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Turbulent-viscosity mod els

In this chapter and the next we consider RANS models in which the Reynold,
equations are solved for the mean velocity field. The Reynolds stresses -
which appear as unknowns in the Reynolds equations - are determined b'.
a turbulence model, either via the turbulent viscosity hypothesis or mor.
directly from modelled Reynolds-stress transport equations (Chapter 11).

Turbulent-viscosity models are based on the turbulent-viscosity hypothesis.
which was introduced in Chapter 4 and has been used in subsequent chapters
According to the hypothesis, the Reynolds stresses are given by

(u,r i )  : !kd, i -  v1 (ry+ 9!q/) ,
\  cxj qXi 

/

or, in simple shear flow, the shear stress is given by

(uu) :-urqE2
o v

( 1 0 .  I

(10. r  ,

Given the turbulent viscosity field vr(x, r), Eq. (10.1) provides a most con-
venient closure to the Reynolds equations, which then have the same forn.
as the Navier*stokes equations (Eq. (4.46) on page 93). It is unfortunare.
therefore, that for many flows the accu racy of the hypothesis is poor. The
deficiencies of the turbulent-viscosity hypothesis - many of which have been
mentioned above - arc reviewed in Section 10.1.

If the turbulent-viscosity hypothesis is accepted as an adequate approri-
mation, all that remains is to determine an appropriate specification of the
turbulent viscosity vr(r, r). This can be written as the product of a velocitr
u . (x ,  r )  and a length l . (x , t ) :

v T :  u * ( " ,  ( 1 0 . 3 r

and the task of specifying v1 is generally approached through specifications
of u" and [. In algebraic models (Section 10.2) - the mixing-length model.
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10. I  The turbulent-viscosity hypothesis

for exam p\e - l. is specified on the basis of the geometry of the flow. In

two-equation models (Section 10.4) - the k-e model being the prime example

- u- and l* are related to k and e, for which modelled transport equations

are solved.

10. I  The turbulent-viscosity hypothesis

The turbulent-viscosity hypothesis can be viewed in two parts. First, there

is the intrinsic assumption that (at each point and time) the Reynolds-stress

anisotropy aij : (upi) _ 
trk|,, is determined by the mean velocity gradients

..(U,) lrxi .Second, there is the specif ic assumption that the relat ionship

between aii and A(1,)lAx1 is

or. equivalently,

(10.4)

(10.5)ai j  -2v15i1,

u'here S,, is the mean rate-of-strain tensor. This is, of course, directly analo-

sous to the relation for the viscous stress in a Newtonian fluid:
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(u,,) - trk;,,- -v1 (# . #),

-(r, i  + Pfu)lP - -2vSij '

10.1.1 The intrinsic assumPtion

To discuss the intrinsic assumption we first describe a simple flow for which

it is entirely incorrect. Then it is shown that, in a crucial respect, the physics

of turbulence is vastly different than the physics of the molecular processes

that lead to the viscous stress law (Eq. (10.6)). However, finally, it is observed

that, for simple shear flows, the turbulent viscosity hypothesis is nevertheless

quite reasonable.

AxisYmmetric contraction

Figure 10.1 is a sketch of a wind-tunnel experiment, first performed by Uberoi

( 1956), to study the effect on turbulence of an axisymmetric contraction. The

air flows through the turbulence-generating gfid into the first straight section,

in which the mean velocity (U1) is (ideally) uniform. In this section there is

10 mean straining (S,, : 0), and the turbulence (which is almost isotropic)

begins to decay.
Following the first straight section there is afl axisymmetric contrac-

tion, which is designed to produce a uniform extensive axial strain rate,

(10.6)



360 |  0 Turbulent-viscosity models

Straight section

.-r - 
AxisYmmetric

_: I  urDulence ". . . .  contraction
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Fi -e .  10.1.  A sketch of  an
(1970) .  to  s tudy the ef fec t

apparatus,  s imi lar  to  that  used by Ubero i  (1956)  and Tucker
of axisymmetric mcan straining on crid turbulence.

S" -  i (U1) lerr  :5 i ,  and hence uni form compressive la tera l  s t ra in rates,
S.. :  S,, :  - jS,. The quanti ty S;.kl t  (evaluated at the beginning of
the contraction) measures the mean strain rate relative to the turbulence
timescale. Figure 10.2 shows measurements of the normalized anisotropies
(bi i  = fuiu1l l fu1,ur) - 

1d,, :  )o, i lk) from the experiment of Tucker (1970)
wi th S;k l t : :2 .1.  A lso shown in F ig.  10.2 are DNS resul ts  for  S;kf  t : :55.J
obtained by Lee and Reynolds (1985). For this large value of S;klt : .  rapid-
distort ion theory (RDT, see Section 11.4) accurately describes the evolut ion
of the Reynolds stresses. According to RDT, the Reynolds stresses are de-
termined not by the rate of strain, but by the total amount of mean strain
experienced by the turbulence. In these circumstances the turbulence be-
haves not l ike a viscous f luid, but more l ike an elast ic sol id (Crow 1963): the
turbulent viscosity hypothesis is qualitatively incorrect.

In the experiment depicted in Fig. 10.1, fol lowing the contraction there is
a second straight section. Since there is no mean straining in this section, the
turbulent-viscosity hypothesis inevitably predicts that the Reynolds-stress
anisotropies are zero. However, the experimental data of Warhaft (1980)
show instead that the anisotropies generated in the contraction decay quite
slowly, on the turbulence t imescale kl,  (see Fig. 10.2). These persist ing
anisotropies exist not because of the local mean strain rates (which are zero),
but because of the prior history of straining to which the turbulence has
been subjected.

Evidently, for this flow, both in the contraction section and in the down-
stream straight section, the intrinsic assumption of the turbulent-viscosity
hypothesis is incorrect: the Reynolds-stress anisotropies are not de termined
by the local mean rates of strain.

r i
l-.)

al
i.. )

S , ,  = 0
si

5:, =-i 
",
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Contraction Straight0.20

0 . 1 0
b , ,

0.00

-0 .1  0

-0.2t)

-0.30

0.0 rclks;"t

F- ig .10 .2 'Reyno lds .s t ressan iso t rop iesd , t r^ r11g. i1 r$ l t te rax isymmet r ics t ra in i r lg .Con-
t * rc t ron ,  . *p . . , * .n ta l  da ta  o f  ruJ i . ,  (1970 i .  s ;k l t : :2 .7 :A  DNS data  o f  Lee and

Reyr io lds (1e851. s, t  f  t : :55.1:  t t . ' '  n ignt  t i .e^r  I '9T.th-t i : : l i l : : . : t  the contrac-

tion is normalized by the mean rtroli. '?utt 5;' Straight section: experimental data of

Warhatt (19S0); the fl ight t ime from ;;.;;g*"ing ofihe straight section is normalized

by the tttrbttlence timescale there'

C rtmpctrison tt ' i th kinetic theory

'  i r lp le k inet ic theory for  ideal  gases (see, e 'g ' ,  Vincent i  and Kruger (1965)

. t 'c1 Chapmarl  and Cowl ing ( f  q iOtt  y ie lds the Newtonian viscot- ts stress law

Eq" ( tO.O)).  wi th the k inemat ic v iscosi ty given by

t ,  = \C )" . (  10.7)

(  r0 .8 )

