3

Numerical Methods for Particle Tracking

Cristian Marchioli

3.1 Introduction

When dealing with tracking of particles with constant mass, we are interested
in solving for the following equation:

Ovp(t) _ Flvp(t)] _
ot = o s Vp(t()) =Vpo . (31)

In general terms, this equation can be regarded as a first order ODE sub-
ject to an initial condition:

9 1@(0)) = f12()] , Blto) = By : (32

where &(t) is a matrix or array representing a set of variables (e.g. the
particle velocity components). Thus, particle tracking is an initial value (or
Cauchy) problem: first, the solution @, of the ODE at time ¢; = tq + At has
to be found. #; then becomes the new initial condition for computing &, at
time t» = t; + At and so on.

To this object, ODEs are solved numerically by converting derivatives
into discrete algebraic expressions. This discretization procedure leads to an
algebraic equation, which is manipulated to generate an algorithm for the ap-
proximate solution of the ODE. The algorithm gives the approximate solution
at the (n+ 1) — th time step in terms of the known solution at the n — th and
earlier time steps.

In this chapter, we review the most common time-marching numerical
methods for ODEs.

3.2 Explicit and Implicit Methods

Equation 3.2 can be solved analitically by integration:
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/Q"H 4% = /ttw £t B(t)) dt . (3.3)

28 n

However, approximation is required to evaluate the integral on the r.h.s.
The explicit method (or Euler forward) replaces the integral with the initial
value of the integrand operator f:

¢n+1 - din _
— - fln, ) . (3.4)

The implicit method (or Euler backward) replaces the integral with the
final value of the integrand operator f:

¢n+1 - din
A, = n 7@71 . .
oy f(tns1, Pny) (3.5)

Another common method is the midpoint rule (or modified Euler), which
uses the midpoint of the integration time interval:

® -
% = f(tns1/2, Prg1/2)- (3.6)

The schematic in figure 3.1 shows the different procedures used by Euler
schemes to approximate the integral on the r.h.s of equation 3.3, in comparison
with the case of linear interpolation.

Note that Euler methods are first-order: the order of accuracy of the
scheme by which the integration of the equation of particle motion is ac-
complished and the temporal resolution determine the magnitude of the error
incurred at each time step. This error is accumulated over time and the cu-
mulative time-stepping error depends also on the duration of tracking. In the
case of Euler methods, the solution at the new time-step is computed with
an error proportional to At?, where At is the time step size. If N time steps
are required to compute the solution at some finite final time ¢t = tq + N - At,
then the final error is proportional to At.

f f f
tn thet tr‘1+2 t tn thet t|‘1+2 t th ‘ thet tr‘l+2 t th t‘n+1 tr‘1+2
Euler forward Euler backward Midpoint rule Linear interpolation

Fig. 3.1. Different procedure for the approximation of the time integral of f(t, ®(t))
over a finite time interval.
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All methods thus produce accurate solutions when the time step size is
small. However, many problems in fluid mechanics can only be solved by
systems of differential equations that involve a wide range of different time
scales. Such problems are said to be stiff in a certain interval of integration if
the numerical solution in that interval has its step size limited more severely by
the stability of the numerical technique than by the accuracy of the technique.

The issue of stability is briefly addressed in Appendix A of this book.
The reader is referred to the books by Fletcher and by Ferziger and Peric for
further details.

Here, it is important to underline that order of a scheme and stability are
two different concepts. For example, the implicit schemes described above are
unconditionally stable i.e. they yield bounded solutions for every time step if
Of(t,®)/0® < 0 but their accuracy can be very limited.

Likewise, order of a scheme and accuracy of a scheme (i.e. the truncation
error associated with approximating derivatives) are not the same thing. The
order of a scheme is generally (tough not always) a reliable guide to the accu-
racy of that scheme. However, each scheme has its pathological applications
which can cause it to break down. The order should be simply regarded as a
quantitative measure of the rate at which the error decreases as the time step
size decreases. In addition, this is true only when the time step size becomes
smaller than a given threshold value, which depends on both the problem to
be solved and the scheme used and can not be determined in advance. For time
step size larger than the threshold value, the error yielded by two different
schemes of the same order may differ by as much as an order of magnitude.

There is of course another requirement for accurate stable integration of
the equations of motion. No particle can be allowed to move more than one
grid cell in distance during each time step. In other words, the size of the
tracking time step must be such that the typical displacement of a particle in
any direction is smaller than the grid spacing in the same direction.

