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10
Turbulent-viscosity models

In this chapter and the next we consider RANS models in which the Reynolds
equations are solved for the mean velocity field. The Reynolds stresses -
which appear as unknowns in the Reynolds equations — are determined b
a turbulence model, either via the turbulent viscosity hypothesis or morz
directly from modelled Reynolds-stress transport equations (Chapter 11).

Turbulent-viscosity models are based on the turbulent-viscosity hypothesis.
which was introduced in Chapter 4 and has been used in subsequent chapters
According to the hypothesis, the Reynolds stresses are given by

. o{Uy) | o(U))
(uitej) = 3kdy; —vr (W + ax,.j ) (10.1
or, in simple shear flow, the shear stress is given by
o(Uu
(w) = —vr éy>. (10.2.

Given the turbulent viscosity field vr(x,t), Eq. (10.1) provides a most con-
venient closure to the Reynolds equations, which then have the same form:
as the Navier-Stokes equations (Eq. (4.46) on page 93). It is unfortunate.
therefore, that for many flows the accuracy of the hypothesis is poor. The
deficiencies of the turbulent-viscosity hypothesis — many of which have beer.
mentioned above — are reviewed in Section 10.1.

If the turbulent-viscosity hypothesis is accepted as an adequate approxi-
mation, all that remains is to determine an appropriate specification of the
turbulent viscosity vr(x,t). This can be written as the product of a velocity
u'(x,t) and a length ¢*(x,t): ~

VT = u*ﬁ*, (103'

and the task of specifying vy is generally approached through specifications
of u* and ¢*. In algebraic models (Section 10.2) — the mixing-length model.
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for example — ¢* is specified on the basis of the geometry of the flow. In
two-equation models (Section 10.4) — the k-¢ model being the prime example
— " and /* are related to k and ¢, for which modelled transport equations
are solved.

[0.1 The turbulent-viscosity hypothesis

The turbulent-viscosity hypothesis can be viewed in two parts. First, there
is the intrinsic assumption that (at each point and time) the Reynolds-stress
anisotropy a;; = (uiu;) — k5 ;; is determined by the mean velocity gradients

C(U;)/0x;. Second, there is the specific assumption that the relationship
between a;; and ¢(U;)/0x; is

ouy | o{Uy)
) = 3k, = —ve TG+ ) (104)
or, equivalently,
a; = —2viSi;, (10.5)

where S; ; is the mean rate-of-strain tensor. This is, of course, directly analo-
gous to the relation for the viscous stress in a Newtonian fluid:

—(t; + Poy)/p = —2vS;;. (10.6)

10.1.1 The intrinsic assumption

To discuss the intrinsic assumption we first describe a simple flow for which
it is entirely incorrect. Then it is shown that, in a crucial respect, the physics
of turbulence is vastly different than the physics of the molecular processes
that lead to the viscous stress law (Eq. (10.6)). However, finally, it is observed
that, for simple shear flows, the turbulent viscosity hypothesis is nevertheless
quite reasonable.

Axisymmetric contraction

Figure 10.1 is a sketch of a wind-tunnel experiment, first performed by Uberoi
(1956), to study the effect on turbulence of an axisymmetric contraction. The
air flows through the turbulence-generating grid into the first straight section,
in which the mean Ve1001ty (U,) is (ideally) uniform. In this section there is
no mean straining (S;; = 0), and the turbulence (which is almost isotropic)
begins to decay.

Following the first straight section there is an axisymmetric contrac-
tion, which is designed to produce a uniform extensive axial strain rate,



360 10 Turbulent-viscosity models

: — Axisymmetric
O N .
~, Turbulence “.._contraction

O generating

C
O grld

= X}

L0000
|

Fig. 10.1. A sketch of an apparatus, similar to that used by Uberoi (1956) and Tucker
{1970). to study the effect of axisymmetric mean straining on grid turbulence.

S, = ¢(U))/éx, = S,, and hence uniform compressive lateral strain rates,
S = 853 = —1S,. The quantity S)k/e (evaluated at the beginning of
the contraction) measures the mean strain rate relative to the turbulence
timescale. Figure 10.2 shows measurements of the normalized anisotropies
(bij = (uu;)/(wuy) — %o‘i‘j = %a,-‘,/k) from the experiment of Tucker (1970)
with S;k/e = 2.1. Also shown in Fig. 10.2 are DNS results for S;k/¢ = 55.7
obtained by Lee and Reynolds (1985). For this large value of S,k/¢, rapid-
distortion theory (RDT, see Section 11.4) accurately describes the evolution
of the Reynolds stresses. According to RDT, the Reynolds stresses are de-
termined not by the rate of strain, but by the total amount of mean strain
experienced by the turbulence. In these circumstances the turbulence be-
haves not like a viscous fluid, but more like an elastic solid (Crow 1968): the
turbulent viscosity hypothesis is qualitatively incorrect.

In the experiment depicted in Fig. 10.1, following the contraction there is
a second straight section. Since there is no mean straining in this section, the
turbulent-viscosity hypothesis inevitably predicts that the Reynolds-stress
anisotropies are zero. However, the experimental data of Warhaft (1980)
show instead that the anisotropies generated in the contraction decay quite
slowly, on the turbulence timescale k/e (see Fig. 10.2). These persisting
anisotropies exist not because of the local mean strain rates (which are zero),
but because of the prior history of straining to which the turbulence has

been subjected. /

Evidently, for this flow, both in the contraction section and in the down-
stream straight section, the intrinsic assumption of the turbulent-viscosity
hypothesis is incorrect: the Reynolds-stress anisotropies are not determined
by the local mean rates of strain.
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Fig. 10.2. Reynolds-stress anisotropies during and after axisymmetric straining. Con-
traction: experimental data of Tucker (1970). S;k/¢ = 2.11A DNS data of Lee and
Reynolds (1983), S;k/¢c = 55.7: the flight time ¢ from the beginning of the contrac-
tion is normalized by the mean strain rate S,. Straight section: experimental data of

Warhaft (1980): the flight time from the beginning of the straight section is normalized
by the turbulence timescale there.

Comparison with kinetic theory
Simple kinetic theory for ideal gases (see, e.g., Vincenti and Kruger (1965)
ind Chapman and Cowling (1970)) yields the Newtonian viscous stress law
"Eq. (10.6)). with the kinematic viscosity given by

Ci. (10.7)

Vv

[

where C is the mean molecular speed, and / is the mean free path. It is
natural to seek to justify the turbulent-viscosity hypothesis through analogy
~vith kinetic theory, and hence to give physical significance to u” and ¢ by
inalogy to C and 2. However, a simple examination of the various timescales
volved shows that such an analogy has no general validity.