,,r ircre e ls the mean molecular speed, and 2 is the mean free path' It is

.utural to seek to just i fy the turbuient-viscosity hypothesis through analogy

.i itlr kinetic theory, and heuce to give physical significalce to tf and L. by

.rnalogy to e and )..However, a simple examination of the various t imescales

,r. lved shows that such an analogy has no general val idi ty '

l '  s imp le  laminar  shear  f l ow (w i th  shear  ra te  i :L I1 f  c^ : \2 :5 :  L ' l l L \ ' t he

i.rt io of the molecular t imescale )" le and the shear t imescale S-1 is

-  KnMa,

.rhich is typical ly very small  (e.g., 10- 10, see E'xercise 10'1) '  The signif icance of

.ir.- 'rolecular timescare being ielatively minute is that the statistical state of

.rre r-r-rolecular motion rapidry adjusts to the imposed straining. By contrast,

' ,rr  
t trrbulent shear f lows. the 'at io of the turbulence t imescale r - kl t :  to the

:.e.,  shear t imescare._s-r is not smal: in the self-similar round jet Sk/r;  is

).  ̂  ).u
7 " :  z 7
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about 3 (Table 5.2 on page 131); in experiments on homogeneous turbulent
shear flow it is typically 6 (Table 5.4 on page 151):and in turbulence subjected
to rapid distortions it can be orders of magnitude larger. Consequently,
as already observed, turbulence does not adjust rapidly to imposed mean
straining, and so (in contrast to the case of molecular motion) there is no
general basis for a local relationship between the stress and the rate of strain.

Simple shear .flo**s
The example of rapid axisymmetric distortion and the timescale considera-
tions given above show that, in general, the turbulent-viscosity hypothesis
is incorrect. These general objections notwithstanding, there are important
particular flows for which the hypothesis is more reasonable. In simple
turbulent shcar flows (e.g., the round jet, mixing layer, channel flow, and
boundary layer) the turbulence characteristics and mean velocity gradients
change relatively slowly (following the mean flow). As a consequence, the lo-
cal mean velocity gradients charact errze the history of the mean distortion to
which the turbulence has been subjected; and the Reynolds-stress balance is
dominated by local processes - production, dissipation, the pressure-rate-of-
strain tensor - the non-local transport processes being small in comparison
(see e.g., Figs. 1.35-7.38 on pages 316-317). ln these circumstances, then, it
is more reasonable to hypothes ize that there is a relationship between the
Reynolds stresses and the local mean velocity gradients.

An important observation is that in these particular flows (in which the
turbulence characteristics change slowly following the mean flow), the pro-
duction and dissipation of turbulent kinetic energy are approximately in
balance, i.e., Pf t, x l. By contrast, in the axisymmetric-contraction experi-
ment (tr ig. 10.1), in the contraction sectionPlt,  is much greater than unity,
whereas in the downstream straight secti on P lr: is zero: in both of these
cases the turbulent-viscosity hypothesis is incorrect.

The gradient-dffision hypothesis

Related to the turbulent-viscosity hypothesis is the gradient-diffusion hy-
pothesis

(oQ')  -  - r r  V(d) . (10.e)

according to which the scalar flux (u$') is aligned with the mean scalar gra-
dient (see Section 4.4:).Most of the observations made above apply equally to
the gradient-diffusion hypothesis. In homogeneous shear flow it is found that
the direction of the scalar flux is significantly different than'that of the mean
gradient (Tavoularis and Corrsin 1985). However, in simple two-dimensional
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-.nr shear flows (in the usual coordinate system) the scalar equation
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(10.10)

( 1 0 . 1 1 )

:rerrt). The turbulent Prandtl number 6r QZII be used to relate v1 and

- I-r : \,t /ot; and for simple shear flows, o1 is of order unity (see,

g 5.34 on page 162).

.'. \ r and f1 can be written as the product of a velocity scale and a
'.crr le (Eq. (10.3)). They can also be expressed as the product of the

; r-rf o 'velocity scale and a timescale:

f r  :  L f2T*

' ir1in Section 12.4, in ideal circumstances, f1 can be related to statis-

the turbulence: u- is the r.m.s. velocity tl, and T. is the Lagrangian

,,1 t imescale T1(see E,q. (12.158) on page 500).

E X E R C I S E

\ccording to simple kinetic theory (see, e.g., Vincenti and Kruger

r 1965)) the kinematic viscosity of an ideal gas is

( 1 0 . 1 2 )

.ind the mean molecular speed e is t.:S times the speed of sound

,r. Show that the shear rate 5 : U lL normalized by the molecular

t irrescale l le is
3^
Z 

*  O.7MaKn, (10.13)

u.here the Mach number and Knudsen number are defined by Ma =

L. la and Kn : ^l  L.

Use the re lat ion a2:yplp (wi th  ̂ t ' :  L4)  to  show that  the rat io  of

the viscous shear stress rp to the normal stress (pressure) is

t t '  
= o . 9 M a K n .

p

Us ing  the  va lues  a :  332  m s1  and  v  :  1 .33  x  10-5  m2 s - l

(corresponding to air under atmospheric condit ions) and S:1 s-r,

obtain the following estimates:

: 5.9 x 10-o m. ^ l e  : 1 . 3  x  1 0 - 1 0  s ,

:  1 .3  x  1o -10 ,  
t t t  -  r . l  x  1o - lo
p

t , =  ) e  i ,

3^
-
C

(10 .14 )

(  10 .15 )
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10.1.2 The speci.ftc assumption
We turn now to the specifi(, assumption that
Reynolds stresses and mean velocity gradients
equivalent ly ,  Eq.  (10.4)  or  (10.5)) .

the relat ionship between the
is  tha t  g i ven  by  Eq .  (10 .1 )  (o r .

For simple shear f lows, the single Reynolds stress of interest (url  is
related to the single signif icant mean velocity gradienr a (u) I  i  l ,  by Eq ( l0 2).
In essence, l lo assumption is involved, but rather the equation clef i f l€S 1,1.
E'xamples of prof i les of r ' -p thus obtained are given in Fig.5.10 (on page 10g)
for the round jet,  and in Fig. 7.30 (on page 307) for the boundary layer.

ln general,  the specif ic assumption in t l-re turbulent-viscosity hypothesis is
that the Revnolds-stress-anisotropy tensor u1i is l inearly related to the mean
rate-of-strain tensor s,7 via the scalar turbulent viscosity, Eq. (10.5). Even
for the sirnplesi of flows, this is patently incorrect. In tr-rrbulent shear flow
the normal strain rates are zero (S11 : S.:.u : S,, : 0) and yet the normal
Reynolds stresses are significantly different from each other (see Table 5.4
on page l5l).  An alternative perspective on the same observation is that the
principal axes of oi1 drr- (by a signif icant amount) misal ignecl with those of
S,7 (see Exercise 4.5 on page 90).

The reason that the simple l inear stress law applies to the viscous stresses
(Eq' (10 '6))  but  not  to  the Reynolds s t resses can again be understood in  ternrs
of the t imescale rat io, and in terms of the level of anisotropy. Compared with
the molecular scales, the straining is very wea k 6 ). le < r i ,  und consequentlr
i t  produces a very small  departure f iom isotropy: in simple laminar shear
f low the rat io of anisotropic and isotropic molecular stresses is

T n

p
- KnMa.