3.3 Predictor-Corrector Methods

Explicit Euler methods are generally more easy to program than implicit Euler
methods. They also require less computer memory and CPU time per integra-
tion step, but they are more unstable. The idea behind Predictor-Corrector
Methods (PCMs) is to combine the properties of explicit and implicit Eu-
ler methods to obtain a method with improved convergence characteristics.
The most common PCM predicts the solution at the new time step using the
explicit Euler method:

nt1 = P+ ftn, Pn) AL . (3.7)

The predicted solution &}, is then corrected using the implicit trape-
zoidal rule (i.e. linear interpolation between the initial and the final points):
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At

¢n+1 =&, + 7 [f(tm én) + f(tn+1a¢:z+1] : (38)

It can be shown that the highest order of accuracy of such PCM is second-
order. For higher orders, a suitable combination of Adams methods can be
used (see Section 3.6).

3.4 Crank-Nicolson Methods

Crank-Nicolson Methods (CNMs) are implicit methods which apply the second-
order trapezoidal rule to PDEs and ODEs:

At
45n+1 = Qn + 7 [f(tn: Qn) + f(tn+1)¢n+1] . (39)

CNMs are commonly used when time accuracy is important. CNMs, Eu-
ler methods and PCMs are called two-level methods, since they involve the
value of the unknown integral operator at only two time steps. The highest
order of accuracy of two-level methods is second order. Higher-order approx-
imations can be obtained by using methods which exploit the information at
additional points. In the following, we discuss multi-step methods, which use
previously generated solutions and Runge-Kutta methods, which use data at
times between ¢,, and 4.

3.5 Runge-Kutta Methods

As mentioned, multi-step methods achieve high order accuracy by efficiently
using previously generated solutions. Runge-Kutta Methods (RKMs) achieve
the same goal in a single step, but at the expense of many evaluations of the
derivative per step. Being single-step schemes, RKM are self-starting and thus
overcome the difficulties of starting multipoint methods using the specified
initial condition. Also, they are more accurate and more stable than multipoint
methods of the same order: thus, RKM work well with non-stationary process
like particle dispersion studied in a Lagrangian framework.

The general n-step RK scheme applied to equation 3.3 can be written as:

R
B =Bn+ ALY e f", (3.10)

r=1

where:

R
fr=ftn +apdt, & + ALY bpof?),  ap = by, (3.11)

s=1 s=1
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Note that b,s are elements of a lower triangular matrix.

RKMs are classified as explicit, implicit and semi-implicit. Here, only the
first two will be considered. Implicit schemes guarantee high accuracy and
good stability but they are computationally expensive for non-linear initial
value problems since they require the iterative solution of a set of non linear
algebraic equations for f at each time step. This is much more expensive
compared to the explicit schemes, which are easy to program and use less
computer memory and computation time per step. Explicit methods, however,
suffer from numerical instability when the time step is relatively large. The
choice is a trade-off between stability and computational cost, if the schemes
have the same order of accuracy. In general, implicit schemes are suitable for
stiff differential equations whereas explicit RK schemes are more commonly
used when the time step is small.

3.5.1 Second-order Runge-Kutta

The second-order RKM consists of two steps: the first step uses a first-order
explicit Euler method to compute &}, , at half time step, the second step
uses the midpoint rule for the full time step to compute @1 at step t,41 =
tn + At:

" At
ni1/2 = Pn + Tf(tnadin) s (3.12)
Ppp1 =Py + Atf(tn+1/2a @;+1/2) . (313)

3.5.2 Third-order Runge-Kutta

The third-order RKM is derived using a higher order numerical integration
scheme and consists of three steps. The first step uses a first-order explicit
Euler method to compute 45;;_'_1/2; the second step uses the midpoint rule for
the full time step to compute &7, . The final step uses the Simpson’s rule to

correct @y, and compute @, 1.

ni1y2 = Pt %f(tn: Dy) , (3.14)

n1 = P+ Atf(tnyiy2, Dhin)0) (3.15)

Ppp1 = Pn + % [f(tn, ®n) + 4f (tny1, Bppr)+ (3.16)
ftny1, ®250)] (3.17)

n

where &;% | = &, +2(P;, —45;‘1+1/2). A second version is obtained by splitting
the integration time step in three parts, as shown in figure 3.2:
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t, thewo th+a t t, thews thn+2z  ther

Fig. 3.2. Time step splitting: a) 2nd-order RKM, b) 3rd-order RKM.