In simple laminar shear flow (with shear rate cU,Jix, =8 =U/L), the

“1tio of the molecular timescale 4/C and the shear timescale S7' is

/. LU

28 === ~KnMa, (10.8)

s :
hich is typically very small (e.g., 1010, see Exercise 10.1). The significance of
‘he molecular timescale being relatively minute is that the statistical state of
‘e molecular motion rapidly adjusts to the imposed straining. By contrast,
“or turbulent shear flows, the ratio of the turbulence timescale T = k/¢ to the
1ean shear timescale S™' is not small: in the self-similar round jet Sk/¢ 1s
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about 3 (Table 5.2 on page 131); in experiments on homogeneous turbulent
shear flow it is typically 6 (Table 5.4 on page 157): and in turbulence subjected
to rapid distortions it can be orders of magnitude larger. Consequently,
as already observed, turbulence does not adjust rapidly to imposed mean
straining, and so (in contrast to the case of molecular motion) there is no
general basis for a local relationship between the stress and the rate of strain.

Simple shear flows

The example of rapid axisymmetric distortion and the timescale considera-
tions given above show that, in general, the turbulent-viscosity hypothesis
is incorrect. These general objections notwithstanding, there are important
particular flows for which the hypothesis is more reasonable. In simple
turbulent shear flows (e.g., the round jet, mixing layer, channel flow, and
boundary layer) the turbulence characteristics and mean velocity gradients
change relatively slowly (following the mean flow). As a consequence, the lo-
cal mean velocity gradients characterize the history of the mean distortion to
which the turbulence has been subjected; and the Reynolds-stress balance is
dominated by local processes — production, dissipation, the pressure-rate-of-
strain tensor — the non-local transport processes being small in comparison
(see e.g., Figs. 7.35-7.38 on pages 316-317). In these circumstances, then, it
is more reasonable to hypothesize that there is a relationship between the
Reynolds stresses and the local mean velocity gradients.

An important observation is that in these particular flows (in which the
turbulence characteristics change slowly following the mean flow), the pro-
duction and dissipation of turbulent kinetic energy are approximately in
balance, ie., P/e ~ 1. By contrast, in the axisymmetric-contraction experi-
ment (Fig. 10.1), in the contraction section P /¢ is much greater than unity,
whereas in the downstream straight section P/¢ is zero: in both of these
cases the turbulent-viscosity hypothesis is incorrect.

The gradient-diffusion hypothesis

Related to the turbulent-viscosity hypothesis is the gradient-diffusion hy-
pothesis

(ud’) = -1 V(¢), (10.9)

according to which the scalar flux (u¢’) is aligned with the mean scalar gra-
dient (see Section 4.4). Most of the observations made above apply equally to
the gradient-diffusion hypothesis. In homogeneous shear flow it is found that
the direction of the scalar flux is significantly different than that of the mean
gradient (Tavoularis and Corrsin 1985). However, in simple two-dimensional
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-.-- _ont shear flows (in the usual coordinate system) the scalar equation

)
(vg') = =Ty 2y

. -z used to define I't, and thus no assumption is involved (for this
. - =ent). The turbulent Prandtl number o1 can be used to relate vy and
.. [y = vy/or; and for simple shear flows, o1 is of order unity (see,
:_ -.2. 334 on page 162).

- = v; and It can be written as the product of a velocity scale and a
<~ ~cale (Eq. (10.3)). They can also be expressed as the product of the
~. -z of a velocity scale and a timescale:

Iy =u?T". (10.11)

(10.10)

wwn in Section 12.4, in ideal circumstances, 't can be related to statis-
_ the turbulence: u* is the r.m.s. velocity «', and T~ is the Lagrangian
- .2zl timescale T (see Eq. (12.158) on page 500).

EXERCISE
According to simple kinetic theory (see, e.g., Vincenti and Kruger
(1965)) the kinematic viscosity of an ideal gas is

v~ L0, (10.12)

and the mean molecular speed C is 1.35 times the speed of sound
4. Show that the shear rate S = U/L normalized by the molecular
timescale 4/C is

Si

= 0.7MaKn, (10.13)
where the Mach number and Knudsen number are defined by Ma =
{/aand Kn=4/L.

Use the relation a> = yp/p (with y = 1.4) to show that the ratio of

the viscous shear stress 7;, to the normal stress (pressure) is

2~ 0.9MaKn. (10.14)
p
Using the values ¢ = 332 m s™' and v = 1.33 x 107° m* s

(corresponding to air under atmospheric conditions) and § = 1 s,
obtain the following estimates:

2=59%x10"m, A/C=13x10"s,
A 13% 1070 T2 17x107", (10.15)
C p
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10.1.2 The specific assumption

We turn now to the specific assumption that the relationship between the
Reynolds stresses and mean velocity gradients is that given by Eq. (10.1) (or,
equivalently, Eq. (10.4) or (10.5)).

For simple shear flows, the single Reynolds stress of interest {(uv) is
related to the single significant mean velocity gradient ¢(U) /0y by Eg. (10.2).
In essence, no assumption is involved, but rather the cquation defines vy.
Examples of profiles of v; thus obtained are given in Fig. 5.10 (on page 108)
for the round jet, and in Fig, 7.30 (on page 307) for the boundary layer.

In general, the specific assumption in the turbulent-viscosity hypothesis is
that the Reynolds-stress-anisotropy tensor a;; 18 linearly related to the mean
rate-of-strain tensor S’,-,« via the scalar turbulent viscosity, Eq. (10.5). Even
for the simples: of flows, this is patently incorrect. In turbulent shear flow
the normal strain rates are zero (S =35, = Sy = 0) and yet the normal
Reynolds stresses are significantly different from each other (see Table 5.4
on page 157). An alternative perspective on the same observation is that the
principal axes of «;; are (by a significant amount) misaligned with those of
S, (see Exercise 4.5 on page 90).

The reason that the simple linear stress law applies to the viscous stresses
(Eq. (10.6)) but not to the Reynolds stresses can again be understood in terms
of the timescale ratio, and in terms of the level of anisotropy. Compared with
the molecular scales, the straining is very weak (S4/C < 1), and consequently
it produces a very small departure from isotropy: in simple laminar shear
flow the ratio of anisotropic and isotropic molecular stresses is

T2 %C)J/{

p  PL
(see Exercise 10.1), which is typically very small. As a consequence, there
Is every reason to expect the anisotropic stresses to depend linearly on the
velocity gradients. The Newtonian viscous stress law (Eq. (10.6)) is the most
general possible linear relation consistent with the mathematical properties
of the stress tensor. By contrast, in turbulent shear flow. the anisotropic-to-
1sotropic stress ratio —(ur)/(5k) is close to 0.5. In the turbulent case, then.
the rate of straining is relati\;ely large (Sk/e > 1) and it leads to relatively
large anisotropies. Consequently, there is no reason to suppose that the
relationship is linear.