(see Exercise 10.1), which is typical ly very small .  As a conseqllence, there
is every reason to expect the anisotropic stresses to dep end liuecy./,1,, sn 11-,..
ve loc i ty  gradients.  The Newtonian v iscous st ress larv  (Eq.(10.6))  is  the most
general possible l inertr relat ion consistent with the mathernatical propert ies
of the stress tensor. By contrast, in turbulent shear f low. the anisotropic-to-
isot ropic  s t ress rat io  - (uL)  IGU is  c lose to 0.5.  In  the turbulent  ce lse,  ther .
t l te rate of straining is relat ively large (Sk/t:  > l)  and i t  leads to relat iveh
lar-ee anisotropies. Consequently, there is no reason to suppose thal the
relat ionship is l inear.

There are several classes of flows in which the mean velocity gradient
tensor is more complex than that in simple shear f low, and in which the
turbulent-viscosity hypothesis is known to fail significantly. Examples are
strongly swirling flows (Weber, Visser, and Boysan 1990), flows with sisnif_

:e )u
P L (  t 0 . 1 6  r
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icant streamline curvature (Bradshaw 1913, Patel and Sotiropoulos 1991),

and fully developed flow in ducts of non-circular cross-section (Melling and

Whitelaw 1916, Bradshaw 1981).

ln place of Eq. (10.5), a possible nonl inear turbulent viscosity hypothesis

is

(Ir j  :  -2r 'rrS,i  * r '12(S;101i - Oir.S^,)-f  r '13(Si7,517 - 1S,3^d,t) '  (10'17)

rvhere the coefficients r,11, l,r2 and l'ri may depend on the mean-Velocity-

gradient invariants such as S,]^ (as well as on turbulence quantities). Note

tlrat a dependence of ctii or1_ the mean rate of rotation 0,i (e.g', through the

term in r,12) is required so that the principal axes of a;1are not al igned with

those of S,,. Rational means of obtaining nonlinear turbulent viscosity laws

have been developed, and are described in Section 11.9.

In summary: the intrinsig assumption of the turbulent-viscosity hypothe-

sis - that ui l  is local ly determined by e(U,) le t i-  has no general val idi ty.

However, for simple shear flows, in which the mean velocity gradients and

turbulence characteristics evolve slowly (following the mean flow)' the hy-

pothesis is more reasonable. [n such flows P lt is close to unity, which is

ildicative of an approximate local balance in the Reynolds-stress equations

betrveen production by the mean shear and the other local processes -

redistr ibution and dissiPation.

|  0 .2 Algebra ic  models

The algebraic models that have been introduced in previous chapters are

the unif'onn tnrbttlent uist:osiry and the mixing-length model. These models are

lrow appraised relative to the criteria described in Chapter 8.

10.2.1 Uniform turbulent uiscosity

I1 applications to a planar two-dimensional free shear flow, the uniform-

tLrrbulent-viscosity model can be writ ten

.,i Sere Uo(r) and d(r) are the characteristic velocity scale and lengthscale of

l5c rnean flow, and R1 which has the interpretation of a turbulent Reynolds

'umber - is a flow-dependent constant. Thus the turbulent viscosity is taken

rtr be constant across the flow (in the y direction), but it varies in the

:ucr,r r t- l low direct ion.

The range of applicability of this model is extremely limited. In order to

( 1 0 . r 8 )
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Table 10.1. Measured spreading
turbulent Reynolds number

rates S and coruesponding ualues of the
R1 ./br self-similar .free shear ,flows

Flow
Spreading rate

s
TurbulentReynolds Equat ionrelat ing

number, R1 S to Rr

Round jet
Plane jet
Mixing layer
Plane wake
Axisymmetric wake

0.094
0 .10

0.06-0.1 1
0.073-0.103
0.064-0.8

35
3 1

60*110
l3-19
1 1 1
L- /- -/-

5.84
5.200
5.225
5.241
5.260

apply the model, it is necessary to define unambiguously the direction of
flow, r; the characteristic flow width d(x); and the characteristic velocity
%(x). This is possible only for the simplest of flows.

For the simple free shear flows to which it is applicable, the model is
incomplete, in that R1 has to be specified. The appropriate value depends
both upon the nature of the flow and on the definitions chosen for d(x) and
%(r). In Chapter 5' it is shown that, for each self-similar free shear flow,
there is an inverse relation between the rate of spreading S and the turbulent
Reynolds number Rr. Table 10.1 summarizes the measured spreading rates
and the corresponding values of R1. (For each flow,, the definitions of S, d,
and U6 are given in Chapter 5.)

In self-similar free shear flows, the empirically determined turbulent viscos-
ity is faitly uniform over the bulk of the flow, but it decreases to zero as the
free stream is approached (see, e.g., Fig.5.10 on page 10g). correspondingly,
the mean velocity profile predicted by the uniform viscosity model agrees
well with experimental data except at the edge of the flow (e.g., trig.5.15 on
page 1 19).

In principle, the uniform-turbulent-viscosity model could be applied to sim-
ple wall-bounded flows. However, since the turbulent viscosity in fact varies
significantly across the flow (see Fig. 7.30 on page 301),the resulting predicted
mean velocity profile would be, for most purposes, uselessly inaccurate.

In summary, the uniform-turbulent-viscosity model provides a useful basic
description of the mean velocity profiles in self-similar free shear flows.
However, it is an incomplete model with a very limited range of applicability.

10.2.2 The mixing-length model

In application to two-dimensional bound ary-layer flows, the mixing length
('^(x,y) is specified as a function of position, and then the turbulent viscosity



10.2 Algebraic models 367

obtained as

" ,  l i (u )  Iv r : r ; l  e y  I
( 1 0 . 1 e  )

(10.20)

( 10 .21 )

\s shown in Section 7.1.7, tn the log-law region, the appropriate specification

I the mixing length is l- : K!, and then the turbulent viscosity is 1'r : u,K!.

Several generahzations of Eq. (10.19) have been proposed in order to allow

::e application of the mixing-length hypothesis to all flows. On the basis of

:he mean rate of strain S,i  Smagorinsky (1963) proposed

vr : L2^125,,5,)t lt : lt^S,

',r hereas, on the basis of the mean rate of rotation O;;, Baldwin and Lomax

,  1978)  proposed

yr : tl2^2A,,A,j)t lt : I! '^a.

rBoth of these formulae reduce to Eq. (10.19) in the case that O(LLt)/dr2 is

the only non-zero mean velocity gradient.)

In its generahzed form, the mixing-length model is applicable to all tur-

bulent flows,, and it is arguably the simplest turbulence model. Its major

drawback, however, is its incompleteness: the mixing length l!^(x) has to

be specified, and the appropriate specification is inevitably dependent on

the geometry of the flow. For a complex flow that has not been studied

before, the specification of l-(x) requires a large measure of guesswork, and

consequently one should have little confidence in the accuracy of the result-

in_e calculated mean velocity field. On the other hand, there are classes of

technologically important flows that have been studied extensively, so that

the appropriate specifications of (.^(x) are well established. The prime exam-

ple is boundary-layer flows in aeronautical applications. The Cebeci-Smith

nrodel (Smith and Cebeci 1967) and the Baldwin-Lomax model (Baldwin

.rrrd Lom ax l9l8) provide mixing-length specifications that yield quite accu-

rate calculations of attached boun dary layers. Details of these models and

their performance are provided by Wilcox (1993).