X At
P13 =P+ ?f(tn,@n) ; (3.18)
. 2/t .
dsn+2/3 =&, + Tf(tn+l/3a ¢n+1/3) s (319)
At .
¢n+1 = @n + T f(tn, @n) + 3.f(tn+2/3: ¢n+2/3) . (320)

3.5.3 Fourth-order Runge-Kutta

The fourth-order RKM is the most popular among higher-order RKMs and
consists of four steps. The first two steps use a first-order explicit Euler predic-
tor and a first-order implicit Euler corrector to compute by 1, and 45;;:_1/2
at half time step. The third step uses the midpoint rule for the full time step
to predict @}, ; which is corrected in the final step by means of the Simpson’s
1/3 rule.

) At
Pri1y2 = P+ — f(tn. Pn) (3.21)
* %k At
nr1/2 = Pot = fltntiyo Patpa) (3.22)
Bhpy = B+ At b1y, B ) (3.23)
At .
¢n+1 =&, + ? [f(tna an) + 2f(tn—&-l/Q: ¢n+1/2) +
2f (tngr2, Pr51 o) + fltnsr, Prpn)] - (3.24)

A second (less popular) version is based on the Simpson’s 3/8 rule and
reads:

t



3.6 Adams Methods 21

. At
Priis = Ont [t Pn) . (3.25)
. 2At )
¢n+2/3 = ¢n + Tf(tn+1/3, ¢n+1/3) 3 (326)
* %k * At *
n+2/3 = @n+2/3 + ? [f(tn+l/37 ¢n+1/3) - f(tna din)] ) (3-27)
45,*1_1_1 = din + At [f(tnz QSn) - f(thrl/Bv 45;—4—1/3)‘*’
fltnioss ®iags)] 5 (3.28)
At *
D1 =D, + 3 [f(tn, @n) +3f(tnt1/3: Prirya) +
3f(tny2/3, Ppliays) + fltng1, Bhyy)] (3.29)

3.6 Adams Methods

Adams methods are multipoint methods derived by fitting a polynomial to the
derivatives at a number of points in time. Explicit Adams methods use data at
time ¢, in the interpolation polynomial and are known as Adams-Bashforth
Methods (ABMs). Implicit Adams methods use data at time t,41 and are
known as Adams-Moulton Methods (AMMs). The first-order explicit/implicit
Adams Method is explicit/implicit Euler.

Second-order Adams-Bashforth Method:

Bris = Bt 5 300, Ba) = fltn 1, B0 )] (3:30)

Second-order Adams-Moulton Method:

Bt = B+ 2 [f(tns ) + Fltnsrs )] - (3.31)

2
The second-order AMM is the same as the second-order CNM: thus, it does
not use previously computed solution values. The third order formula is more
typical because it does involve a previously computed value. For completeness,
third-order and fourth-order ABM and AMM are reported (for sake of brevity,
we put f(t,®) = f).
Third-order and forth-order ABM:

At
(37d-order) G, 41 = P, + i (23fn —16fn_1 +5f02) , (3.32)

At
(4'"-order) i1 = By + 7 (55fn = 59fn1 + 3Tfnmz = 9fns) - (3.33)

Third-order and forth-order AMM:



22 3 Numerical Methods for Particle Tracking
rd At
(3 —order) ¢n+1 = din + E (5fn+1 + an — fn—l) y (334)
At
(4th-order) @, 41 = P, + 5 (9fn+1 +19fn —5fn_1 + fn_2) . (3.35)

Adams methods of order higher than four exist but they are not often used
for the solution of ODEs. Interestingly, Adams methods can be combined to
obtain PCMs of order higher than second: a common procedure is to use
a 3rd/4th order ABM as a predictor and a AMM of the same order as a
corrector.

The Adams-Moulton formula is more accurate than the Adams-Bashforth
formula of the same order, so that it can use a larger step size; the Adams-
Moulton formula is also more stable. A modern code based on Adams methods
is relatively easy to program and requires only one evaluation of the derivative
per time step. However, it may produce non-physical solutions due to the use
of data from several time steps. Another drawback is that an Adams code
is more complex than a Runge-Kutta code because it must cope with the
difficulties of starting the integration and adapting the time step size. With
enough “memorized” values, however, we can use whatever order formula we
wish in the step from tg. Modern Adams codes attempt to select the most
efficient formula at each step as well as to choose an optimal step size to
achieve a user-specified accuracy.

