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3.1 Introdu
tionWhen dealing with tra
king of parti
les with 
onstant mass, we are interestedin solving for the following equation:�vp(t)�t = F[vp(t)℄mi ; vp(t0) = vp;0 : (3.1)In general terms, this equation 
an be regarded as a �rst order ODE sub-je
t to an initial 
ondition:��t [�(t)℄ = f [�(t)℄ ; �(t0) = �0 ; (3.2)where �(t) is a matrix or array representing a set of variables (e:g: theparti
le velo
ity 
omponents). Thus, parti
le tra
king is an initial value (orCau
hy) problem: �rst, the solution �1 of the ODE at time t1 = t0 +�t hasto be found. �1 then be
omes the new initial 
ondition for 
omputing �2 attime t2 = t1 +�t and so on.To this obje
t, ODEs are solved numeri
ally by 
onverting derivativesinto dis
rete algebrai
 expressions. This dis
retization pro
edure leads to analgebrai
 equation, whi
h is manipulated to generate an algorithm for the ap-proximate solution of the ODE. The algorithm gives the approximate solutionat the (n+1)� th time step in terms of the known solution at the n� th andearlier time steps.In this 
hapter, we review the most 
ommon time-mar
hing numeri
almethods for ODEs.3.2 Expli
it and Impli
it MethodsEquation 3.2 
an be solved analiti
ally by integration:



16 3 Numeri
al Methods for Parti
le Tra
kingZ �n+1�n d� = Z tn+1tn f(t; �(t)) dt : (3.3)However, approximation is required to evaluate the integral on the r.h.s.The expli
it method (or Euler forward) repla
es the integral with the initialvalue of the integrand operator f :�n+1 � �n�t = f(tn; �n) : (3.4)The impli
it method (or Euler ba
kward) repla
es the integral with the�nal value of the integrand operator f :�n+1 � �n�t = f(tn+1; �n+1) : (3.5)Another 
ommon method is the midpoint rule (or modi�ed Euler), whi
huses the midpoint of the integration time interval:�n+1 � �n�t = f(tn+1=2; �n+1=2): (3.6)The s
hemati
 in �gure 3.1 shows the di�erent pro
edures used by Eulers
hemes to approximate the integral on the r.h.s of equation 3.3, in 
omparisonwith the 
ase of linear interpolation.Note that Euler methods are �rst-order: the order of a

ura
y of thes
heme by whi
h the integration of the equation of parti
le motion is a
-
omplished and the temporal resolution determine the magnitude of the errorin
urred at ea
h time step. This error is a

umulated over time and the 
u-mulative time-stepping error depends also on the duration of tra
king. In the
ase of Euler methods, the solution at the new time-step is 
omputed withan error proportional to �t2, where �t is the time step size. If N time stepsare required to 
ompute the solution at some �nite �nal time t = t0+N ��t,then the �nal error is proportional to �t.
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3.3 Predi
tor-Corre
tor Methods 17All methods thus produ
e a

urate solutions when the time step size issmall. However, many problems in 
uid me
hani
s 
an only be solved bysystems of di�erential equations that involve a wide range of di�erent times
ales. Su
h problems are said to be sti� in a 
ertain interval of integration ifthe numeri
al solution in that interval has its step size limited more severely bythe stability of the numeri
al te
hnique than by the a

ura
y of the te
hnique.The issue of stability is brie
y addressed in Appendix A of this book.The reader is referred to the books by Flet
her and by Ferziger and Peri
 forfurther details.Here, it is important to underline that order of a s
heme and stability aretwo di�erent 
on
epts. For example, the impli
it s
hemes des
ribed above areun
onditionally stable i.e. they yield bounded solutions for every time step if�f(t; �)=�� < 0 but their a

ura
y 
an be very limited.Likewise, order of a s
heme and a

ura
y of a s
heme (i.e. the trun
ationerror asso
iated with approximating derivatives) are not the same thing. Theorder of a s
heme is generally (tough not always) a reliable guide to the a

u-ra
y of that s
heme. However, ea
h s
heme has its pathologi
al appli
ationswhi
h 
an 
ause it to break down. The order should be simply regarded as aquantitative measure of the rate at whi
h the error de
reases as the time stepsize de
reases. In addition, this is true only when the time step size be
omessmaller than a given threshold value, whi
h depends on both the problem tobe solved and the s
heme used and 
an not be determined in advan
e. For timestep size larger than the threshold value, the error yielded by two di�erents
hemes of the same order may di�er by as mu
h as an order of magnitude.There is of 
ourse another requirement for a