As illustrated in the following exercise, the mixing-length model can also

be applied to free shear flows. The predicted mean velocity profile agrees well

ri ' ith experimental data (see, e.g., Schlichting (1979)). An interesting (though

non-physical) feature of the solution is that the mixing layer has a definite

:dge at which the mean velocity goes to the free-stream velocity with zero

.lopo but non-zero curvature.
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E X E R C I S E

10.2 Consider the self-sirni lar temporal mixing layer in which the meern

latera l  ve loc i ty ' ( l , , )  is  zero.  and the ax ia l  ve loc i ty  (U)  depends on

,],  and r only. The velocity dif ference is U,, so that the boundary

condit ions are (t l ;  :  t , tu. at , l '  :  *:c. T'he thickness of the layer

r ) ( r )  i s  de f ined  (as  in  F ig .5 .21  on  page  140)  such  tha t  (U) :  t ]U ,  a t

1,  :  f  ] r ) .
The mixing-length model is applied to this flow, with the mixing

length being uniform across the flow and proportionarl to the flow's

width. i.e., 1.,' ', : zd, where z is a specified constant'

Start ing from the Reynolds equert ions

a ( L / )  _  _ i ( u r ' )
? t  i - l ' '

show that the mixing-length hypothesis implies that

a ( u )  -  a , . .  a ( U )  , " ( U )
, j  

:  -7'-  t)-  
i

Show that this equation admits a self-similar soh-rt ion of

(U)  - -  L I , f (O ,  where  i :  ) ' l d :  and  tha t . l (O  sa t i s f i es  t l - re

dif ferential equation

-s{ l '  :  2t: .1' ' .1'" '

where S = U;1 dd/dr is the spreading rate.

Show that Eq. (10.24) admits two dif ferent solut ions (denoted by

/ 1  a n d  / 1 ) :

1 -
. l  |  -  - (10 .2s)

(10.26)f : : C ,

where A, B, and C are arbitrary col lstants.

The appropriate solut ion for J is made up of three parts. For l( i
g rea te r  than  a  par t i cu la r  va l t te  ; ' . . 1  i s  co l l s ta l l t  ( i . c ' . .  l : ) :

I o r : < - :

t :

(10.27)

satislying

(10 .28  )

(t0.22)

(  10.23)

the form
ordinary

(10.24)

* ( ' +  
A (  +  8 ,

t o r

(  - \
, .  I

l : i  i
l r

1  i  I  /  -  , _ l

- 1  !  L l -  \

t l

1 :  l \  :  I,  \ :

= > ; .

t o r  - ;Show tha t  the  appropr ia te  so l t t t i t . r t l

. f ' ( +  _ a " ) : 0  i s
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Show that the spreading rate is related to the mixing-length constant
by

s : 3 u 2  l - ( 3 ,

and use the def ini t ion of  d ( i .e. ,  f  G):  i )  to obtain

(.  x 0.8450.

How does l '1 v?r] across the flow?

(10 .31 )

: {l,n and the velocity scale

(r0.32)

(10.2e)

(10 .30)

I  0.3 Turbulent-k inet ic-energy models

ih the turbulent viscosity written as

1'1 : {." tt- ,

the mixing-length model the lengthscale is l-
, rn  s imple shear  f low)

11'' -,,,,1t14 1
|  ( ) '  I

' r  rmplication is that the velocity scale is local ly determined by the mean
- ' i i ty gradient; and, in part icular, t ["  is zero where et(U)/o'f  is zero. [n
-,.  contrary to this implication, there are several circumstances in which the

- . ,crty gradient is zero and yet the turbulent velocity scale is non-zero. One
-,. .rnrple is decaying grid turbulence; another is the centerl ine of the round
Jt. \ \ 'here direct measurement showS l '1 to be far from zero (see Fig.5.10 on
' , t u c  1 0 8 ) .

Inclependently, Kolmogorov (1942) and Prandtl  (1945) suggested that i t  is
-- ' l t .r '  to base the velocity scale on the turbulent kinetic energy. i .e..

y * : r , k r i . ,  ( 1 0 . 3 3 )

Ji 'c c' is a constant. i f  the lengthscale is again taken to be the mixing
- rt i th. then the turbulent viscosity becomes

l,. f  :  ckt l t l ln,.  (10.34)

.horvn in Exercise 10.3, the value of the constant c'  = 0.55 yields the
- :r 'cct behavior in the log-law region.

In order for E,q. (10.34) to be used, the value of k(x,t) must be known
,r '  cst imated. Kolmogorov and Prandtl  suggested achieving this by solving a
:rrrdel transport equation for k. This is called a one-equatiort model, because a
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model transport equation is solved for just one turbulence quantity, namely,
I

Before discussing the model transport equation for k, it is helpful to itemize
al l  the components of the model:

( i)  the mixing length l^(x,r) is specif ied;
( i i )  a model transport equation is solved for k(x,t);

(ii i) the turbulent viscosity is defined by l'1 : ckt/2(.^;
(iv) the Reynolds stresses are obtained from the turbulent-viscosity hy-

pothesis ,  Eq.  (10.1) ;  and
(v) the Reynolds equations are solved for (U(*,r)) and (p(*,t)).

Thus, from the specification of L^ and from the solutions to the exact and
model equations, the fol lowing f ields are determined (U), (p),1^, k, rr1, and

\u,u i). These are referred to as 'knowns.'

We now consider the model transport equation for k. The exact equation
(Eq .  (5 .132) )  i s

where the f lux T' (Eq.(5.1a0)) is

+ (u )  . vk

.  T '  +P -  t : ,

Ti  :  ) fu ,up '7  *  fu ,p ' ) lp  -2 t , (u1s;1) .

In Eq. (10.35), any term that is completely determined by the 'knowns' is
said to be 'in closed form.' Specificatty, Ok lDf and P are in closed form.
Conversely, the remaining terms (e and v . T') are 'unknown' and, in order
to obtain a closed set of model equations, these terms must be modelled.
That is, 'closure approximations' that model the unknowns in terms of the
knowns are required.

As discussed extensively in Chapter 6, at high Reynolds number the
dissipation rate e scales as uf,f 111, where ue ?nd {.s are the velocity scale and
lengthscale of the energy-containing motions. Consequently, it is reasonable
to model e as

t  :  Cok3l t  l l ^ ,  (10.37)

where Cp is a model constant. Indeed, an examination of the log-law region
(Exercise 10.3) yields this relat ion with Cp : c '3.

Modelling assumptions such as E,q. (10.37) deserve close scrutiny. Equa-
t ions (10.34) and (10.37) can be combined to el iminate (.n to yield

l 'T :  t 'Cy ' rk2 f  t : ,

ak
-
0 t
-V

DK
- f

Dr
(10 .35 )

(10 .36 )

(10 .38 )
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0 . 1 0

0.08
lhr

1

0.06

0.04

0.02

0.00
0  r00

: .*g 10.3. The profi le of r,-1tf  k2 (see
Re :  13.750 (K im et  o l .  1987) .

:r iuivalently,

F :  t : C p .

,r 's imple shear f lows, k, e, and l ,r  :  -(rr) l(A(l) lAi l  can be measured, so
,,,  t l t is modell ing assumption can be tested direct ly. Figure 10.3 shows the

- - . . tnd side of Eq. (10.39) extracted from DNS data of ful ly developed
-- . . lent channel f low. I t  may be seen that (except close to the wall ,  -y* < 50)

.luantity is indeed approximately constant, with a value around 0.09.

--. .rr- 10.4 shows the same quanti ty for the temporal-mixing layer: except
-. r  Ihe edges, the value is everywhere close to 0.08.