There are several classes of flows in which the mean velocity gradient
tensor is more complex than that in simple shear flow, and in which the
turbulent-viscosity hypothesis is known to fail significantly. Examples are
strongly swirling flows (Weber, Visser, and Boysan 1990), flows with signif-

~ KnMa, (10.16)



10.2 Algebraic models 365

icant streamline curvature (Bradshaw 1973, Patel and Sotiropoulos 1997),
and fully developed flow in ducts of non-circular cross-section (Melling and
Whitelaw 1976, Bradshaw 1987).
In place of Eq. (10.5), a possible nonlinear turbulent viscosity hypothesis
is
dij = —2\’T1§,'_,' + VTZ(SMQI\'/‘ - Qikgkj) + "T?s(SikSkj - %Sﬁ/ﬁu)a (10.17)

where the coefficients vyi, vr» and vp3 may depend on the mean- velocity-
gradient invariants such as S7 (as well as on turbulence quantities). Note
that a dependence of a;; on the mean rate of rotation Q;; (e.g., through the
term in v1,) is required so that the principal axes of a;; are not aligned with
those of S,-A,. Rational means of obtaining nonlinear turbulent viscosity laws
have been developed, and are described in Section 11.9.

In summary: the intrinsic assumption of the turbulent-viscosity hypothe-
sis — that a;; is locally determined by ¢(U;)/cx; — has no general validity.
However, for simple shear flows, in which the mean velocity gradients and
turbulence characteristics evolve slowly (following the mean flow), the hy-
pothesis is more reasonable. In such flows P/e is close to unity, which is
indicative of an approximate local balance in the Reynolds-stress equdtlons
between production by the mean shear and the other local processes -
redistribution and dissipation.

10.2 Algebraic models

The algebraic models that have been introduced in previous chapters are
the uniform turbulent viscosity and the mixing-length model. These models are
now appraised relative to the criteria described in Chapter 8.

10.2.1 Uniform turbulent viscosity

In applications to a planar two-dimensional free shear flow, the uniform-
turbulent-viscosity model can be written

Uo(x)d(x)
Ry
where Up(x) and d(x) are the characteristic velocity scale and lengthscale of
-he mean flow, and Ry — which has the interpretation of a turbulent Reynolds
number — is a flow-dependent constant. Thus the turbulent viscosity is taken
{0 be constant across the flow (in the y direction), but it varies in the
qean-flow direction.
The range of applicability of this model is extremely limited. In order to

\,»T(x’y) = (10.18)
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Table 10.1. Measured spreading rates S and corresponding values of the
turbulent Reynolds number Ry for self-similar free shear flows

Spreading rate  Turbulent Reynolds Equation relating

Flow S number, Ry S to Rt
Round jet 0.094 35 5.84
Plane jet 0.10 31 5.200
Mixing layer 0.06-0.11 60-110 5.225
Plane wake 0.073-0.103 13-19 5.241
Axisymmetric wake 0.064-0.8 2-22 5.260

apply the model, it is necessary to define unambiguously the direction of
flow. x; the characteristic flow width &(x); and the characteristic velocity
Uo(x). This is possible only for the simplest of flows.

For the simple free shear flows to which it is applicable, the model is
incomplete, in that Ry has to be specified. The appropriate value depends
both upon the nature of the flow and on the definitions chosen for J(x) and
Uo(x). In Chapter 5, it is shown that, for each self-similar free shear flow,
there is an inverse relation between the rate of spreading S and the turbulent
Reynolds number Ry. Table 10.1 summarizes the measured spreading rates
and the corresponding values of Ry. (For each flow, the definitions of S, 9,
and Uy are given in Chapter 5.)

In self-similar free shear flows, the empirically determined turbulent viscos-
ity is fairly uniform over the bulk of the flow, but it decreases to zero as the
free stream is approached (see, e.g., Fig. 5.10 on page 108). Correspondingly,
the mean velocity profile predicted by the uniform viscosity model agrees
well with experimental data except at the edge of the flow (e.g., Fig. 5.15 on
page 119).

In principle, the uniform-turbulent-viscosity model could be applied to sim-
ple wall-bounded flows. However, since the turbulent viscosity in fact varies
significantly across the flow (see Fig. 7.30 on page 307), the resulting predicted
mean velocity profile would be, for most purposes, uselessly inaccurate.

In summary, the uniform-turbulent-viscosity model provides a useful basic
description of the mean velocity profiles in self-similar free shear flows.
However, it is an incomplete model with a very limited range of applicability.

10.2.2 The mixing-length model

In application to two-dimensional boundary-layer flows, the mixing length
m(x, y) is specified as a function of position, and then the turbulent viscosity
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-~ Obtained as
vy = 2| 28U (10.19)
dy

\s shown in Section 7.1.7, in the log-law region, the appropriate specification
7 the mixing length is £, = ky, and then the turbulent viscosity 1S V1 = UK.
Several generalizations of Eq. (10.19) have been proposed in order to allow
-2 application of the mixing-length hypothesis to all flows. On the basis of
“1e mean rate of strain S;; Smagorinsky (1963) proposed

VT = 6&(25',-»,3,-‘,»)]/2 B anS, (1020)

whereas, on the basis of the mean rate of rotation Qi.i» Baldwin and Lomax
+1978) proposed

v = £2(2Q,0,)"7 = (,,Q. (10.21)
i Both of these formulae reduce to Eq. (10.19) in the case that ¢(U))/dx, is
the only non-zero mean velocity gradient.)

In its generalized form, the mixing-length model is applicable to all tur-
bulent flows, and it is arguably the simplest turbulence model. Its major
drawback, however, is its incompleteness: the mixing length /;,(x) has to
be specified, and the appropriate specification is inevitably dependent on
the geometry of the flow. For a complex flow that has not been studied
before, the specification of £,(x) requires a large measure of guesswork, and
consequently one should have little confidence in the accuracy of the result-
ing calculated mean velocity field. On the other hand, there are classes of
technologically important flows that have been studied extensively, so that
the appropriate specifications of £,,(x) are well established. The prime exam-
ple is boundary-layer flows in aeronautical applications. The Cebeci-Smith
model (Smith and Cebeci 1967) and the Baldwin-Lomax model (Baldwin
and Lomax 1978) provide mixing-length specifications that yield quite accu-
rate calculations of attached boundary layers. Details of these models and
their performance are provided by Wilcox (1993).