urate stable integration ofthe equations of motion. No parti
le 
an be allowed to move more than onegrid 
ell in distan
e during ea
h time step. In other words, the size of thetra
king time step must be su
h that the typi
al displa
ement of a parti
le inany dire
tion is smaller than the grid spa
ing in the same dire
tion.3.3 Predi
tor-Corre
tor MethodsExpli
it Euler methods are generally more easy to program than impli
it Eulermethods. They also require less 
omputer memory and CPU time per integra-tion step, but they are more unstable. The idea behind Predi
tor-Corre
torMethods (PCMs) is to 
ombine the properties of expli
it and impli
it Eu-ler methods to obtain a method with improved 
onvergen
e 
hara
teristi
s.The most 
ommon PCM predi
ts the solution at the new time step using theexpli
it Euler method: ��n+1 = �n + f(tn; �n)�t : (3.7)The predi
ted solution ��n+1 is then 
orre
ted using the impli
it trape-zoidal rule (i.e. linear interpolation between the initial and the �nal points):



18 3 Numeri
al Methods for Parti
le Tra
king�n+1 = �n + �t2 �f(tn; �n) + f(tn+1; ��n+1� : (3.8)It 
an be shown that the highest order of a

ura
y of su
h PCM is se
ond-order. For higher orders, a suitable 
ombination of Adams methods 
an beused (see Se
tion 3.6).3.4 Crank-Ni
olson MethodsCrank-Ni
olson Methods (CNMs) are impli
it methods whi
h apply the se
ond-order trapezoidal rule to PDEs and ODEs:�n+1 = �n + �t2 [f(tn; �n) + f(tn+1; �n+1℄ : (3.9)CNMs are 
ommonly used when time a

ura
y is important. CNMs, Eu-ler methods and PCMs are 
alled two-level methods, sin
e they involve thevalue of the unknown integral operator at only two time steps. The highestorder of a

ura
y of two-level methods is se
ond order. Higher-order approx-imations 
an be obtained by using methods whi
h exploit the information atadditional points. In the following, we dis
uss multi-step methods, whi
h usepreviously generated solutions and Runge-Kutta methods, whi
h use data attimes between tn and tn+1.3.5 Runge-Kutta MethodsAs mentioned, multi-step methods a
hieve high order a

ura
y by eÆ
ientlyusing previously generated solutions. Runge-Kutta Methods (RKMs) a
hievethe same goal in a single step, but at the expense of many evaluations of thederivative per step. Being single-step s
hemes, RKM are self-starting and thusover
ome the diÆ
ulties of starting multipoint methods using the spe
i�edinitial 
ondition. Also, they are more a

urate and more stable than multipointmethods of the same order: thus, RKM work well with non-stationary pro
esslike parti
le dispersion studied in a Lagrangian framework.The general n-step RK s
heme applied to equation 3.3 
an be written as:�n+1 = �n +�t RXr=1 
rfr ; (3.10)where:fr = f(tn + ar�t; �n +�t RXs=1 brsfs) ; ar = RXs=1 brs : (3.11)



3.5 Runge-Kutta Methods 19Note that brs are elements of a lower triangular matrix.RKMs are 
lassi�ed as expli
it, impli
it and semi-impli
it. Here, only the�rst two will be 
onsidered. Impli
it s
hemes guarantee high a

ura
y andgood stability but they are 
omputationally expensive for non-linear initialvalue problems sin
e they require the iterative solution of a set of non linearalgebrai
 equations for f at ea
h time step. This is mu
h more expensive
ompared to the expli
it s
hemes, whi
h are easy to program and use less
omputer memory and 
omputation time per step. Expli
it methods, however,su�er from numeri
al instability when the time step is relatively large. The
hoi
e is a trade-o� between stability and 
omputational 
ost, if the s
hemeshave the same order of a