Some general rules-of-thumb about how to choose between Runge-Kutta
methods and Adams methods are given below:

1. If output at many points is needed, Adams methods are generally pre-
ferred.

2. If function evaluations are expensive, Adams methods are preferred.

3. If function evaluations are inexpensive and moderate accuracy is required,
Runge-Kutta methods are generally best.

4. If storage is at a premium, Runge-Kutta methods are preferred.

5. If accuracy over a wide range of tolerances is needed, the variable order
Adams methods will outperform the fixed order Runge-Kutta methods.

3.7 Integration Time Step Size Considerations

The choice of the time step size is crucial in particle tracking: it must be
chosen correctly to perform the numerical experiments and to compute the
Lagrangian statistics efficiently and accurately.

A theorem, developed by H. Nyquist, states that a signal may be uniquely
reconstructed, without error, from samples taken at equal time intervals.
The sampling rate (the number of samples taken per unit time, i.e. the
rate at which the signal is sampled for subsequent use) must be equal to,
or greater than, twice the highest frequency component in the signal. If we
apply Nyquist’s theorem to particle tracking, the tracking time step, Atp,, is
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the “highest frequency component” and the particle response time 7, is the
“sampling rate” so that it must be:

T

Atry < (3.36)

in order to obtain an accurate estimate of the particle trajectory, which is
the “signal” to be reconstructed.

The magnitude of the time step Atp, is bounded not only by the resolution
required to compute accurate particle trajectories but also by the available
computer disk space. A smaller Atr, requires higher storage frequency and
larger disk space. On the other hand, accurate particle trajectories need Atrp,
to be smaller than particle characteristic time 7,. As a consequence, the three-
dimensional fluid velocity field needs to be stored at intervals equal to Atp,,
which is larger than the time step, Aty g, used in integrating the Navier-Stokes
equations for the fluid. A common procedure is to choose Atp, = Atyg (van
Harleem et al. 1998).

In their DNS of particle dispersion in a decaying isotropic turbulence,
Elghobashi & Truesdell (1992) used Atr, = (1/2 + 1/3) 7, on a 96° points
grid: the disk space required to store the three fluid velocity components was
10 Mb per time step. Roughly 1 Gb of disk space was required for the complete
trajectory of each of the 223 tracked particles. A further reduction of the time
step size (Atr, = 1/4 7,) resulted in a negligible difference in the dispersion
statistics.

Further comments can be done considering the dependency of the time
step size on the character of the turbulence, most likely the integral time scale,
the particle’s inertia and the particle’s settling velocity. Intuitively, we know
that, as the Stokes number increases, particles tend not to respond to the
acceleration of the surrounding fluid and follow a trajectory quite different
than that of the fluid particles. Also, particles with small settling velocity
show no preferred direction whereas particles with large settling velocity tend
to drift in the direction of the external body force acting on them. In both
situations, it is not straightforward to guess which case requires the smallest
time step to keep the overall error low (Wang & Stock, 1992).

Results reported in the literature show that:

e the error in the particle location relative to an exact trajectory grows
exponentially with time, no matter how small the time step (Wang &
Stock, 1992). The smaller the time step size, the longer it takes for the
error to become significant.

e if the long-time particle diffusivity is to be calculated, the error in the
particle location should be low after several Lagrangian integration times.
To this aim, a smaller time step is required with increasing particle Stokes
number, St, and settling velocity, vs. The decrease in the time step size
with increasing St (i.e. increasing particle mass) is mostly due to the
increase in the Lagrangian integration time. The decrease in the time step
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size with increasing v is due to the increase in the distance traveled by
the particle.

e if the behavior of particle trajectories at a given time after release is of
interest, then the time step size limit should be determined for a fixed total
Lagrangian integration time. To this aim, larger time steps can be used
for particles with larger inertia (i.e. larger St), because the trajectories
are less random.

The time required to accomplish a simulation for heavy particle dispersion
depends on the total Lagrangian integration time, the time step size, the
number of particle trajectories computed '. In the dispersion simulation by
Wang & Stock (1992), 2000 particle trajectories were calculated using 80
Fourier modes: the computation time on a IBM 3090 computer ranged from
2500 to 8000 seconds.