.:.' remaining unknown in the turbulent-kinetic-energy equation is the
J:gi f lux T' (Eq. (10.36)). This is modelled with a gradient-dif fusion
: '  r thes is  as

T' : -lI V/0,
61,

r're the 'turbulent Prandtl number' for kinetic energyl is generally taken to
-: i  :  1.0. Physical ly,,  Eq.(10.40) asserts that (due to velocity and pressure
-' ...-tuations) there is a flux of k down the gradient of k. Mathematically, the
, :lt ensures that the resulting model transport equation for k yields smooth

-' lut ions, and that a boundary condit ion can be imposed on ft  everywhere
:r the boundary of the solut ion domain.

i 'he srmbol o1 is standzrrd notation. Note. however, thar or is a scalar, and that'f is not a suffix in
:hL- scnse of  Cartesian-tensor suf f ix  notat ion.

200
f r
f

Eq. (10.39)) from DNS of channel f low at

(10.3e)

(10.40)
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0 .  l 6
vTt

k2
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0.08
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I
/
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/

Fig. 10.4. The prohle of- r '1.t : f  k2 (see Eq. (10.39))
layer .  (From data o f  Rogers  and Moser  (1994)) . )

1 . 0
y l r )

from DNS of the

In summary, the one-eqllation model based on k consists of the model

t ranspor t  equa t ion

(10 .41 )

ri ' ith r,1 : c'ktl2ln, and e : Cok3l2f l!n,, together with the turbulent-viscosity
hypothesis  (Eq.  (10.1))  and the speci f icat ion of  ln , .

A comparison of model predict ions with experimental data (Wilcox 1993)
shows that this one-equation model has a modest advantage in accuracy

over mixing-length models. However, the major drawback of incompleteness

remains: the length scale (,^(x) must be specif ied.

E X E R C I S E S

2.0

tempora l  mix ing

# : ' ( ; v r )  + P -  , ,

10.3 Consider the log-law
and the specification
the constant c'  ( in the

Use the relation P -

region of a wall-bounded
ln, : rcy to show that the
relat ion l ,r  :  cklr2l.)  is

r ' :  l ( u u ) l k l t t t  -  0 . 5 5 .

e to show that

flow. [Jse the log-law
appropriate vaiue of

(r0,42)

(  10.43)
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' \ . 1 1

-)/-)

and hence

l 'T :  , ' t  kt f  , t .
(r0.441

i 0 . 4 For the one-equation model appl ied to simple shear f low, express the

produc t ionP in  te rms  o f  k ,1 , , ,  and  a ( t ' ) / i l ' .  Hence  ( tak ing  Cn : , ' '

i1  Eq.  (10.37))  show that  the veloc i ty  scales u"  in  the one-equat io t t

model and in the mixing-length model are related by

cklt: : (.,.,.,
. (u)

i I '
(  10.4s )

Show that the corresponding relat ion for flow is

I t _(',\ : (  10.46)

(c f .  Eq.  (10.20) ) .

10.4 The k-r ;  model

10.4.1 An oueruicv'

Tiie /,.-r; model belon-es to the class of tw:tt-ecltuttirtrt ntotlels, in which model

rransport eql larions are solved for two turbulence quanti t ies i .e..  f t  and c

in the k-r;  model. From these two quanti t ies carn be formed a lengthscale

\L:  k3, ) f  t :1 ,  a  t imescale ( r  - -  k l t : ) .  a  quant i ty  of  c l imensio l ' l  l ' r  (kr /a)"  e tc .

\s a consequence, two-equation models can be t 'otntrt lete f lorv-dependettt

: ;reci l icat ions such as l- , , ,(x) are not required.

The l ,-c model is the most widel iz used complete turbulence model, and

it is incorporated in most commercial CFD codes. As is the case with al l

rurbulence models, both the concepts and the detai ls evolved over t ime; btrt

.Tt-rnes ancl Launder (1912) are appropriately credited with developing the
's tandard 'k- t :  model .  wi th  Launder and Sharma (1974)  prov id ing improved

r alues of the model constants. Signif icant earl ier contr ibutions are due ttr

Dav idov  (1961) ,  Har low and  Nakayama (1968) ,  Han ja l i c  (1970) ,  and  o thers

cited by Launder and Spalding (1912)'

In addit ion to the turbulent viscosity hypothesis. the k r;  model cot-tsists ol-

the model transport equation for f t  (which is the same as that in thc

one-equat ion model ,  Eq.  (  l0 .a I  ) )  ;

the model transport equation for r;  (which is described below); and

(?) 
l

a general

l , ' l

, , , r(?)
\ . , , /

( i )

( i i )
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( r11l the specif icat ion of the turbulent viscosity as

l rT:  C, ,k I f  t ,

u here C,, :  0.09 is one of f ive model constants.

E X E R C I S E

(r0.4t )

I f  i t  is supposed that r '1 depends onry on the turbulence quanti t ies ft  and' ;  ( i t tdependent  
: i  

a I .u , ) /cr i  e tc . ) ,  then Eq.  (10.47)  is  inev i tab le.  The one_eclttatton model implies the similar relat ion r l  -  , lkt/r(see Exercise 10.3),:tr tl lg model constants are related by c _ C,,,,0.
In sirnple turburent shear flow, the k-s model yields

ry: (',:)"', (10.48)
(sec- Etercise 10'5) so that the specif icat ion c,,  :0.09: (0.3)2 stems from theentpir ical observation l fuu)!/k t  0.3 in regions where p/e isclose to unity.The quanti ty t '7efk2 plotted in Figs. r0. i  and 10.4 is a,measurement, of c,lor channel flow and for the temporar mixing layer. As may be seen, vTef k2is close to the value 0'09 everywhere except nlu, the boundaries of the flows.

1 0 . - i Consider the
s- i ( r t ) /ay
the relat ions

k-e model
being the

applied to a simple
only non-zero mean

l fur)l - sk_  . r , .

?
t

and hence verify Eq. (10.ag).
Show that (uu) satisfies the

il, and only if, Ct, satisfies

turbulent shear flow with
velocity gradient. Obtain

(10.4e)

(10.50)

Cauchy-schwartz inequality (Eq. (3.100))

: C,(+)',

or.  equiva lent ly .

Show rhat  Eq.  (10.50)  a lso general flow.

c,, < 2/3
'' - Skf t '

c ., 4/9
"  

-  
P / t '

holds for a

(10 .51 )

(r0.s2)
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10.4.2 The model equation for t,

Quite different approaches are taken in developing the model transport equa-

tions for k and e. The k equation amounts to the exact equation (Eq. (10.35))

with the turbulent flux T' modelled as gradient diffusion (Eq. ( 10.40)).

The three other terms - Dt<1fu, P, and e - afe in closed form (given the

turbulent-viscosity hypothesis).

The exact equation for r can also be derived, but it is not a useful starting

point for a model equation. This is because (as discussed in Chapter 6) e is

best viewed as the energy-flow rate in the cascade, and it is determined by the

large-scale motions, independent of the viscosity (at high Reynolds number).