As illustrated in the following exercise, the mixing-length model can also
be applied to free shear flows. The predicted mean velocity profile agrees well
with experimental data (see, e.g., Schlichting (1979)). An interesting (though
non-physical) feature of the solution is that the mixing layer has a definite
edge at which the mean velocity goes to the free-stream velocity with zero
<lope but non-zero curvature.
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EXERCISE
Consider the self-similar temporal mixing layer in which the mean
lateral velocity (V) is zero, and the axial velocity (U) depends on
y and t only. The velocity difference is U, so that the boundary
conditions are (U) = i;—Us at y = +u. The thickness of the layer
(t) is defined (as in Fig. 5.21 on page 140) such that (U) = +3U, at
y=t10. V

The mixing-length model is applied to this flow, with the mixing
length being uniform across the flow and proportional to the flow’s
width, i.e., ¢, = 20, where « is a specified constant.

Starting from the Reynolds equations

cuy - )

S —, (10.22)
't Ccy
show that the mixing-length hypothesis implies that
M{U) L., Uy U
) _ s (U ,>. (10.23)
ct ¢y oyt

Show that this equation admits a self-similar solution of the form
(U) = Uf(S), where ¢ = p/0: and that (<) satisfies the ordinary
differential equation

—SEf = 241"1". (10.24)

where S = U_'do/dt is the spreading rate.
Show that Eq. (10.24) admits two different solutions (denoted by
fiand f>):

S 4 .
fi=——>=¢ +4C+ B, (10.25)
127
f>=C, (10.26)

where A, B, and C are arbitrary constants.
The appropriate solution for f is made up of three parts. For (<]
greater than a particular value 2. f is constant (Le.. f»):

_ —L for < —C.
= o (10.27)
- tor

>

Show that the appropriate solution for —J° < ¢ < &7 satisfying

J(+)=01s

DI VAR
= It_ —4<\—> . (10.28)
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Show that the spreading rate is related to the mixing-length constant
by
S =327/, (10.29)

2

and use the definition of 0 (i.c.. f(1) = $) to obtain

5

&'~ 0.8450. (10.30)

How does vy vary across the flow?

10.3 Turbulent-kinetic-energy models

- th the turbulent viscosity written as
ve=0u', (10.31)

= the mixing-length model the lengthscale is £* = £, and the velocity scale
- 1in simple shear flow)

(10.32)

o implication is that the velocity scale is locally determined by the mean
. ocity gradient; and, in particular, u” is zero where ¢(U)/y is zero. In
- contrary to this implication, there are several circumstances in which the
-ocity gradient is zero and yet the turbulent velocity scale is non-zero. One
-wample is decaying grid turbulence; another is the centerline of the round
<. where direct measurement shows vt to be far from zero (see Fig. 5.10 on
~aee 108).
Independently, Kolmogorov (1942) and Prandtl (1945) suggested that it is
“cuer to base the velocity scale on the turbulent kinetic energy, i.c.,

u = ck'?, (10.33)

cere ¢ 18 a constant. If the lengthscale is again taken to be the mixing
.2th. then the turbulent viscosity becomes

v = k20, (10.34)

-~ shown in Exercise 10.3, the value of the constant ¢ =~ 0.55 yields the
. rect behavior in the log-law region.

In order for Eq. (10.34) to be used, the value of k(x,t) must be known
'+ estimated. Kolmogorov and Prandtl suggested achieving this by solving a
odel transport equation for k. This is called a one-equation model, because a
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model transport equation is solved for just one turbulence quantity, namely,
k.

Before discussing the model transport equation for k, it is helpful to itemize
all the components of the model:

(1) the mixing length ¢,,(x,t) is specified;

(i) a model transport equation is solved for k(x,1);

(iii) the turbulent viscosity is defined by vy = ck'/?¢,,;

(iv) the Reynolds stresses are obtained from the turbulent-viscosity hy-
pothesis, Eq. (10.1); and

(v) the Reynolds equations are solved for (U(x,t)) and {(p(x,t)).

Thus, from the specification of £,, and from the solutions to the exact and
model equations, the following fields are determined: (U), (p), ¢, k, v, and
(uu;). These are referred to as ‘knowns.

We now consider the model transport equation for k. The exact equation
(Eq. (5.132)) is

Dk ok
_—= = U)-Vk
5, = o W)
=-V-T' +P—g¢, (10.35)
where the flux T’ (Eq. (5.140)) is
T = Huwu;) + (wp')/p — 2v{u;s,;). (10.36)

In Eq. (10.35), any term that is completely determined by the ‘knowns’ is
said to be ‘in closed form.” Specifically, Dk/Dt¢ and P are in closed form.
Conversely, the remaining terms (¢ and V+ T’) are ‘unknown’ and, in order
to obtain a closed set of model equations, these terms must be modelled.
That is, ‘closure approximations’ that model the unknowns in terms of the
knowns are required.

As discussed extensively in Chapter 6, at high Reynolds number the
dissipation rate ¢ scales as uj /¢, where uy and ¢, are the velocity scale and
lengthscale of the energy-containing motions. Consequently, it is reasonable
to model ¢ as

¢ = Cpk?/ly, (10.37)
where Cp is a model constant. Indeed, an examination of the log-law region
(Exercise 10.3) yields this relation with Cp = ¢°.

Modelling assumptions such as Eq. (10.37) deserve close scrutiny. Equa-
tions (10.34) and (10.37) can be combined to eliminate /,, to yield

vr = cCpk? /e, (10.38)
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=z 10.3. The profile of vre/k? (see Eq. (10.39)) from DNS of channel flow at
Re = 13,750 (Kim et al. 1987).

- 2quivalently,
Vre
i%»:ccu (10.39)
- v simple shear flows, k, ¢, and vy = —(uv)/(¢{U)/dy) can be measured, so

~ .2 this modelling assumption can be tested directly. Figure 10.3 shows the
- -7and side of Eq. (10.39) extracted from DNS data of fully developed
-~ :lent channel flow. It may be seen that (except close to the wall, y* < 50)
" -+ quantity 1s indeed approximately constant, with a value around 0.09.
- 2.r¢ 10.4 shows the same quantity for the temporal-mixing layer: except
- .7 the edges, the value is everywhere close to 0.08.
.22 remaining unknown in the turbulent-kinetic-energy equation is the
“orav flux T' (Eq. (10.36)). This is modelled with a gradient-diffusion
- othesis as
T = vk, (10.40)
Ok
~ere the ‘turbulent Prandtl number” for kinetic energy' is generally taken to
= 7. = 1.0. Physically, Eq. (10.40) asserts that (due to velocity and pressure
“.ctuations) there is a flux of k down the gradient of k. Mathematically, the
“.7m ensures that the resulting model transport equation for k yields smooth
-~lutions, and that a boundary condition can be imposed on k everywhere
11 the boundary of the solution domain.