3.8 Application to the Generic Particle Equation of
Motion

We next consider the application of some of the numerical schemes described
in the previous paragraphs to the equation of motion for a spherical particle
subject to drag force only, in the hypotesis of Stokes regime:

dvy _u—vp (3.37)
dt ™ '

We discretize equation 3.37 and write down the expressions for its solution
Up,nt1 at the new time step ¢,,11.

1. Euler explicit:

At
Up,n+1 = Up,n + — (Un - Up’n)
Tp
2. Euler implicit:
At
At Upn + T, Un+1
Upnt1 = Upn + — (Unt1 = Upng1) = Uping1 = — 47—
Tp 1+ =
Tp
3. Predictor-corrector:
. At
Upnt+1 = Upn + = (un - Up’n)
Tp
At
Upntl = Upn + o [(Un —Upn) + (Unt1 — ”;,n+1)]
p

! and the number of Fourier modes to simulate the fluid, if a pseudo-spectral DNS
code is used.
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4. 2nd-order RK:

. At
Upnt1/2 = Upn + ? (Un - Up’n)
p

At .
Upntl = Upn + - (Un+1/2 - vp7n+1/2)
p

5. 3rd-order RK:

. At
Upnttjz = Upnt % (Un — Vp,n)
* At *
Upn+1 = Upn +— (’U’ThLl/2 - ’Up7n+1/2)
Tp
At . .
Up,nt+1 = Upm"'g (un = Vpn) + 4(Uny1/2 = Vp p1/2) + (Unt1 = Vp i)
P
6. 4th-order RK:
. At
Upnil/2 = Upnt E (Un — vp,n)

* % _ *
Upnt1/2 = Upnt o (Un+1/2 - vp,n+1/2)
P

* _ = ek
Upnt1 = Upn T - (“n+1/2 Up7n+1/2)
p

At X
Up,nt1 = Upn + 6. [(Un — Upn) + 2(Ule/2 - Up,n+1/2)+
P

+ 2(Unt1/2 = Vprag12) + (Unt1 — U;,n+1)]

7. 2nd-order AM (and 2nd-order CN):

At
Up,n+1 = Up,n + P [(un = vpn) + (Unt1 — Vpnt1)]
Tp
Up,n + QATZ(/U‘”+1 + Un = Vp,n)
- Upn+l = At
1+ 3,
8. 2nd-order AB:
At
Vpnt1 = Vpn + 5 [3(Un = Vp,n) = (Un—1 — Vp,n—1)]

271y
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9. 3rd-order AM:

At
Up,nt1 = Up,n + 127 [5(tn+1 — vpnt1) + 8(tn = Upn) — (Un—1 — Vp,n—1)]
p
Upn + é—fp [Buntr + 8(un — vpn) — (Un—1 — Upn—1)]
— Upntl = 1+ EAL
127,
10. 3rd-order AB:
At
Up,nt+1 = Up’n‘l'm [23(un — vp,n) — 16(un—1 — Vpn—1) + 5(tUn—2 — Vpn—2)]
P
11. 4th-order AM:
At
Upnt1 = Upn + 50— [9(Unt1 = Upnt1) + 19(un — vp,n)
24T,
—5(’[14”,1 - Up,nfl) + (un72 - ’Up,n72)]
12. 4th-order AB:
At
Up,n+1 = Up,n + ITP [55(Un — Up,n) — 59(’114”,1 — Up,nfl)

+37(un72 - Up,n72) - 9(“7173 - ’Up,n73)]

Note that the fluid velocities interpolated at particle position at time
tny1/2 and/or tnyq, namely u, /> and upy1, may be required to calculate
Up,n+1- These velocities are unknown a priori and have to be estimated: thus,
some approximation is necessary. The easiest (and less accurate) choice is to
freeze the fluid velocity field during the time interval between t,, and t,41,
so that u, = up41/2 = upg1. This approximation is justified as follows: the
time step size Atnys used in the solution of the Navier-Stokes equation for
the fluid is limited by the Courant numerical stability constraint and is typi-
cally much smaller than the time step size Atp, used in the integration of the
particle equation of motion (Kontomaris, Hanratty & McLaughlin 1992). In
fact, Atnyg is much smaller than the Kolmogorov fluid time-scale fluctuations
based on the volume-averaged viscous dissipation. Another option is to inter-
polate u, /5 at particle position at time #, /> and u,41 at particle position
at time ¢,,4+1. To this aim, the particle velocity v;7n+1/2 and vy 4 predicted
by the numerical method can be used.

