atmospheric reactions and the coagulation of com-
bustion products. The coarse particles are mainly of mechanical origin.

The aerosol over Pasadena, California, was sampled on September 3, 1969 under
light to moderate smog conditions. The MMD of the fine particle mode was 0.3 um with
a o, of 2.05. The corresponding parameters for the coarse particles were 8.0 pm and 2.3,

respectively (Hinds 1982). The cumulative mass fraction up to 1.0 um was 55%.
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Estimate what fraction of the total atmospheric aerosol was of photochemical origin.

Answer: 57.3%

7.7>. Mass concentration of a log-normal aerosol population
An aerosol with a log-normal size distribution has a NMD of 0.3 um and a &, of

1.5. If the number concentration is 106 particles/cm3, what is the mass concentration?

Particles may be assumed spherical with a density of 4,500 kg/m3. The following identity
may be useful:

f eme—(u—ﬂ)ZIZGuzdu =\2zn Gue’; e(r26u2/2) :

—oo

Answer: 133 ng/m?

7.82. Terminal gravitational settling velocity

(a) Estimate the terminal gravitational settling velocity of a unit-density, 200-jm
diameter sphere in air at 298 K and 1 atm.

Answer: 0.68 m/s
(b) For a 0.15-um diameter spherical particle (p, = 2,500 kg/m?) determine the

Cunningham correction factor and the terminal settling velocity in air at 298 K and 1
atm.

Answer: 3.64 x 106 m/s

7.92, Dynamic shape factors

A correction factor called the dynamic shape factor, Y, is applied to Stokes’s law to
account for the effect of shape on particle motion. Stokes’s law for irregular particles
becomes : %

_3mpuDpX
Ce

D
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where D, is the diameter of a spherical particle with the same volume as the irregularly

shaped particle. The following table gives dynamic shape factors for particles of various
shapes.

Shape Dynamic shape factor
Sphere 1.00
Cube (I/D =4) 1.08

axis horizontal 1.32

axis vertical 1.07
Bituminous coal dust 1.05-1.11
Quartz 1.36
Sand 1.57
Talc 2.04

Source: Davies, C. N. J. Aerosol Sci., 10:477 (1979).

An old industrial hygiene rule of thumb is that a 10-pm silica particle settles in
atmospheric air at a rate of 1 cm/s. What is the true settling velocity of such a particle?
The specific gravity of silica is 2.6. Use the dynamic shape factor for quartz.

Answer: 0.566 cm/s

7.10b, Gravitational settling velocity
Atmospheric air is dried by bubbling it through concentrated sulfuric acid (pp =

1,840 kg/m3).The acid container is a 0.1-m diameter, 2-m long tube which holds 1.5 L of
acid. The air flow rate is 10 L/min. When the bubbles burst at the liquid surface, they
form droplets. What is the largest droplet that can be carried out of this system?

Answer: 19.5 pum

7.11>. Terminal velocity for electrically charged particles

When a particle possessing an electrical charge g, enters a region where an electric
field of strength E, is also present, an electrostatic force F will act on the particle. The
magnitude of this force is given by F = g,E. , where F is in newtons, g in coulombs, and
E, in volts/m. Estimate the terminal velocity in air at 298 K and 1 atm of a 1.0-pm diam-

eter particle with a charge of 0.3 x 10-15 coulombs under the influence of an electric field

Problems

of 10° V/m.

7.12b, Ove!

Deriv
a log-norm

7.13¢, Tur

Deriv
chamber o
adjacent tc
trate, so th
of the flow
bution of |
the laminz
cles move

7.144, Ga
Writ
estimate t
tion effici
tion. The
of the log
your prog
and obser

7.154. O

Wi
settling ¢
normally
formula.



Problems . 329

of 105 V/m.
Answer: 0.2 m/s

7.12b. Overall efficiency based on particle mass for log-normal function

Derive Eq. (7.50), which relates overall mass efficiency to fractional efficiency for
a log-normal distribution, beginning with Egs. (7.49) and (7.14).