The symbol gy is standard notation. Note, however, that ¢, is a scalar, and that ‘k’ is not a suffix in
he sense of Cartesian-tensor suffix notation.
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Fig. 10.4. The profile of vye/k” (see Eq. (10.39)) from DNS of the temporal mixing
layer. (From data of Rogers and Moser (1994)).)

In summary, the one-equation model based on k consists of the model
transport equation

Dk V1
=V (LK) +P - 10.41
Dt <O’1\- ) + ‘ ( )

with vy = ¢k'/?¢,, and ¢ = Cpk¥/?/l,, together with the turbulent-viscosity
hypothesis (Eq. (10.1)) and the specification of #,,.

A comparison of model predictions with experimental data (Wilcox 1993)
shows that this one-equation model has a modest advantage in accuracy
over mixing-length models. However, the major drawback of incompleteness
remains: the length scale ¢,,(x) must be specified.

EXERCISES

10.3

Consider the log-law region of a wall-bounded flow. Use the log-law

and the specification ¢,, = xy to show that the appropriate value of
the constant ¢ (in the relation vy = ck'/*¢,,) is

¢ = [{uv) /k|"* = 0.55. (10.42)
Use the relation P = ¢ to show that

e= Kk, (10.43)
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and hence
vr = ke (10.44)

10.4  For the one-equation model applied to simple shear flow, express the
production P in terms of k. (, and ¢(U)/¢y. Hence (taking Cp = ¢
in Eq. (10.37)) show that the velocity scales u” in the one-equation
model and in the mixing-length model are related by

- —12
‘<A.U> <B> (10.45)
Cy

o
<

5

ck'’? = (i

Show that the corresponding relation for a general flow is

—1/2
k' = (n,S(P) (10.46)

o
o

(cf. Eq. (10.20)).

10.4 The k—¢ model
10.4.1 An overview

The k ¢ model belongs to the class of two-equation models, in which model
transport equations are solved for two turbulence quantities — i.e.. k and ¢
in the k—& model. From these two quantities can be formed a lengthscale
(I = k¥?/¢). a timescale (t = k/¢). a quantity of dimension vy (k*/¢), etc.
\s a consequence, two-equation models can be complete — flow-dependent
specifications such as {,,(x) are not required.

The k—¢ model is the most widely used complete turbulence model, and
it is incorporated in most commercial CFD codes. As is the case with all
turbulence models, both the concepts and the details evolved over time: but
Jones and Launder (1972) are appropriately credited with developing the
standard’ k— model. with Launder and Sharma (1974) providing improved
values of the model constants. Significant earlier contributions are due to
Davidov (1961), Harlow and Nakayama (1968), Hanjali¢ (1970). and others
cited by Launder and Spalding (1972).

In addition to the turbulent viscosity hypothesis, the k& model consists of

(i) the model transport equation for k (which is the same as that in the
one-equation model, Eq. (10.41));
(ii) the model transport equation for ¢ (which is described below): and
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(1) the specification of the turbulent viscosity as
vr = C,k? /e, (10.47)

where C, = 0.09 is one of five model constants,

If it is supposed that vt depends only on the turbulence quantities k and
« {independent of C(U;)/éx; ete.), then Eq. (10.47) is inevitable. The one-
equation model implies the similar relation vy = ¢*k2/¢ (see Exercise 10.3),
so the model constants are related by ¢ = "

In simple turbulent shear flow, the k—¢ model yields

i 172
@ = (c,,l-?) : (10.48)

fsee Exercise 10.5) so that the specification C, = 0.09 = (0.3) stems from the
empirical observation [(uv)|/k ~ 0.3 in regions where P/ is close to unity.
The quantity vre/k> plotted in Figs. 10.3 and 10.4 IS a ‘measurement’ of C,
for channel flow and for the temporal mixing layer. As may be seen, vig/k?
Is close to the value 0.09 everywhere except near the boundaries of the flows,

EXERCISE

10.5 Consider the k-¢ model applied to a simple turbulent shear flow with
S=0(U)/dy being the only non-zero mean velocity gradient. Obtain
the relations

k’ =G, (10.49)
783 -, (%) , (10.50)

and hence verify Eq. (10.48).
Show that (uv) satisfies the Cauchy-Schwartz inequality (Eq. (3.100))
if. and only if, C, satisfies

2/3

S T, 10.51
C, < Sk/s (10.51)
or, equivalently,
4/9
—_—. 10.52
Cll =< 7)/8 ( 5 )

Show that Eq. (10.50) also holds for a general flow,

-
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10.4.2 The model equation for ¢

Quite different approaches are taken in developing the model transport equa-
tions for k and ¢. The k equation amounts to the exact equation (Eq. (10.35))
with the turbulent flux 7' modelled as gradient diffusion (Eq. (10.40)).
The three other terms — Dk/Dt, P, and ¢ — are in closed form (given the
turbulent-viscosity hypothesis).

The exact equation for ¢ can also be derived, but it is not a useful starting
point for a model equation. This is because (as discussed in Chapter 6) ¢ is
best viewed as the energy-flow rate in the cascade, and it is determined by the
large-scale motions, independent of the viscosity (at high Reynolds number).
By contrast, the exact equation for & pertains to processes in the dissipative
range. Consequently, rather than being based on the exact equation, the
standard model equation for ¢ is best viewed as being entirely empirical: it
is

% =V- G} Vg) +cgl% —csz% (10.53)
The standard values of all the model constants due to Launder and Sharma
(1974) are

C,=009, C,; =144, C, =192, 0, =10, 7, = 1.3. (10.54)

An understanding of the & equation can be gained by studying its behaviors
in various flows. We first examine homogeneous turbulence, for which the k
and ¢ equations become

dk ‘
b » 10.55
=P (10.55)
de Pe 2
5 =Cap —Cap (10.56)

Decaying turbulence

In the absence of mean velocity gradients, the production is zero, and the
turbulence decays. The equations then have the solutions

t —n t —(n+1)

k(t) = ko<—) , &(t) = 80<—) , (10.57)
ty to

where k and ¢ have the values k, and g at the reference time

ty = nl&, (10.58)
&
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and the decay exponent n is

1
Co—1

n=

(10.59)

This power-law decay is precisely that observed in grid turbulence (see
Section 5.4.6, Eqs. (5.274) and (5.277)), and so the behavior of the ¢ equation
is correct for this flow.