In order to demonstrate the performance of the different numerical schemes,
in figure 3.3, we compare the behavior of the solution of equation 3.37 when
Euler methods, PCMs amd Adams methods are used.
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0.27“ (a)

0 5 10 15 20 0 5 10 15 20

Fig. 3.3. Behavior of the solution by explicit/implicit Euler methods and by second-
order PCM (a) and by second-order ABM/AMM (b) using two different time step
sizes: At = St/2 and At = St/3.

From figure 3.3a, it is apparent that second-order PCMs produce a more
accurate solution than first-order Euler methods. As expected, the implicit
Euler method tends to slighlty underpredict whereas the explicit Euler method
tends to overpredict the correct value of the solution. Also, the accuracy of
Euler methods significantly increases as the time step size decreases. From
figure 3.3b, it is apparent that AMMs are more accurate than ABMs of the
same order and that the accuracy of both methods increases as the time step
size decreases.

Figure 3.4 shows what happens when a numerical scheme is used with time
steps which violate the stability condition. We used a fourth-order explicit
ABM (figure 3.4a): when the time step size is equal to half the particle Stokes
number (At = St/2), oscillations are generated which grow unboundedly with
time. In a few steps, the numbers become too large to be handled by the
computer. When the computation is carried on with a time step size At =
St/3, oscillations are still generated but they grow much slower. Eventually,
oscillations disappear with a further reduction of the time step size (At = St/4
and At = St/5 profiles). With an implicit AMM of the same order (figure 3.4b)
no problems occurred even for the largest time step used.

Figure 3.5 shows what happens when the time step size is fixed and the
order of the numerical scheme is changed. When an explicit ABM is used
(figure 3.5a), increasing the order of the method triggers small amplitude
oscillations which slowly grow with time. This problem does not occur with
the implicit AMM counterpart (figure 3.5b).

Figure 3.6 shows the behavior of the solution when a RKM is used: both
the order of the scheme and the time step size are increased. No oscillation in
the solution occurs (recall that RMKs are more stable than Adams methods
of the same order) but the accuracy significantly decreases as the time step
size increases from At = St/3 (figure 3.6a) to At = 1.5 St (figure 3.6d). Of
course, higher-order RKMs yield more accurate solution for a given time step
size.
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Analitic

— A 1.4 0 .
dt = st /3 e

1
3.2?“ (a) ABM c.z«" (b) AMM

0 5 1 5 10
Time

Fig. 3.4. Behavior of the solution by fourth-order ABM (a) and AMM (b) as the
time step size At is reduced from At = St/2 to At = St/5.

litic ——

1.4t £/ 3 e F
) St/ 3 e Adams-Moulton (3rd order): dt = St / 3

{
c.zf (a) ABM 1 0.2 (b) AMM

10

Time

Fig. 3.5. Behavior of the solution by second-, third- and fourth-order ABM (a)
and AMM (b) using a time step size At = St/3.

In figure 3.7 the temporal discretization error is shown for various time
integration schemes. The discretization error is obtained by subtracting the
numerical solution to the exact analytic solution of equation 3.37.

The two Euler methods show the expected first-order behavior: the error
and the time step size both reduce by the same amount. The implicit Euler
scheme is more accurate than the explicit Euler counterpart but the difference
in the solution provided by the two schemes decreases as the time step size
decreases.

The second-order schemes show also the expected error reduction rate.
The second-order ABM (started by the second-order RKM) yields a larger
initial error than both the PCM and the AMM (also started by the second-
order RKM) of the same order but the error reduction rate remains the same.
Recall that the second-order AMM is the same as the second-order CNM.

A slight difference in the accuracy of the solution occurs when Adams
methods of the third-order are used: the ABM provides a slightly larger ini-
tial error than AMM but the error reduction rate is again the same as the
time step size decreases. We do not show here the estimates of the temporal
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Runge-Kutta (3rd order): dt = 5t / 3 © Runge-Kutta (3rd order): dt = St / 2

(a) Dt=st/3 | - (b) Dt=st/2 |

(c) De=st | il (d) At=1.55t |

0 5 10 15 20 0 5 10 15 20
Time Time

Fig. 3.6. Behavior of the solution by second, third and fourth-order RKM as the
time step size At is increased from At = S¢/3 to At = 1.55¢.

discretization error for the forth-order Adams methods, due to the oscillatory
solution provided by the ABM (see figure 3.4).