7.13<. Turbulent flow in settling chambers

Derive Eq. (7.56) for the fractional efficiency of particulate collection by a settling
chamber operating in the turbulent flow regime. Assume that there is a laminar layer
adjacent to the bottom surface of the passage into which turbulent eddies do not pene-
trate, so that any particle that crosses into this layer is captured shortly. In the remainder
of the flow passage, the eddying motion owing to turbulence will cause a uniform distri-
bution of particles of all sizes. The vertical component of the velocity of the particles in
the laminar layer is the corresponding terminal settling velocity. Horizontally, the parti-
cles move at the average velocity of the gas through the passage. |

7.144. Gauss-Hermite quadrature for overall efficiency estimation

Write a computer program to implement the method outlined in Example 7.4 to
estimate the overall mass collection efficiency for a device with a given fractional collec-
tion efficiency equation when it operates on a log-normally distributed aerosol popula-
tion. The user should be able to specify the fractional efficiency function, the parameters
of the log-normal distribution, and the number of quadrature points up to N = 50. Test
your program with the information on Example 7.4. Increase the number of points to 16
and observe the effect on the overall efficiency predicted.

7.154. Overall efficiency of a settling chamber

Write a computer program to estimate the overall mass collection efficiency of a
settling chamber operating in the turbulent flow regime. Assume that the aerosol is log-
normally distributed. Estimate the integral with an N-point Gauss-Hermite quadrature
formula. Test your program with the information on Example 7.5. Increase the number of
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points to 8 and observe the effect on the overall efficiency predicted.

7.16". Overall penetration of a log-bimodal aerosol population

Kerr (1989) showed that the overall mass penetration of a log-bimodal aerosol pop-
ulation through a particulate control device can be estimated by:

N N
RZ WiPt(Vﬁ)+z w,-Pt(va-)
P ! i=d
PtM =

VT (R +1)

where v.; and vy are as defined by Eq. (7.51) for the coarse and fine fractions respective-
ly. Consider a particulate control device with a fractional penetration function given by

P{(D,) = exp(- 0.066174 - 78,371 D))

where D, is in meters. The aerosol is log-bimodal with MMD; = 0.5028 um, MMD, =

11.29 um, 6,4 = 1.202, 6. = 1.353, and R = 0.01023. Estimate the overall mass collec-
tion efficiency of the device based on a 5-point quadrature formula.

Answer: 61%

7.17° Particulate matter deposition in the alveolar region

Table 7.6 shows the fraction of inhaled particles deposited in the alveolar region for
nose breathing at a rate of 14 L/min as a function of particle size D,. Estimate how much
mass deposits in a person’s alveolar region daily owing to breathing local air which con-

tains 150 mg/m3 of a log-normally distributed aerosol with MMD = 2.72 um and 6, =
1.649.

Answer: 0.54 mg/d
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Table 7.6 Fractional Deposition of Particles in Alveolar Region

Dy (um) Fraction D, (um)  Fraction
0.10 0.20 12 0.21
0.20 0.15 1.3 0.22
0.30 0.12 14 0.23
0.40 0.12 1.5 0.25
0.50 0:12 2.0 0.28
0.60 0.12 3.0 0.26
0.70 0.15 4.0 0.19
0.80 0.18 5.0 0.11
0.9 0.20 6.0 0.03
1.0 0.20 7.0 0.0

A 0.20 8.0 0.0

Source:Hattis et al. JAPCA 37:1060 (1987).

7.182, Particulate control devices in series

Particulate removal efficiency on a certain gas stream must be 98.5% to satisfy
emission standards. If a 60%-efficient cyclone precleaner is used with a wet scrubber,
what is the required efficiency of the scrubber?

Answer: 96.2%

7.19¢. Design of a settling chamber

Design a settling chamber to serve as a precleaner for an electrostatic precipitator
(ESP). The removal efficiency for the system must be at least 98%. The ESP efficiency is

96.7% for a gas flow rate of 10 m3/s of air at 298 K and 1 atm. The aerosol entering the
settling chamber is log-normally distributed with MMD = 15.0 um and 6= 2.5, and a

particle density of 2,000 kg/m3. Because of floor space limitations, the dimensions of the
trays in the settling chamber cannot exceed 4 m. The tray spacing must be 0.3 m.
Calculate the chamber dimensions and the number of trays required.
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7.20P. Optimal design of a settling chamber

Crawford (1976) showed that, when there are no space limitations, the optimal
design of a settling chamber operating in the turbulent flow regime is given by:

L=W= &
Ntr
1/3
Ny = Ac
(2AH)2/3

where A, is the total collection area and AH is the tray spacing. Calculate the optimal
dimensions and number of trays of a settling chamber to collect 50-um particles with
90% efficiency. The gas flow rate is 25 m3/s of air at 298 K and 1 atm. The particle den-
sity is 2,000 kg/m3. The tray spacing is 0.3 m.

Answer: L = 5.53 m
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