By contrast, the exact equation for e pertains to processes in the dissipative

range. Consequently, rather than being based on the exact equation, the

standard model equation for e is best viewed as being entirely empirical: it

is

(  10.s3)

The standard values of all the model constants due to Launder and Sharma

(1914) arc

C p : 0 . 0 9 ,  C t t  :  I . 4 4 ,  C r 2 :  I . 9 2 ,  6 k  : 1 ' 0 ,  o ,  :  1 ' 3 '  ( 1 0 ' 5 4 )

An understanding of the e equation can be gained by studying its behaviors

in various flows. We first examine homogeneous turbulence, for which the k

and s equations become

H:" ( ;o,)  * c^T-c,f

dk
dt

- T >  ^_  l -  
- O ) (  10.55)

(10.56)

the

(10.57)

(10.s8)

de

dr

, .  ( * ) - ' ' . " ,
-- kg(;)-"

c^T -c,,1
Decaying turbulence

In the absence of mean velocity gradients, the production is zeto, and

turbulence decays. The equations then have the solutions

k(t)

rr here k and e have the

t l t )  :

values k6 and €s at the reference time

ko
t O :  l l - ,

tg
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and the decay exponent n is

1
c ^ _ 1
L i ; l  I

(10.5e)

(10.60)

This power-law decay is precisely that observed in grid turbulence (see
Section 5.4.6, Eqs. (5.274) and (5.211)), and so the behavior of the e equation
is correct for this flow.

The experimental values reported for the decay exponent n are generally
in the range 1.15-1 .45, and Mohamed and LaRue (1990) suggest that most
of the data are consistent with n : L 3. Equation (10.59) can be rearranged
to give C,2 rrr terms of n :

C r 2 : n * t ,
n

and the values of C,2 corresponding to n : 1.15, 1.3, and 1.45, are 1.87,
I.JJ, and 1.69. I t  may be seen, then, that the standard value (C,,2:1.92) l ies
somewhat outside of the experimentally observed range. The reason for this
is discussed below.

E X E R C I S E S

10.6 Consider the k-e model applied to decaying turbulence. Let s(r) be
the norm ahzed time defined by

f '  t ( t ' )  ,  ,s ( r 1 :  
J , ^ m O ' "

(a) Obtain an explicit expresslon for s(r).
(b) Derive and solve evolution equations in s for k and e (i.e.,

d k l d s : . . . ) .
(c) Grid turbulence is examined between xlM ,-- 40 and xf M :

200. To what interval in normahzed time does this correspond?

10.1 Show
period
c r 2 :

that the k e model gives the correct behavior for the final
of decay (see E,xercise 6.11 on page 205), tf C,.2 is modified to

7
)

Homogeneous shear.flon

As observed in Section 5.4.5, in homogeneous turbulent shear flow, the
principal experimental observations are that the Reynolds stresses become
self-similar, and that the non-dimensional parameters Skle and P le become
constant :  Sk lex,6 andPl t ,x  1.7.  S ince the imposed mean shear  rate S is
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constant, the constancy of Skle implies that the turbulence timescale r: kle
is also f ixed. From the k and e equations (Eqs. (10.55) and (10.56)) we obtain

d / k \  d r  , ^  , \  .  / P \

" t ( ; )  

: ; i : ( c ' z -  l ) - ( c " t  -  

" ( ; )  
( 1 0 ' 6 1 )

Evidently the model predicts that r does not change with time for the
particular value of P f q

(?)
e tha

C , , 2 -  I  ^ ,= 
f f i=2.1,  

(10.62)

a considerably  h igher  va lu n is observed in experiments and DNS.

Interpretation o.f'the e equation

We now offer an interpretation of the e equation based on the relationship
between the turbulence frequency a = elk and the characteristic mean strain
rate 5.

An overly simple model is

s, :  p ,
rvhere P is a constant; equal to 3, say. This model then predicts that
Sk/e :Slot is equal to the constant value l l  :3 in al l  f lows. In several
slrear flows this value of Sk le is indeed measured (see Tables 5.2, 5.4, and 7 .2
trn p&geS 131, 151 and 283). However, for other f lows the model is wrong:in
grid turbulence (5 : 0) , is not zero: and in homogeneous shear flow Sk/e
1s approximately 6.

Instead of settin g @ equal to 3 I P, consider instead a model that makes
, t relux toward 3 I P. Or (as a contrivance to produce the required result)
Jrrnsider the model that makes a2 relax toward (3I ilt.When it is applied
i.-r homogeneous turbulence, this model is described by the equation

(10.63)

(10.64)

,,. here z is a constant and ua is the relaxation rate. It is a matter of algebra
.ee Exercise 10.8) to show that this equation is exactly equivalent to the e

, ' ;uation (Eq. (10.56)) i f  the constants are specif ied as

Y:-aa(,,'-fr),

u  :2 (C , ,2  -  l )  x  7 .84 ,

n : ( f t , r r , - r r ) ' ' '  =421

(10.65)

(10.66)
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Thus the e equation can
the turbulence frequency

be interpreted through Eq. ( 10.64): at the rate *a.
(squared) relaxes toward S/p (squared).

from the model equations for k
(10.64)), show that the correspond_

E X E R C I S E

For homogeneous turbulence.
(Eq. (10.55)) and for rr.r2 (Eq.
ing model equation for e is

de Pe akS2 1 . e2
d / :  k +  2 p ,  

- ( 1  + ; 4 t .  ( r o . 6 t )

By using Eq. (10.50) to eliminate s, re-express the equation as

:  ( '  *#q,)T-(1 + +qrr

, ^ P t  *
t  L r t  L , 2  ,

R K

We now focus on the log-law region. Production and dissipation balance,
both being equal to u3, l@fi. Hence in the k equation the diffusion term is
zero, which implies that k is uniform, which is approximately correct. In the e
equation, the equ ality of p and e leads to a net sink (equal to -(c,r.-c,t)* 

lk)that varies as y-2. This is balanced by the diffusion of e away from the wall.

10.8

de

dt (10.68)

By comparing this result with the standard e equation (Eq (10.56)).
verify the relationships between ry and B, and, c,1 and c,2 (Eqs. (10.65)
and (10.66)).

The behauior in the log-law region
For inhomogeneous flows, the diffusion term in the e equation (i.e., v .
l(v7lo,,)Ye]) has the same benefits as the analogous term in the k equation: it
ensures that we obtain smooth solutions and it allows the speci fication of a
boundary condition on t everywhere on the boundary. As is now illustrated,
the diffusion term plays an important role in near-wall flows.

Consider high-Reynolds-number, fully developed channel flow. The quan-
tities of interest ((u), k, and e) depend only otr _!, so that the k-e equations
reduce to

o :  * ( ;  # )  * P  - e ,

o:  * ( ;#)

(10.6e)

(10.70)
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ls shown in Exercise 10.9 that the e equation

gtl+1utlz

(Eq. (10.70)) is satisfied bY

(10 .71 )
t

Ky

-,nd that the constants are related by

K2 : o,,c)|2{c,z - c,). 00.12)

!qtration (10.12) yields a value of the von Karman constant implied by the

. t; model (rc x 0.43): or, alternatively,, it can be used to adjust a model

- r)nstant (e.g., o.) to produce a particular value of rc.

E X E R C I S E

[),9 Consider the log-law region of a wall-bounded turbulent flow. Show

that the turbulent viscosity hypothesis with vr : C,,k2f t and the

log-law imply that

c,,k2
{ l : ! .

U'K!

Given P : e, from the expression for P obtain the result

n 1 / ) t
L  t ' . ' , 'KUr

c - -
a t  -

Ky

Hence veri fy Eq. (10.71) and compare i t  with Eq. (10.43). Substi tute

Eq.(10.71) for e into the e equation (Eq.(10.70), with f t  independent

of y) to obtain Eq. (10.12). Verify that these equations yield the

variation of the lengthscale

r , 3 1 2
t  = 

T:  
Cr 'ar . 'J ' .