The experimental values reported for the decay exponent n are generally
in the range 1.15-1.45, and Mohamed and LaRue (1990) suggest that most
of the data are consistent with n = 1.3. Equation (10.59) can be rearranged
to give C,, in terms of n :

c, =" (10.60)
n

and the values of C,, corresponding to n = 1.15, 1.3, and 145, are 1.87,
1.77, and 1.69. It may be seen, then, that the standard value (C,, = 1.92) lies
somewhat outside of the experimentally observed range. The reason for this
is discussed below.

EXERCISES
10.6  Consider the k—¢ model applied to decaying turbulence. Let s(t) be
the normalized time defined by

_ [T
S([)_A Wdt

(a) Obtain an explicit expression for s(t).

(b) Derive and solve evolution equations in s for k and ¢ (ie.,
dk/ds =...).

(c) Grid turbulence is examined between x/M = 40 and x/M =
200. To what interval in normalized time does this correspond?

10.7  Show that the k—¢ model gives the correct behavior for the final
period of decay (see Exercise 6.11 on page 205), if C,, is modified to
Ccz =1

5

Homogeneous shear flow

As observed in Section 5.4.5, in homogeneous turbulent shear flow, the
principal experimental observations are that the Reynolds stresses become
self-similar, and that the non-dimensional parameters Sk/¢ and P /e become
constant: Sk/¢ ~ 6 and P/¢ ~ 1.7. Since the imposed mean shear rate S is
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constant, the constancy of Sk/e implies that the turbulence timescale T = k /¢
is also fixed. From the k and ¢ equations (Egs. (10.55) and (10.56)) we obtain

d [k dr P
&(;) = (Ca = (Ca - 1)(;). (1061)

Evidently the model predicts that t does not change with time for the
particular value of P/e,

P\ Cnp—1
—) =2 —_=x21 10.62
(5) =g =21 (10.62)

e

a considerably higher value than is observed in experiments and DNS.

Interpretation of the ¢ equation

We now offer an interpretation of the ¢ equation based on the relationship
between the turbulence frequency w = ¢/k and the characteristic mean strain
rate S.

An overly simple model is

) 5 (10.63)
where f# is a constant; equal to 3, say. This model then predicts that
Sk/e = S/w is equal to the constant value f = 3 in all flows. In several
shear flows this value of Sk/¢ is indeed measured (see Tables 5.2, 5.4, and 7.2
on pages 131, 157 and 283). However, for other flows the model is wrong: in
arid turbulence (S = 0) w is not zero; and in homogeneous shear flow Sk/¢
1s approximately 6.

Instead of setting w equal to §/f, consider instead a model that makes
-~ relax toward S/f. Or (as a contrivance to produce the required result)
consider the model that makes > relax toward (S/f)*. When it is applied
10 homogencous turbulence, this model is described by the equation

dw? S?
T —olUw <w2 — E>, (10.64)

~here « is a constant and «w is the relaxation rate. It is a matter of algebra
~e Exercise 10.8) to show that this equation is exactly equivalent to the ¢
squation (Eq. (10.56)) if the constants are specified as

% =2(Co— 1) ~ 1.84, (10.65)
Co—1 \"
S (S ~ 4.27. 10.66)
b (cu[cgl—l]) (
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Thus the ¢ equation can be interpreted through Eq. (10.64): at the rate oW,
the turbulence frequency (squared) relaxes toward S/f (squared).

EXERCISE

10.8  For homogeneous turbulence, from the model equations for k
(Eq. (10.55)) and for w? (Eq. (10.64)), show that the correspond-
ing model equation for ¢ is

de  Pe  okS? N
By using Eq. (10.50) to eliminate &, re-express the equation as
de o\ Pe &
— =14+ =] To)=-. 10.
@ ( +2ﬁ2q{> r (1+2a)k (10.68)

By comparing this result with the standard ¢ equation (Eq. (10.56)).
verify the relationships between o and B,and C,; and C,, (Egs. (10.65)
and (10.66)).

The behavior in the log-law region

For inhomogeneous flows, the diffusion term in the ¢ equation (ie, V-
[(vr/0,)Ve]) has the same benefits as the analogous term in the k equation: it
ensures that we obtain smooth solutions and it allows the specification of a
boundary condition on ¢ everywhere on the boundary. As is now illustrated,
the diffusion term plays an important role in near-wall flows.

Consider high-Reynolds-number, fully developed channel flow. The quan-
tities of interest ((U), k, and ¢) depend only on y, so that the k—& equations

reduce to
d V1 dk
= S (g - 10.69
dy <O'k dy> TP (1069)
d /v de Pe &’
_ 4 [vrde e _ o E 10.70
4y (GC dy) + Ca A Cbzk (10.70)

We now focus on the log-law region. Production and dissipation balance,
both being equal to u?/(xy). Hence in the k equation the diffusion term is
zero, which implies that k is uniform, which is approximately correct. In the ¢
equation, the equality of P and ¢ leads to a net sink (equal to —(C,,—C,y)é? /k)
that varies as y=2. This is balanced by the diffusion of ¢ away from the wall.
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" is shown in Exercise 10.9 that the ¢ equation (Eq. (10.70)) is satisfied by

34§32
£= “K , (10.71)
‘Y

-nd that the constants are related by
KZ = 627C/_1¢/2(C82 - Csl)- (1072)

=guation (10.72) yields a value of the von Karman constant implied by the
- model (k ~ 0.43): or, alternatively, it can be used to adjust a model
onstant (e.g., ¢,) to produce a particular value of x.

EXERCISE

0.9  Consider the log-law region of a wall-bounded turbulent flow. Show
that the turbulent viscosity hypothesis with vy = C,k*/¢ and the
log-law imply that

2
e = GF (10.73)
UKy

Given P = ¢, from the expression for P obtain the result
C,ku,

Ky
Hence verify Eq. (10.71) and compare it with Eq. (10.43). Substitute
Eq. (10.71) for ¢ into the ¢ equation (Eq. (10.70), with k independent

of y) to obtain Eq. (10.72). Verify that these equations yield the
variation of the lengthscale

& =

(10.74)

k3/2
L= =C/%y. (10.75)
&

The behavior at the free-stream edge

As described in Section 5.5.2, there is an intermittent region between a
turbulent flow and an irrotational, non-turbulent free stream or quiescent
surroundings. In the non-turbulent fluid (y — o), both k and & are zero.

The k¢ model does not account for intermittency, and it yields solutions in
which there is a sharp edge between the turbulent and non-turbulent regions
(Cazalbou, Spalart, and Bradshaw 1994). For a statistically two-dimensional
boundary layer or free shear flow, let y.(x) denote the location of the edge.
Then, for y > y.(x), k and ¢ are zero, and the mean flow is irrotational. Just
inside of the turbulent region, k, &, and ¢(U)/dy vary as positive powers of
the distance to the edge y.(x)— y.
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Because of entrainment, there is a mean flow through the edge from
the non-turbulent side. The edge therefore corresponds to a turbulent front
that propagates (relative to the fluid) by turbulent diffusion. The solutions
to the k—& model equations for such a propagating front are developed in
Exercise 10.10.