ura
y. In general, impli
it s
hemes are suitable forsti� di�erential equations whereas expli
it RK s
hemes are more 
ommonlyused when the time step is small.3.5.1 Se
ond-order Runge-KuttaThe se
ond-order RKM 
onsists of two steps: the �rst step uses a �rst-orderexpli
it Euler method to 
ompute ��n+1=2 at half time step, the se
ond stepuses the midpoint rule for the full time step to 
ompute �n+1 at step tn+1 =tn +�t: ��n+1=2 = �n + �t2 f(tn; �n) ; (3.12)�n+1 = �n +�tf(tn+1=2; ��n+1=2) : (3.13)3.5.2 Third-order Runge-KuttaThe third-order RKM is derived using a higher order numeri
al integrations
heme and 
onsists of three steps. The �rst step uses a �rst-order expli
itEuler method to 
ompute ��n+1=2; the se
ond step uses the midpoint rule forthe full time step to 
ompute ��n+1. The �nal step uses the Simpson's rule to
orre
t ��n+1 and 
ompute �n+1.��n+1=2 = �n + �t2 f(tn; �n) ; (3.14)��n+1 = �n +�tf(tn+1=2; ��n+1=2) ; (3.15)�n+1 = �n + �t6 �f(tn; �n) + 4f(tn+1; ��n+1)+ (3.16)f(tn+1; ���n+1)� : (3.17)where ���n+1 = �n+2(��n+1���n+1=2). A se
ond version is obtained by splittingthe integration time step in three parts, as shown in �gure 3.2:
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tt tn n + 1t n + 1/3 t n + 2/3Fig. 3.2. Time step splitting: a) 2nd-order RKM, b) 3rd-order RKM.��n+1=3 = �n + �t3 f(tn; �n) ; (3.18)��n+2=3 = �n + 2�t3 f(tn+1=3; ��n+1=3) ; (3.19)�n+1 = �n + �t4 hf(tn; �n) + 3f(tn+2=3; ��n+2=3)i : (3.20)3.5.3 Fourth-order Runge-KuttaThe fourth-order RKM is the most popular among higher-order RKMs and
onsists of four steps. The �rst two steps use a �rst-order expli
it Euler predi
-tor and a �rst-order impli
it Euler 
orre
tor to 
ompute ��n+1=2 and ���n+1=2at half time step. The third step uses the midpoint rule for the full time stepto predi
t ��n+1 whi
h is 
orre
ted in the �nal step by means of the Simpson's1=3 rule. ��n+1=2 = �n + �t2 f(tn; �n) ; (3.21)���n+1=2 = �n + �t2 f(tn+1=2; �n+1=2) ; (3.22)��n+1 = �n +�tf(tn+1=2; ���n+1=2) ; (3.23)�n+1 = �n + �t6 [f(tn; �n) + 2f(tn+1=2; ��n+1=2) +2f(tn+1=2; ���n+1=2) + f(tn+1; ��n+1)� : (3.24)A se
ond (less popular) version is based on the Simpson's 3=8 rule andreads:



3.6 Adams Methods 21��n+1=3 = �n + �t3 f(tn; �n) ; (3.25)��n+2=3 = �n + 2�t3 f(tn+1=3; ��n+1=3) ; (3.26)���n+2=3 = ��n+2=3 + �t3 hf(tn+1=3; ��n+1=3)� f(tn; �n)i ; (3.27)��n+1 = �n +�t hf(tn; �n)� f(tn+1=3; ��n+1=3)+f(tn+2=3; ���n+2=3)i ; (3.28)�n+1 = �n + �t8 [f(tn; �n) + 3f(tn+1=3; ��n+1=3) +3f(tn+2=3; ���n+2=3) + f(tn+1; ��n+1)� : (3.29)3.6 Adams MethodsAdams methods are multipoint methods derived by �tting a polynomial to thederivatives at a number of points in time. Expli
it Adams methods use data attime tn in the interpolation polynomial and are known as Adams-BashforthMethods (ABMs). Impli
it Adams methods use data at time tn+1 and areknown as Adams-Moulton Methods (AMMs). The �rst-order expli
it/impli
itAdams Method is expli
it/impli
it Euler.Se
ond-order Adams-Bashforth Method:�n+1 = �n + �t2 [3f(tn; �n)� f(tn�1; �n�1)℄ : (3.30)Se
ond-order Adams-Moulton Method:�n+1 = �n + �t2 [f(tn; �n) + f(tn+1; �n+1)℄ : (3.31)The se
ond-order AMM is the same as the se
ond-order CNM: thus, it doesnot use previously 
omputed solution values. The third order formula is moretypi
al be
ause it does involve a previously 
omputed value. For 
ompleteness,third-order and fourth-order ABM and AMM are reported (for sake of brevity,we put f(t; �) = f).Third-order and forth-order ABM:(3rd-order) �n+1 = �n + �t12 (23fn � 16fn�1 + 5fn�2) ; (3.32)(4th-order) �n+1 = �n + �t24 (55fn � 59fn�1 + 37fn�2 � 9fn�3) : (3.33)Third-order and forth-order AMM:



22 3 Numeri
al Methods for Parti
le Tra
king(3rd-order) �n+1 = �n + �t12 (5fn+1 + 8fn � fn�1) ; (3.34)(4th-order) �n+1 = �n + �t24 (9fn+1 + 19fn � 5fn�1 + fn�2) : (3.35)Adams methods of order higher than four exist but they are not often usedfor the solution of ODEs. Interestingly, Adams methods 
an be 
ombined toobtain PCMs of order higher than se
ond: a 
ommon pro
edure is to usea 3rd/4th order ABM as a predi
tor and a AMM of the same order as a
orre
tor.The Adams-Moulton formula is more a

urate than the Adams-Bashforthformula of the same order, so that it 
an use a larger step size; the Adams-Moulton formula is also more stable. A modern 
ode based on Adams methodsis relatively easy to program and requires only one evaluation of the derivativeper time step. However, it may produ
e non-physi
al solutions due to the useof data from several time steps. Another drawba
k is that an Adams 
odeis more 
omplex than a Runge-Kutta 
ode be
ause it must 
ope with thediÆ
ulties of starting the integration and adapting the time step size. Withenough \memorized" values, however, we 
an use whatever order formula wewish in the step from t0. Modern Adams 
odes attempt to sele
t the mosteÆ
ient formula at ea
h step as well as to 
hoose an optimal step size toa
hieve a user-spe
i�ed a

ura
y.Some general rules-of-thumb about how to 
hoose between Runge-Kuttamethods and Adams methods are given below:1. If output at many points is needed, Adams methods are generally pre-ferred.2. If fun
tion evaluations are expensive, Adams methods are preferred.3. If fun
tion evaluations are inexpensive and moderate a

ura
y is required,Runge-Kutta methods are generally best.4. If storage is at a premium, Runge-Kutta methods are preferred.5. If a

ura
y over a wide range of toleran
es is needed, the variable orderAdams methods will outperform the �xed order Runge-Kutta methods.3.7 Integration Time Step Size ConsiderationsThe 
hoi
e of the time step size is 
ru
ial in parti
le tra
king: it must be
hosen 
orre
tly to perform the numeri
al experiments and to 
ompute theLagrangian statisti
s eÆ
iently and a

urately.A theorem, developed by H. Nyquist, states that a signal may be uniquelyre
onstru
ted, without error, from samples taken at equal time intervals.The sampling rate (the number of samples taken per unit time, i.e. therate at whi
h the signal is sampled for subsequent use) must be equal to,or greater than, twi
e the highest frequen
y 
omponent in the signal. If weapply Nyquist's theorem to parti
le tra
king, the tra
king time step, �tTr, is



3.7 Integration Time Step Size Considerations 23the \highest frequen
y 
omponent" and the parti
le response time �p is the\sampling rate" so that it must be:�tTr � �p2 ; (3.36)in order to obtain an a

urate estimate of the parti
le traje
tory, whi
h isthe \signal" to be re
onstru
ted.The magnitude of the time step�tTr is bounded not only by the resolutionrequired to 
ompute a

urate parti
le traje
tories but also by the available
omputer disk spa
e. A smaller �tTr requires higher storage frequen
y andlarger disk spa
e. On the other hand, a

urate parti
le traje
tories need �tTrto be smaller than parti
le 
hara
teristi
 time �p. As a 
onsequen
e, the three-dimensional 
uid velo
ity �eld needs to be stored at intervals equal to �tTr ,whi
h is larger than the time step,�tNS , used in integrating the Navier-Stokesequations for the 
uid. A 
ommon pro
edure is to 
hoose �tTr = �tNS (vanHarleem et al. 1998).In their DNS of parti
le dispersion in a de
aying isotropi
 turbulen
e,Elghobashi & Truesdell (1992) used �tTr = (1=2 � 1=3) �p on a 963 pointsgrid: the disk spa
e required to store the three 
uid velo
ity 
omponents was10Mb per time step. Roughly 1 Gb of disk spa
e was required for the 
ompletetraje
tory of ea
h of the 223 tra
ked parti
les. A further redu
tion of the timestep size (�tTr = 1=4 �p) resulted in a negligible di�eren
e in the dispersionstatisti
s.Further 
omments 
an be done 
onsidering the dependen
y of the timestep size on the 
hara
ter of the turbulen
e, most likely the integral time s
ale,the parti
le's inertia and the parti
le's settling velo
ity. Intuitively, we knowthat, as the Stokes number in
reases, parti
les tend not to respond to thea