The forth-order RKM is by far the most accurate scheme: the error is about
four orders of magnitude smaller than that of Euler methods and it is reduced
by two orders of magnitude over the time step size reduction considered.

To investigate further the accuracy of temporal discretization, in figure
3.8 we evaluate the convergence of particle velocity as the time step size is
reduced. We compare the exact solution of equation 3.37 at time ¢ = 4.0 with
the numerical solution provided by the schemes already considered in figure
3.7. We performed calculations up to that time using 8, 12, 16 and 20 time
steps corresponding to time step sizes of At = St/2, At = St/3, At = St/4,
At = St/5 respectively. The convergence rate is consistent with the results
shown in figure 3.7. The implicit Euler, the second-order PCM, RKM and
ABM underpredict the exact value. The explicit Euler and the second-order
AMM (i.e. CNM) overpredict the exact value. All schemes show monotonic
convergence towards the exact time step independent solution. As expected,
the most accurate reference solution is obtained using the forth-order RKM.

To conclude this chapter, we point out that the interpolation error, which
mainly depends on the spatial resolution of the small-scale motions of the
tubrulent flow (see Chapter 4), is always the major source of numerical errors
in the extraction of Lagrangian data. The time-stepping error is generally
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Fig. 3.7. Temporal discretization error for various time integration schemes.
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Fig. 3.8. Convergence of v, at time ¢ = 4.0 as the time step size is reduced for
various time integration schemes.

less significant because it is restricted to small values by enforcement, of the
Courant number stability limit (Yeung and Pope, 1988; Yeung and Pope,
1989).

Appendix A

Consider the particle equation of motion in the following form:
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ovp  F(x}) oxzy
B m e (354

where v} is particle velocity at time ¢" at its position z}. The term F(z])
represents the external forces acting on the particle of mass m;. Combining
the above equations into one we get:

02z _ F(a})
8t2 B m; ’

(3.55)
where z? is the numerical solution at time ¢". Now, let X" be the exact

solution of equation 3.56 at time ¢", that is the solution without round-off
error 2. The numerical error at time ¢ can be defined as:

=2 — X (3.56)

Using equation 3.57 to replace x in equation 3.56, an equation for the time
evolution of the error €™ is obtained:

%! F(X!'+el)  O°Xp

= 3.57
8t2 m; 8t2 ( )
Observe that:
’Xr  F(XP)
L= ! 3.58
e s (3.58)
and that:
F(X"+Ei)_F(X"):8_XX.n.€"’ (3.59)
in the limit €} — 0. Thus, equation 3.58 can be rewritten as:
D%en 1 OF n
=— —| €. 3.60
2 m; 0X |gn (3.60)

Assume to approximate the L.h.s. of equation 3.61 by means of a simple central-
difference three time-level scheme (also known as leapfrog method ?):

2 The round-off error is the error introduced because the computer only stores
numbers up to a certain precision.

3 The leapfrog method is the application of the midpoint rule to an integration
interval of size 2At



32 3 Numerical Methods for Particle Tracking

et —2et 4+ 1 OF

L =— — cer. 3.61
At mi 0X |gn (3:61)
For bounded oscillatory solutions of the form:
6? — ()\)n — (eiwAt)n , (3.62)
equation 3.61 can be recast as:
At? OF
AN 24 - +1=0 (3.63)
m; 50,4 xn
Assuming Am—tj . g—f(‘ = [, this equation has two solutions:
4
/\1,2:1+§-<1i 1+B>’ (3.64)

which correspond to the error amplification factor. The general solution is:

6? =C1 M +Cy- Xy (365)

The scheme is said to be conditionally stable provided |\ »| < 1. Figure 3.9
shows the behavior of A\; and \s as a function of iv/B. When i1/ < 2, A\; and
Ao have an imaginary part, but for i1/8 > 2 both solutions are real. Complex
values must be considered because higher order systems may exhibit complex
eigenvalues. Values with zero or negative real part must be considered because
they lead to bounded solutions.

For iy/B < 2, it can be shown that |\ 2| = 1: not only is the leapfrog
scheme stable but also it suffers no amplitude dissipation. When i\/8 > 2,
[A2] > 1: to guarantee stability, we must calculate the largest value of
| m; '0F/8X | and then set At such that:

At < —— (3.66)
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