10.10

EXERCISES
Consider a statistically stationary one-dimensional flow without tur-
bulence production in which the k—¢ equations reduce to

dk d /vy dk
— =22 76
Yo dx  dx <o‘k dx> “ (1076)
de d [vr de &
nE -4 (E a) NyeRa (10.77)

where U, is the uniform mean velocity, which is positive. These
equations admit a weak solution (with k = 0 and ¢ = 0 for x <0
and k > 0 and ¢ > 0 for x > 0) corresponding to a front between
turbulent flow (x > 0) and non-turbulent flow (x < 0). For small
positive x the solutions are

P
k = k0<ﬁ> , (10.78)
do
q
¢ = so(—fc—> : (10.79)
0o

where p, q, ko, &, and &, are positive constants, with §, = kg/z/so.
By substituting Eqs. (10.78) and (10.79) into Egs. (10.76) and (10.77),
obtain the results

qg=2p—1, (10.80)

UO . % _ Cu(ZP_ 1)

, 10.81
ké/z Ok O, ( )

and show that (for small x) convection and diffusion balance, with the
dissipation terms being negligible in comparison. From Eq. (10.81)
obtain

g 1

= = 10.82
p 200, —0, 2—¢ ( )
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where ¢ = 0,/0,. Show that (for small x) k, &, L = k¥*/e, o = ¢/k,
and vt vary as the following powers of x:

1 o % -6 og—1
2—¢ 2—6¢2—0¢ 2—0
respectively, and hence that all of these quantities are zero in the
limit as x approaches zero provided that ¢ is between 1 and 1.
Show that the speed of propagation of the turbulence front (relative
to the mean flow) is

(10.83)

1 :
Uy = dry (10.84)
20, — 0, \ dx =0,

10.11 Show that the k—¢ model equations applied to the self-similar tem-
poral mixing layer can be written

ok ¢ (Ck* dk P
— = — | —el1—— 8
o ay( o8 ay) 8( : ) (1053
oL ) (C,k* 0 2
Go_ oGk _wfe c,B). (o0se)
ot dy\ o 0y k €
With 5(7) being the width of the layer, the similarity variables are
defined by
vy o~ ko, &

where U, is the (constant) velocity difference. Transform Egs. (10.85)
and (10.86) to obtain

dk d (Ck* dk P
e [l TA s I i 10.
>ag dé(aks d:) (1-F)  aow

dé d {Ck> di 22 P
J— 2 F = — a —_ —_ = &2 el ™ 5 1.9
S(a-l—sdg,) dé(aaé dé) k<C2 C,18> (10.89)

where S is the spreading rate S = U; ' do/dt.
Let & denote the edge of the turbulent region (so that k and ¢ are
zero for & > &) and let x be the distance from the edge,

x=¢& —¢. (10.90)
Show that the left-hand side of Eq. (10.88) can be written
dl dk
—S¢é— =8¢ —x)—. 1091
SE e = S(& g (1091)
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Hence show that (for small x) the equations have the power-law
solutions given in Exercise 10.10 (k ~ x? and & ~ x¢ ).

10.4.3 Discussion

The k- model is arguably the simplest complete turbulence model, and
hence it has the broadest range of applicability’. It is incorporated in most
commercial CFD codes, and has been applied to a diverse range of problems
including heat transfer, combustion, and multi-phase flows.

A discussion of its accuracy is deferred to the next chapter (Section 11.10),
where its performance is compared with that of other turbulence models.
Briefly; although it is usually acceptably accurate for simple flows, it can be
quite inaccurate for complex flows, to the extent that the calculated mean
flow patterns can be qualitatively incorrect. The inaccuracies stem from the
turbulent-viscosity hypothesis and from the ¢ equation.

Also deferred to the next chapter (Section 11.7) is a discussion of near-wall
treatments. Modifications to the standard k— model are required in order to
apply it to the viscous near-wall region. For example, it may be seen from
Fig. 10.3 that the appropriate value of C, decreases as y* decreases below 50.

The values of the standard k—¢ model constants (Eq. 10.54) represent
a compromise. For any particular flow it is likely that the accuracy of the
model calculations can be improved by adjusting the constants. For decaying
turbulence, C,, = 1.77 (corresponding to the value of the decay exponent
n = 1.3) is more suitable than C,, = 1.92 (corresponding to the value of the
decay exponent n = 1.09). A well-known deficiency of the k—& model is that it
significantly overpredicts the rate of spreading for the round jet. This problem
can be remedied (for the round jet) by adjusting the value of C,; or C,.
However, such ad hoc flow-dependent adjustments are of limited value. For a
complete, generally applicable model, a single specification of the constants
1s required; and the standard values represent a compromise chosen (with
subjective judgement) to give the ‘best’ performance for a range of flows.

Over the years, many ‘modifications’ to the standard k—¢ model have been
proposed, the usual motivation being to remedy poor performance for a
particular class of flows. For example, Pope (1978) proposed an additional
source term in the ¢ equation of the form S§;;Q;Qk?/e, so that the modified
model yields the correct spreading rate for the round jet. Other modifications
to the ¢ equation (based on Q;;) have been proposed by, for example, Hanjalic
and Launder (1980) and Bardina, Ferziger, and Reynolds (1983). When these

2 Recall from Section 8.3 that applicability does not imply accuracy.
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modified models are applied to a range of flows, the general experience
(Launder 1990, Hanjalic 1994) is that their overall performance is inferior
-~ that of the standard model.

The model equation for ¢ has been presented here as being entirely
:mpirical; but this is only one viewpoint. The renormalization group method
RNG) has been used to obtain the k—¢ equation from the Navier-Stokes
:quations (see, e.g., Yakhot and Orszag (1986), Smith and Reynolds (1992),
Smith and Woodruff (1998), and references therein). The values of the
constants stemming from the RNG analysis are

C,=0.0845 C,; =142, C, =168, 0, =0, =072 (10.92)

rszag et al. 1996), cf. Eq. (10.54). In the RNG k—¢ model there is also an
_-Jitional term in the & equation, which is an ad hoc model, not derived from
= NG theory. It is this term which is largely responsible for the difference in
- :-tormance of the standard and RNG models.