eleration of the surrounding 
uid and follow a traje
tory quite di�erentthan that of the 
uid parti
les. Also, parti
les with small settling velo
ityshow no preferred dire
tion whereas parti
les with large settling velo
ity tendto drift in the dire
tion of the external body for
e a
ting on them. In bothsituations, it is not straightforward to guess whi
h 
ase requires the smallesttime step to keep the overall error low (Wang & Sto
k, 1992).Results reported in the literature show that:� the error in the parti
le lo
ation relative to an exa
t traje
tory growsexponentially with time, no matter how small the time step (Wang &Sto
k, 1992). The smaller the time step size, the longer it takes for theerror to be
ome signi�
ant.� if the long-time parti
le di�usivity is to be 
al
ulated, the error in theparti
le lo
ation should be low after several Lagrangian integration times.To this aim, a smaller time step is required with in
reasing parti
le Stokesnumber, St, and settling velo
ity, vs. The de
rease in the time step sizewith in
reasing St (i.e. in
reasing parti
le mass) is mostly due to thein
rease in the Lagrangian integration time. The de
rease in the time step
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al Methods for Parti
le Tra
kingsize with in
reasing vs is due to the in
rease in the distan
e traveled bythe parti
le.� if the behavior of parti
le traje
tories at a given time after release is ofinterest, then the time step size limit should be determined for a �xed totalLagrangian integration time. To this aim, larger time steps 
an be usedfor parti
les with larger inertia (i.e. larger St), be
ause the traje
toriesare less random.The time required to a

omplish a simulation for heavy parti
le dispersiondepends on the total Lagrangian integration time, the time step size, thenumber of parti
le traje
tories 
omputed 1. In the dispersion simulation byWang & Sto
k (1992), 2000 parti
le traje
tories were 
al
ulated using 80Fourier modes: the 
omputation time on a IBM 3090 
omputer ranged from2500 to 8000 se
onds.3.8 Appli
ation to the Generi
 Parti
le Equation ofMotionWe next 
onsider the appli
ation of some of the numeri
al s
hemes des
ribedin the previous paragraphs to the equation of motion for a spheri
al parti
lesubje
t to drag for
e only, in the hypotesis of Stokes regime:dvpdt = u� vp�p (3.37)We dis
retize equation 3.37 and write down the expressions for its solutionvp;n+1 at the new time step tn+1.1. Euler expli
it: vp;n+1 = vp;n + �t�p (un � vp;n)2. Euler impli
it:vp;n+1 = vp;n + �t�p (un+1 � vp;n+1)! vp;n+1 = vp;n + �t�p un+11 + �t�p3. Predi
tor-
orre
tor: v�p;n+1 = vp;n + �t�p (un � vp;n)vp;n+1 = vp;n + �t2�p �(un � vp;n) + (un+1 � v�p;n+1)�1 and the number of Fourier modes to simulate the 
uid, if a pseudo-spe
tral DNS
ode is used.



3.8 Appli
ation to the Generi
 Parti
le Equation of Motion 254. 2nd-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)vp;n+1 = vp;n + �t�p �un+1=2 � v�p;n+1=2�5. 3rd-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)v�p;n+1 = vp;n + �t�p �un+1=2 � v�p;n+1=2�vp;n+1 = vp;n+�t6�p h(un � vp;n) + 4(un+1=2 � v�p;n+1=2) + (un+1 � v�p;n+1)i6. 4th-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)v��p;n+1=2 = vp;n + �t2�p �un+1=2 � v�p;n+1=2�v�p;n+1 = vp;n + �t�p �un+1=2 � v��p;n+1=2�vp;n+1 = vp;n + �t6�p h(un � vp;n) + 2(un+1=2 � v�p;n+1=2)++ 2(un+1=2 � v��p;n+1=2) + (un+1 � v�p;n+1)i7. 2nd-order AM (and 2nd-order CN):vp;n+1 = vp;n + �t2�p [(un � vp;n) + (un+1 � vp;n+1)℄! vp;n+1 = vp;n + �t2�p (un+1 + un � vp;n)1 + �t2�p8. 2nd-order AB:vp;n+1 = vp;n + �t2�p [3(un � vp;n)� (un�1 � vp;n�1)℄