(10.73)

(r0.14)

(  10.75)

The behauior at the .free-stream edge

.\s described in Section 5.5.2, there is an intermittent region between a

turbulent flow and an irrotational, non-turbulent free stream or quiescent

surroundings. In the non-turbulent fluid (y - co), both k and t ate zero.

The k-e model does not account for intermittency, and it yields solutions in

ri-hich there is a sharp edge between the turbulent and non-turbulent regions

tCazalbou, Spalart, and Bradshaw 1994). For a statistically two-dimensional

boundary layer or free shear flow, let y.(r) denote the location of the edge.

Then, for y > y.(r), k and e are zero, and the mean flow is irrotational. Just

inside of the turbulent region, k, e, and A(f)lAy vaty as positive powers of

the distance to the edge Y.(r) -  Y.
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Because of entrainment,
the non-turbulent side. The
that propagates (relative to
to the ft-s model equations
Exercise 10.10.

there is a mean flow through the edge from
edge therefore corresponds to a turbulent front
the fluid) by turbulent diffusion. The solutions
for such a propagating front are developed in

E X E R C I S E S

10'10 Consider a statistically stationary one-dimensional flow without tur-
bulence production in which the k-'e equations reduce to

% #

(-rn 
dt 

:
" d r

d  / r ' 1  d k \: d " \ e * 7 - " '

*(;*) - ,,1

-  ko( ; ) ' ,

:  *  ( ; ) ' ,

(10.76)

(r0.77)

(10.78)

(10.7e)

with do = k3,' Ito.
(10.16) and (10.11),

(10.80)

(  10.8  1)

where us is the uniform mean velocity, which is positive. These
equat ions admit  a  weak solut ion (wi th k :0 and e :0 for  r  < 0
and k > 0 and I > 0 for r > 0) corresponding to a front between
turbulent flow (x > 0) and non-turbulent flow (r < 0). For small
positive r the solutions are

where p, Q, ko, 80, and ds are positive constants,
By subst i tut ing Eqs.(10.78) and (10.79) into Eqs.
obtain the results

Q : 2 P - 1 ,

U o  _ C r p  C , , ( 2 p - l l_ : _ :
k;'t 61, ot' 

)

and show that (for small r) convection and diffusion balance, with the
dissipation terms being negligible in comparison. From Eq. (10.g1)
obtain

p :
2op - o, 2 - o ' (10.82)

61.
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where o: o,. f  o1. Show that (for small  x) k, t ,  L: k ' l t le, a = tfk,

and v1 vary as the following powers of x:

I  o  3 7 - o  o -  l

2  -  o '  2  -  o '  2  -  o '  , = '  
l '  ( 1 0 ' 8 3 )

respectively, and hence that all of these quantities are zero in the

limit as x approaches zero provided that o is between 1 and lt'

Show that the speed of propagation of the turbulence front (relative

to the mean flow) is

r i -  
I

v u -  
2 o p - o ,

10.11 Show that the k-e model equations

poral mixing layer can be written

(*) . : . .

applied to

(10.84)

the self-similar tem-

(  10.8s)

(10.86)

variables are

(10.87)

( 10 .e1 )

a ! : ! ( c t ' k 2  ! { ) - ' ( '
? t  l y \ o a c  a y /  \

At  a /  C, ,k '  o t \  , ' '  (  ^
a r : e r (  *  ? r ) -  / . \ t ' '

With d(r) being the width of the layer, the

defined by

(=Y6, t,tCl=&,e(O= fr,

' '  = i. - i '

Show that the left-hand side of Eq. (10.88) can

- s i * : s ( < . - . ) *- cl( ox

-T)
- C'tT)

similarity

where U, is the (constant) velocity difference. Transform Eqs' (10.85)

and (10.86) to obtain

(10 .88)

(10.8e)

k and t are

(10.e0)

be written

-s(e+{g) :  + ( e4*) - + (r, .- . , ,?).
\  o 1  ) - d ( \ o , ? , d ( )  l \ - - " ' - " e f .

where S is  the spreading rate S:  U.  1d6ldt .

Let (" denote the edge of the turbulent region (so that

zero for C > CJ and let x be the distance from the edge,
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Hence show that
solutions siven in

(for small x) the equations have the power-law
E,xercise 10.10 (k - xP and e - xq\.

10.4.3 Discussion

The k-s model is arguably the simplest complete turbulence model, and
hence it has the broadest range of applicability2. It is incorporated in most
commercial CtrD codes, and has been applied to a diverse range of problems
including heat transfer, combustion, and multi-phase flows.

A discussion of its accuracy is deferred to the next chapter (Section 11.10),
where its performance is compared with that of other turbulence models.
Briefly; although it is usually acceptably accurate for simple flows, it can be
quite inaccurate for complex flows, to the extent that the calculated mean
flow patterns can be qualitatively incorrect. The inaccuracies stem from the
turbulent-viscosity hypothesis and from the e equation.

Also deferred to the next chapter (Section ll.7) is a discussion of near-wall
treatments. Modifications to the standard k-e model are required in order to
apply it to the viscous near-wall region. For example, it may be seen from
Fig. 10.3 that the appropriate value of C, decreases as y+ decreases below 50.

The values of the standard k-e model constants (Eq. 10.54) represent
a compromise. For any particular flow it is likely that the accu racy of the
model calculations can be improved by adjusting the constants. For decaying
turbulence, c,2 : I.lJ (corresponding to the value of the decay exponent
n : I .3) is more suitable than C,2: I .92 (conesponding to the value of the
decay exponent n - 1.09). A well-known deficiency of the k-s model is that it
significantly overpredicts the rate of spreading for the round jet. This problem
can be remedied (for the round jet) by adjusting the value of c,,1 or c,2.
However, such ad hoc flow-dependent adjustments are of limited value. For a
complete, generally applicable model, a single specification of the constants
is required; and the standard values represent a compromise chosen (with
subjective judgement) to give the 'best' performance for a range of flows.

Over the years, many'modifications'to the standard k-c model have been
proposed,, the usual motivation being to remedy poor performance for a
particular class of flows. For example, Pope (1978) proposed an additional
source term in the e equation of the form S,rOirO'k'lt, so that the modified
model yields the correct spreading rate for the round jet. Other modifications
to the e equation (based on O,i)have been proposed by, for example, Hanjalic
and Launder (1980) and Bardrna,Ferziger, and Reynolds (1983). When these
2 Recall from Section 8.3 that applicability does not imply accuracy.
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modified models are applied to a range of flows, the general experience
(Launder 1990, Hanjalic 1994) is that their overall performance is inferior

. r that of the standard model.
The model equation for e has been presented here as being entirely

-:rrpirical; but this is only one viewpoint. The renormalization group method

RNG) has been used to obtain the k-e equation from the Navier-Stokes

:quations (see, e.g., Yakhot and Orszag (1986), Smith and Reynolds (1992),

Smith and Woodruff (1998), and references therein). The values of the

:,-)nstants stemmins from the RNG analysis are

Cu :0.0845, C,t :  I .42, C,2 : 1.68, 61, -- o, :  0.J2 (r0.e2)

):szag et al. 1996), cf. Eq. (10.54). In the RNG k-e model there is also an

-:Jitional term in the e equation, which is an ad hoc model, not derived from
- \G theory. It is this term which is largely responsible for the difference in

::lormance of the standard and RNG models.