10.5 Further turbulent-viscosity models
10.5.1 The k—w model

~.storically, many two-equation models have been proposed. In most of
-=2se. k is taken as one of the variables, but there are diverse choices for
-2 second. Examples are quantities with dimensions of kL (Rotta 1951), @
Nolmogorov 1942), »? (Saffman 1970), and t (Speziale, Abid, and Anderson
=920

For homogeneous turbulence, the choice of the second variable is immate-
- .. since there is an exact correspondence among the various equations, and
--21r forms are essentially the same (see Exercise 10.12). For inhomogeneous
= s, the difference lies in the diffusion term. Consider, for example, the
- owing model equation for o = g/k:

Do VT Pw )
D _y. 0 L0k 10.9
Dt \Y% (O‘w V(D) + Cwl k C 2 ( 3)

~ - does the k—w model based on this equation differ from the k—& model?
=2 way to answer this question is to derive the @ equation implied by the
model (see Exercise 10.13). Taking o, = o, = a,, for simplicity, the result

D
Z9_y. (VT Vw> +(Cy — I)P—w —(C — Do?
Dt Go k

2\’]‘

+=—Vw - Vk. (10.94)

o,k
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Table 10.2. Values of Czy and Cz, for various specifications of Z = CzkP&!
(see Exercise 10.12)

Z p q Czi Cz2
k 1 0 1.0 1.0
e 0 1 1.44 1.92
w=¢/k —1 1 0.44 0.92
t=k/e 1 -1 —044 092
L=k"/e I -1 006 —042
kL=k"?/e 3 —1 106 058
v = Cﬂkz/a 2 -1 0.56 0.08
Evidently, for homogeneous turbulence, the choices C,; = C,; — 1 and

C.,, = C, — 1 make the models identical. However, for inhomogeneous
flows, the k—¢ model (written as a k—» model) contains an additional term —
the final term in Eq. (10.94).

The second most widely used two-equation model is the k—» model that
has been developed for over 20 years by Wilcox and others (see Wilcox
(1993)). In this model, the expression for vt and the k equation are the same
as those in the k—¢ model. The difference lies in the use of Eq. (10.93) for
w rather than Eq. (10.53) for ¢ (or the implied w equation, Eq. (10.94)).
As described in detail by Wilcox (1993), for boundary-layer flows, the k-w
model is superior both in its treatment of the viscous near-wall region, and
in its accounting for the effects of streamwise pressure gradients. However,
the treatment of non-turbulent free-stream boundaries is problematic: a non-
zero (non-physical) boundary condition on w is required, and the calculated
flow is sensitive to the value specified.

Menter (1994) proposed a two-equation model designed to yield the best
behavior of the k—¢ and k-w models. It is written as a (non-standard) k—w
model, with the o equation of the form of Eq. (10.94), but with the final
term multiplied by a ‘blending function.” Close to walls the blending function
is zero (leading to the standard w equation), whereas remote from walls the
blending function is unity (corresponding to the standard ¢ equation). (The
behavior of the k—¢ model at a free-stream boundary has been analyzed by
Cazalbou et al. (1994); see also Exercise 10.11.)

EXERCISES
10.12  Consider the quantity Z defined by

Z = Czk"&!, (10.95)
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for given C, p and g. From the standard k—¢ model equations, show
that, in homogeneous turbulence, the implied model equation for Z is

dz ZP Ze
— =Cr1— — Cyzn— 10.9
o~ e (10.96)
where
CZI =P + qC::h (1097)
CZZ =Pp + qu2~ (1098)

Hence verify the values of Cz; and Cz, in Table 10.2.
10.13  Given the standard k-¢ model equations, show that the implied model
equation for w = ¢/k is

Do y Pw 7

5 = V- (;T Vu)) +(Co = D = (Co = Do’
I 1\ 1

+C, (— + —) —Vo - Vk

O, g, )] @
1 b] 1
+ cﬂ(l — f> (V‘k + —Vk -w). (10.99)
O, Ok k

10.5.2 The Spalart—Allmaras model

<palart and Allmaras (1994) described a one-equation model developed for
werodynamic applications, in which a single model transport equation is
.olved for the turbulent viscosity vr. Earlier proposals for such a model are
Zescribed by Nee and Kovasznay (1969) and Baldwin and Barth (1990).

It is useful at the outset to appreciate the context of the development
7 the Spalart-Allmaras model. There is a natural progression in the mod-
s described above — algebraic, one-equation, two-equation — on to the
Revnolds-stress models described in the next chapter. Each successive level
~rovides a fuller description of the turbulence, and thereby removes a qual-
-ative deficiency of its predecessor. If accuracy were the only criterion in
-~ selection of models for development and application, then the choice
+~ould naturally tend toward the models with the higher level of description.
“owever, as discussed in Section 8.3, cost and ease of use are also important
_-iteria that favor the simpler models. It is useful, therefore, for model de-
~2lopers to work toward the best possible model at each level of description.

Arguably, a one-equation model for vy is the lowest level at which a
- odel can be complete. Spalart and Allmaras (1994) developed the model to
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remove the incompleteness of algebraic and one-equation models based on
k. and yet have a model computationally simpler than two-equation models.
The model is designed for aerodynamic flows, such as transonic flow over
airfoils, including boundary-layer separation.

The model equation is of the form

Dvr

Dt
where the source term S, depends on the laminar and turbulent viscosities,
v and vy; the mean vorticity (or rate of rotation) Q; the turbulent viscosity
gradient |Vvr|; and the distance to the nearest wall, £,. The details of the
model are quite complicated: the reader is referred to the original paper
which provides an enlightening account of the construction of the model to
achieve particular desired behaviors.

[n applications to the aerodynamic flows for which it is intended, the model
has proved quite successful (see, e.g., Godin, Zingg, and Nelson (1997)). How-
ever, it has clear limitations as a general model. For example; it is incapable
of accounting for the decay of vy in isotropic turbulence, it implies that,
in homogeneous turbulence, vy is unaffected by irrotational mean straining;
and it overpredicts the rate of spreading of the plane jet by almost 40%.

V- ("—T VVT> LS., (10.100)
o,

EXERCISE

10.14  Consider the Spalart-Allmaras model applied to high-Reynolds-
number homogeneous turbulence. Argue that the laminar viscosity
v and the distance to the nearest wall ¢, are not relevant quanti-
ties. Hence show that dimensional and other considerations reduce
Eq. (10.100) to

dvr
dr
where ¢y, is a constant. Comment on the form of this equation for
irrotational mean straining,
For self-similar homogeneous turbulent shear flow (in which Q
and S are equal), from the relation —(uv) = vy ¢(U)/0dy, show that
vt evolves by Eq. (10.101) with

Co1 = (E - 1) (ﬁy . (10.102)
& &

Use experimental data (Table 5.4 on page 157) to estimate ¢, ac-
cording to Eq. (10.102) and compare it with the Spalart-Allmaras
value of ¢y, = 0.135.

=801, Q) =cp v Q, (10.101)