26 3 Numeri
al Methods for Parti
le Tra
king9. 3rd-order AM:vp;n+1 = vp;n + �t12�p [5(un+1 � vp;n+1) + 8(un � vp;n)� (un�1 � vp;n�1)℄! vp;n+1 = vp;n + �t12�p [5un+1 + 8(un � vp;n)� (un�1 � vp;n�1)℄1 + 5�t12�p10. 3rd-order AB:vp;n+1 = vp;n+ �t12�p [23(un � vp;n)� 16(un�1 � vp;n�1) + 5(un�2 � vp;n�2)℄11. 4th-order AM:vp;n+1 = vp;n + �t24�p [9(un+1 � vp;n+1) + 19(un � vp;n)�5(un�1 � vp;n�1) + (un�2 � vp;n�2)℄12. 4th-order AB:vp;n+1 = vp;n + �t24�p [55(un � vp;n)� 59(un�1 � vp;n�1)+37(un�2 � vp;n�2)� 9(un�3 � vp;n�3)℄Note that the 
uid velo
ities interpolated at parti
le position at timetn+1=2 and/or tn+1, namely un+1=2 and un+1, may be required to 
al
ulatevp;n+1. These velo
ities are unknown a priori and have to be estimated: thus,some approximation is ne
essary. The easiest (and less a

urate) 
hoi
e is tofreeze the 
uid velo
ity �eld during the time interval between tn and tn+1,so that un = un+1=2 = un+1. This approximation is justi�ed as follows: thetime step size �tNS used in the solution of the Navier-Stokes equation forthe 
uid is limited by the Courant numeri
al stability 
onstraint and is typi-
ally mu
h smaller than the time step size �tTr used in the integration of theparti
le equation of motion (Kontomaris, Hanratty & M
Laughlin 1992). Infa
t, �tNS is mu
h smaller than the Kolmogorov 
uid time-s
ale 
u
tuationsbased on the volume-averaged vis
ous dissipation. Another option is to inter-polate un+1=2 at parti
le position at time tn+1=2 and un+1 at parti
le positionat time tn+1. To this aim, the parti
le velo
ity v�p;n+1=2 and v�p;n+1 predi
tedby the numeri
al method 
an be used.In order to demonstrate the performan
e of the di�erent numeri
al s
hemes,in �gure 3.3, we 
ompare the behavior of the solution of equation 3.37 whenEuler methods, PCMs amd Adams methods are used.
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Fig. 3.3. Behavior of the solution by expli
it/impli
it Euler methods and by se
ond-order PCM (a) and by se
ond-order ABM/AMM (b) using two di�erent time stepsizes: �t = St=2 and �t = St=3.From �gure 3.3a, it is apparent that se
ond-order PCMs produ
e a morea

urate solution than �rst-order Euler methods. As expe
ted, the impli
itEuler method tends to slighlty underpredi
t whereas the expli
it Euler methodtends to overpredi
t the 
orre
t value of the solution. Also, the a

ura
y ofEuler methods signi�
antly in
reases as the time step size de
reases. From�gure 3.3b, it is apparent that AMMs are more a

urate than ABMs of thesame order and that the a

ura
y of both methods in
reases as the time stepsize de
reases.Figure 3.4 shows what happens when a numeri
al s
heme is used with timesteps whi
h violate the stability 
ondition. We used a fourth-order expli
itABM (�gure 3.4a): when the time step size is equal to half the parti
le Stokesnumber (�t = St=2), os
illations are generated whi
h grow unboundedly withtime. In a few steps, the numbers be
ome too large to be handled by the
omputer. When the 
omputation is 
arried on with a time step size �t =St=3, os
illations are still generated but they grow mu
h slower. Eventually,os
illations disappear with a further redu
tion of the time step size (�t = St=4and�t = St=5 pro�les). With an impli
it AMM of the same order (�gure 3.4b)no problems o

urred even for the largest time step used.Figure 3.5 shows what happens when the time step size is �xed and theorder of the numeri
al s
heme is 
hanged. When an expli
it ABM is used(�gure 3.5a), in
reasing the order of the method triggers small amplitudeos
illations whi
h slowly grow with time. This problem does not o

ur withthe impli
it AMM 
ounterpart (�gure 3.5b).Figure 3.6 shows the behavior of the solution when a RKM is used: boththe order of the s
heme and the time step size are in
reased. No os
illation inthe solution o

urs (re
all that RMKs are more stable than Adams methodsof the same order) but the a

ura
y signi�
antly de
reases as the time stepsize in
reases from �t = St=3 (�gure 3.6a) to �t = 1:5 St (�gure 3.6d). Of
ourse, higher-order RKMs yield more a

urate solution for a given time stepsize.
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Fig. 3.4. Behavior of the solution by fourth-order ABM (a) and AMM (b) as thetime step size �t is redu
ed from �t = St=2 to �t = St=5.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

(a) ABM

Analitic

Time

Adams-Bashforth (2nd order): dt = St / 3
Adams-Bashforth (3rd order): dt = St / 3
Adams-Bashforth (4th order): dt = St / 3