|  0.5 Further turbulent-viscosity models

10.5.1 The k-at model

- .rorically, many two-equation models have been proposed. In most of

:.3se. k is taken as one of the variables, but there are diverse choices for
' :3 second. Examples are quanti t ies with dimensions of kL (Rotta 1951),,

r.' ' lmogorov 1942), r'(Saffman 1970), and r (Speziale, Abid, and Anderson
- e l  ) .
Ftrr homogeneous turbulence, the choice of the second variable is immate-

- ,,.. since there is an exact correspondence among the various equations, and

..ilr lorms are essentially the same (see Exercise 10.12). For inhomogeneous
-- ,r s. the difference lies in the diffusion term. Consider, for example, the

. ori' ing model equation for ro : tf k:

-  Cnn@2

383

#:' (;o,) *,,,7
.-. ',\ does the k-co model based on this equation

:.r \\'ay to answer this question is to derive the
. nrodel (see E,xercise 10.13). Taking 6k : 6t :

? g  :  v . ( L
Dr \ d,,

* ? ' v'  
6, , ,k

differ from the k-e model?

co equation implied by the

o,u for simplicity, the result

(10.e3)

(10.e4)

o,) * (c,, -

o t  'Yk .

DT - (c,,- r),'



384 I 0 Turbulent-viscosity models

Table 10.2. Values a/ Cz1 and C72.t'or L)arious specifications o.f'Z - CTknsu
( see Exerc:ise 10.12 )

Czt CzzZ

t

ot : r,/k
r : klr.
7 : p t 2 f e
t . r  -  t , 5 1 2  t , .

^  l t '
n  r )  t

I ' T : L u K ' / t )

1 .0  1 .0
1 .44  1 .92
0.44 0.92

-0.44 -0.92

0.06 -0.42

1.06 0.58
0.56 0.08

1
0

- 1

0
1
1

- 1
- 1
- 1
- 1

Evidently, for homogeneous turbulence, the choices C,,,1 - C,,t - 1 and

C,n : C,,t - 1 make the models identical. However, for inhomogeneous

flows, the k e model (written as a k-o,t model) contains an additional term

the f inal term in Eq. (10.94).

The second most widely used two-equation model is the k-ro model that

has been developed for over 20 years by Wilcox and others (see Wilcox
(1993)). In this model, the expression for v1 and the k equation are the same

as those in the k e model. The difference lies in the use of E,q. (10.93) for
(t) rather than Eq. (10.53) for e (or the implied rrl equation, Eq. (10.94)).

As described in detail by Wilcox (1993), for boundary-layer flows, the k-rr.r

model is superior both in its treatment of the viscous near-wall region, and

in its accounting for the effects of streamwise pressure gradients. However,

the treatment of non-turbulent free-stream boundaries is problematic: a non-

zero (non-physical) boundary condition on cr-r is required, and the calculated

flow is sensitive to the value specified.
Menter (1994) proposed a two-equation model designed to yield the best

behavior of the k-e and k-ro models. It is written as a (non-standard) k-ot

model, with the u-r equation of the form of E,q. (10.94), but with the final

term multiplied by a'blending function.' Close to walls the blending function

is zero (leading to the standard rr.r equation), whereas remote from walls the

blending function is unity (corresponding to the standard e equation). (The

behavior of the k-e model at a free-stream boundary has been analyzed by

Cazalbou et al.  (1994); see also E,xercise 10.11.)

E X E R C I S E S

10.12 Consider the quantity Z defined by

Z - C,7kP eq, (10.e5)
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for given Cz, p and q.

that, in homogeneous

where

dZ ZP Zt ,

; : C r ,  1 ,  
_ 6 z z  

k

C z t : P * [ C , t ,

(10.e6)

(10 .e7)

( r 0.e8)

implied model

l \r , t2

From the stand ard k-e model equations, show

turbulence, the implied model equation for Z is

1 0 . 1 3

C z z : P t 4 C , ' 2 .

Hence verify the values of Cz1 and C72 rn Table 10.2.

Given the stand ard k-t model equations, show that the

equation for rr; : elk rs

( ;v ' )  +

, , ( : - ; )

, , ( : - ; )

Dtlr  r-----::::-::v
Dr

+

+

(c,,r - l)T - (C,,2 -

vk .vk)

Lvr,t 'vk

(v'r + |
\ K

(1O.ee)

10.5.2 The Spalart-Allmurus model

>palart and Allmaras (1994) described a one-equation model developed for

.::rodynamic applications, in which a single model transport equation is

..,lr'ed for the turbulent viscosity vr. Earlier proposals for such a model are

-::scribed by Nee and Kovasznay (1969) and Baldwin and Barth (1990).

It is useful at the outset to appreciate the context of the development
': the Spalart-Allmaras model. There is a natural progression in the mod-

-'^ described above - algebraic, one-equation, two-equation - on to the

3.r-r'nolds-stress models described in the next chapter. Each successive level

:-:'r)\.ides a fuller description of the turbulence, and thereby removes a qual-

..rtive deficiency of its predecessor. If accuracy were the only criterion in

.:te selection of models for development and application, then the choice
,".,uld naturally tend toward the models with the higher level of description.

.i.-,u.ever. as discussed in Section 8.3, cost and ease of use are also important

-:rteria that favor the simpler models. lt is useful, therefore, for model de-

,:' ltrpe rS to work toward the best possible model at each level of description.

.\rguably, a one-equation model for r'1 is the lowest level at which a

..odel can be complete. Spalart and Allmaras (1994) developed the model to
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remove the incompleteness of algebraic and one-equation models based on
k, and yet have a model computationally simpler than two-equation models.
The model is designed for aerodynamic flows, such as transonic flow over
airfoils, including boundary-layer separation.

The model equation is of the form

H:' (;v,,) *s' ' , (10.100)

where the source term S,, depends on the laminar and turbulent viscosities,
I' and l'1; tho mean vorticity (or rate of rotation) O ; the turbulent viscosity
gradient lVutl; and the distance to the nearest wall, (,,. The details of the
model are quite complicated: the reader is referred to the original paper
which provides an enlightening account of the construction of the model to
achieve particular desired behaviors.

In applications to the aerodynamic flows for which it is intended, the model
has proved quite successful (see, e.g., God in, zingg, and Nelson (1ggl)). How_
ever, it has clear limitations as a general model. For example; it is incapable
of accounting for the decay of v1 in isotropic turbulence, it implies that,
in homogeneous turbulenco, l '1 is unaffected by irrotational mean straining;
and it overpredicts the rate of spreading of the plane jet by almost 40%.

E X E R C I S E

10.14 Consider the Spalart- Allmaras model applied to high-Reynolds-
number homogeneous turbulence. Argue that the laminar viscosity
v and the distance to the nearest wall 1,, are not relevant quanti-
ties. Hence show that dimensional and other considerations reduce
E q . ( 1 0 . 1 0 0 )  t o

dr,t

? t  
:  S , ( r , r , (2 ) :  c61v1O, (10 .101  )

(10.102.1

where c'61 is a constant. Comment on the form of this equation for
irrotational mean straining.

For self-similar homogeneous turbulent shear flow (in which o
and S are equal),, from the relation - (uu) : vr d(U) l|y, show that
v1 evolves by E,q. (10.101) with

c b r  :  ( ?  -  ' )
\ e  /

Use experimental data (Table 5.4 on
cording to Eq. (10.102) and compare
value of  c61 :  0 .135.

(+)
page 157) to estimate c61 ac-
it with the Spalart-Allmaras