P
a
r
t
i
c
l
e
 
V
e
l
o
c
i
t
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

(b) AMM

Analitic
Adams-Moulton (2nd order): dt = St / 3
Adams-Moulton (3rd order): dt = St / 3
Adams-Moulton (4th order): dt = St / 3

Time

P
a
r
t
i
c
l
e
 
V
e
l
o
c
i
t
y

Fig. 3.5. Behavior of the solution by se
ond-, third- and fourth-order ABM (a)and AMM (b) using a time step size �t = St=3.In �gure 3.7 the temporal dis
retization error is shown for various timeintegration s
hemes. The dis
retization error is obtained by subtra
ting thenumeri
al solution to the exa
t analyti
 solution of equation 3.37.The two Euler methods show the expe
ted �rst-order behavior: the errorand the time step size both redu
e by the same amount. The impli
it Eulers
heme is more a

urate than the expli
it Euler 
ounterpart but the di�eren
ein the solution provided by the two s
hemes de
reases as the time step sizede
reases.The se
ond-order s
hemes show also the expe
ted error redu
tion rate.The se
ond-order ABM (started by the se
ond-order RKM) yields a largerinitial error than both the PCM and the AMM (also started by the se
ond-order RKM) of the same order but the error redu
tion rate remains the same.Re
all that the se
ond-order AMM is the same as the se
ond-order CNM.A slight di�eren
e in the a

ura
y of the solution o

urs when Adamsmethods of the third-order are used: the ABM provides a slightly larger ini-tial error than AMM but the error redu
tion rate is again the same as thetime step size de
reases. We do not show here the estimates of the temporal
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Fig. 3.6. Behavior of the solution by se
ond, third and fourth-order RKM as thetime step size �t is in
reased from �t = St=3 to �t = 1:5St.dis
retization error for the forth-order Adams methods, due to the os
illatorysolution provided by the ABM (see �gure 3.4).The forth-order RKM is by far the most a

urate s
heme: the error is aboutfour orders of magnitude smaller than that of Euler methods and it is redu
edby two orders of magnitude over the time step size redu
tion 
onsidered.To investigate further the a

ura
y of temporal dis
retization, in �gure3.8 we evaluate the 
onvergen
e of parti
le velo
ity as the time step size isredu
ed. We 
ompare the exa
t solution of equation 3.37 at time t = 4:0 withthe numeri
al solution provided by the s
hemes already 
onsidered in �gure3.7. We performed 
al
ulations up to that time using 8, 12, 16 and 20 timesteps 
orresponding to time step sizes of �t = St=2, �t = St=3, �t = St=4,�t = St=5 respe
tively. The 
onvergen
e rate is 
onsistent with the resultsshown in �gure 3.7. The impli
it Euler, the se
ond-order PCM, RKM andABM underpredi
t the exa
t value. The expli
it Euler and the se
ond-orderAMM (i.e. CNM) overpredi
t the exa
t value. All s
hemes show monotoni

onvergen
e towards the exa
t time step independent solution. As expe
ted,the most a

urate referen
e solution is obtained using the forth-order RKM.To 
on
lude this 
hapter, we point out that the interpolation error, whi
hmainly depends on the spatial resolution of the small-s
ale motions of thetubrulent 
ow (see Chapter 4), is always the major sour
e of numeri
al errorsin the extra
tion of Lagrangian data. The time-stepping error is generally



30 3 Numeri
al Methods for Parti
le Tra
king

0.0001

0.001

0.01

0.1

1

10

10.2 0.5

E
r
r
o
r
 
(
%
)

Time Step Size ( t/St)∆

Euler Exp.

Euler Imp.

PCM 2nd order

RKM 2nd order

RKM 4th order

ABM 2nd-order

ABM 3rd-order

AMM 2nd-order

AMM 3rd-order

Fig. 3.7. Temporal dis
retization error for various time integration s
hemes.
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Fig. 3.8. Convergen
e of vp at time t = 4:0 as the time step size is redu
ed forvarious time integration s
hemes.less signi�
ant be
ause it is restri
ted to small values by enfor
ement of theCourant number stability limit (Yeung and Pope, 1988; Yeung and Pope,1989).Appendix AConsider the parti
le equation of motion in the following form:



3.8 Appli
ation to the Generi
 Parti
le Equation of Motion 31�vni�t = F (xni )mi ; �xni�t = vni ; (3.54)where vni is parti
le velo
ity at time tn at its position xni . The term F (xni )represents the external for
es a
ting on the parti
le of mass mi. Combiningthe above equations into one we get:�2xni�t2 = F (xni )mi ; (3.55)where xni is the numeri
al solution at time tn. Now, let Xni be the exa
tsolution of equation 3.56 at time tn, that is the solution without round-o�error 2. The numeri
al error at time tn 
an be de�ned as:�ni = xni �Xni : (3.56)Using equation 3.57 to repla
e x in equation 3.56, an equation for the timeevolution of the error �n is obtained:�2�ni�t2 = F (Xni + �ni )mi � �2Xni�t2 : (3.57)Observe that: �2Xni�t2 = F (Xni )mi ; (3.58)and that: F (Xni + �ni )� F (Xni ) = �F�X ����Xni � �ni ; (3.59)in the limit �ni ! 0. Thus, equation 3.58 
an be rewritten as:�2�ni�t2 = 1mi �F�X ����Xni � �ni : (3.60)Assume to approximate the l.h.s. of equation 3.61 by means of a simple 
entral-di�eren
e three time-level s
heme (also known as leapfrog method 3):2 The round-o� error is the error introdu
ed be
ause the 
omputer only storesnumbers up to a 
ertain pre
ision.3 The leapfrog method is the appli
ation of the midpoint rule to an integrationinterval of size 2�t
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king�n+1i � 2�ni + �n+1i�t2 = 1mi �F�X ����Xni � �ni : (3.61)For bounded os
illatory solutions of the form:�ni = (�)n = (ei!�t)n ; (3.62)equation 3.61 
an be re
ast as:�2 � � � 2 + �t2mi �F�X ����Xni !+ 1 = 0 (3.63)Assuming �t2mi � �F�X ���Xni = �, this equation has two solutions:�1;2 = 1 + �2 ��1�r1 + 4�� ; (3.64)whi
h 
orrespond to the error ampli�
ation fa
tor. The general solution is:�ni = C1 � �1 + C2 � �2 : (3.65)The s
heme is said to be 
onditionally stable provided j�1;2j � 1. Figure 3.9shows the behavior of �1 and �2 as a fun
tion of ip�. When ip� < 2, �1 and�2 have an imaginary part, but for ip� � 2 both solutions are real. Complexvalues must be 
onsidered be
ause higher order systems may exhibit 
omplexeigenvalues. Values with zero or negative real part must be 
onsidered be
ausethey lead to bounded solutions.For ip� < 2, it 
an be shown that j�1;2j = 1: not only is the leapfrogs
heme stable but also it su�ers no amplitude dissipation. When ip� > 2,j�2j > 1: to guarantee stability, we must 
al
ulate the largest value ofj m�1i �F=�X j and then set �t su
h that:�t < 2r��� 1mi �F�X ��� : (3.66)



3.9 Bibliography 33

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Im(    )

Re(       )

λ

λ

λ

λIm(    )1

1

1,2

2

λ

βi Fig. 3.9. The roots of equation 3.9 as a fun
tion of ip�. For ip� < 2 both rootshave an imaginary 
omponent, but both have magnitude j�1;2j < 1. For ip� < 2both roots are real and j�2j < 1.3.9 Bibliography1. Elghobashi, S. & Truesdell, G.C. (1992). Dire
t simulation of parti
le dis-persion in a de
aying isotropi
 turbulen
e. J. Fluid Me
h., 242, 655-700.2. Ferziger, J.H. & Peri
, M. (1997). Computational Methods for Fluid Dy-nami
s. Springer-Verlag.3. Flet
her, C.A.J. (2000). Computational Te
hniques for Fluid Dynami
s.Springer-Verlag.4. van Haarlem, B., Boersma, B.J. & Nieuwstadt, T.M. (1998). Dire
t numer-i
al simulation of parti
le deposition onto a free-slip and no-slip surfa
e.Phys. Fluids, 10, 2608-2620.5. Kontomaris, K., Hanratty, T.J. & M
Laughlin, J.B. (1992). An algorithmfor tra
king 
uid parti
les in a spe
tral simulation of turbulent 
hannel
ow. J. Comput. Phys., 103, 231-242.6. Wang, L.P. & Sto
k, D.E. (1992). Numeri
al simulation of heavy parti
ledispersion time step and nonlinear drag 
onsiderations. J. Fluids Eng.,114, 100-106.



34 3 Numeri
al Methods for Parti
le Tra
king7. Yeung, P.K. & Pope, S.B. (1988). An algorithm for tra
king 
uid parti
lesin numeri
al simulation of homogeneous turbulen
e. J. Comput. Phys., 79,373-416.8. Yeung, P.K. & Pope, S.B. (1989). Lagrangian statisti
s from dire
t nu-meri
al simulations of isotropi
 turbulen
e. J. Fluid Me
h., 207, 531-586.


