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Summary I

Transport equation of the turbulent kinetic energy

k − E model

Alternative turbulence models
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Transport equation of the turbulent

kinetic energy



Turbulent kinetic energy

The Turbulent Kinetic Energy measures the intensity of

turbulence and is defined as:

TKE = k :=
1

2
ρv ′i v

′
i =

1

2
ρ
[
(v ′x)2 + (v ′y )2 + (v ′z)2

]
expressed per unit volume in a Cartesian reference system. It is

equivalent to the trace of the Reynolds’ stress tensor:

k =
1

2
ρ · Tr

(
v ′i v

′
j

)
Let us derive the transport equation for TKE.
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Derivation of TKE equation

Step 1: Start from NS and RANS

NS : ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
= −∂P

∂xi
+ µ

∂2vi
∂xj2

RANS : ρ

(
∂v i
∂t

+ vj
∂v i
∂xj

)
= −∂P

∂xi
+ µ

∂2v i
∂xj2

− ρ
∂v ′i v

′
j

∂xj

Step 2: Subtract RANS to NS and obtain an eqn. for v ′i = vi − v i

ρ

(
∂v ′i
∂t

+ vj
∂vi
∂xj
− v j

∂v i
∂xj︸ ︷︷ ︸

?

)
= −∂P

′

∂xi
+ µ

∂2v ′i
∂xj2

+ ρ
∂v ′i v

′
j

∂xj

? =
�
�
��

v j
∂v i
∂xj

+ v ′j
∂v i
∂xj

+ v j
∂v ′i
∂xj

+ v ′j
∂v ′i
∂xj
−
�

�
��

v j
∂v i
∂xj
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Derivation of TKE equation

This yields:

ρ

(
∂v ′i
∂t

+ v ′j
∂v i
∂xj

+ v j
∂v ′i
∂xj

+ v ′j
∂v ′i
∂xj

)
= −∂P

′

∂xi
+ µ

∂2v ′i
∂xj2

+ ρ
∂v ′i v

′
j

∂xj

Step 3: Multiply by v ′i

ρ

(
v ′i
∂v ′i
∂t︸ ︷︷ ︸

[1]

+v ′i v
′
j

∂v i
∂xj

+ v ′i v j
∂v ′i
∂xj︸ ︷︷ ︸

[2]

+v ′i v
′
j

∂v ′i
∂xj

)
=

= −v ′i
∂P ′

∂xi
+ µv ′i

∂2v ′i
∂xj2

+ ρv ′i
∂v ′i v

′
j

∂xj
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Derivation of TKE equation

Term [1]: v ′i
∂v ′i
∂t

=
1

2

∂ (v ′i v
′
i )

∂t

time avg .−−−−−−→ 1

2

∂ (v ′i v
′
i )

∂t
=

1

2

∂v ′i v
′
i

∂t
=
∂k

∂t

Term [2]: v ′i v j
∂v ′i
∂xj

= v j
1

2

∂v ′i v
′
i

∂xj

time avg .−−−−−−→ v j
1

2

∂v ′i v
′
i

∂xj
= v j

∂k

∂xj

Step 4: Take time average

ρ

(
∂k

∂t
+ v ′i v

′
j

∂v i
∂xj

+ v j
∂k

∂xj
+ v ′i v

′
j

∂v ′i
∂xj

)
=

= −v ′i
∂P ′

∂xi
+ µ v ′i

∂2v ′i
∂xj2

+ ρ
�
�
�
�

v ′i
∂v ′i v

′
j

∂xj

Next, we rearrange some terms of this equation.
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Derivation of TKE equation

First:

−v ′i
∂P ′

∂xi
= −

∂P ′v ′i
∂xi

+ P ′∂v
′
i

∂xi
Second, since:

∂2v ′i v
′
i

∂xj2
=

∂

∂xj

[
∂

∂xj

(
v ′i v

′
i

)]
=

∂

∂xj

(
2v ′i

∂v ′i
∂xj

)
= 2

∂v ′i
∂xj
·
∂v ′i
∂xj

+2v ′i
∂2v ′i
∂xj2

we can rewrite:

v ′i
∂2v ′i
∂xj2

=
1

2

∂2v ′i v
′
i

∂xj2
−
∂v ′i
∂xj
·
∂v ′i
∂xj

Last:
∂v ′i v

′
j v

′
i

∂xj
=

�
�
�
�

v ′i v
′
i

∂v ′j
∂xj︸ ︷︷ ︸

=0 from Cont.

+ v ′j
∂v ′i v

′
i

∂xj
= 2v ′i vj

∂v ′i
∂xj
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Derivation of TKE equation

Replacing into the equation yields:

ρ

(
∂k

∂t
+ v j

∂k

∂xj︸ ︷︷ ︸
Dk/Dt

)
= −ρv ′i v ′j

∂v i
∂xj
− ρv ′i v ′j

∂v ′i
∂xj
−
∂P ′v ′i
∂xi

+ P ′∂v
′
i

∂xi
+

+
1

2
µ
∂2v ′i v

′
i

∂xj2
− µ

(
∂v ′i
∂xj
·
∂v ′i
∂xj

)

This equation can be rewritten in a more compact form as:

Dk

Dt
= Pk − Tk − Πk + Φk + Dk − Ek

where:

• Pk = −ρv ′i v ′j
∂v i
∂xj

= Production term (production of TKE by

the mean shear ∂v i
∂xj

)
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Derivation of TKE equation

• Tk = ρv ′i v
′
j

∂v ′i
∂xj

=
1

2
ρ
∂v ′i v

′
j v

′
i

∂xj
= Turbulent transport term

(turbulent transport of TKE by the Reynolds stresses −ρv ′i v ′j )

• Πk =
∂P ′v ′i
∂xi

= Pressure diff. term (transp. of TKE by press.)

• Φk = P ′∂v
′
i

∂xi
= Pressure strain diffusion term (redistribution

of energy due to pressure fluctuations)

• Dk =
1

2
µ
∂2v ′i v

′
i

∂xj2
= Molecular viscous transport term

(transport of TKE by viscous stresses)

• Ek = µ

(
∂v ′i
∂xj
·
∂v ′i
∂xj

)
=Dissipation term (dissipation of TKE

due to fluctuations of viscous stresses)
9
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Reynolds’ stress transport

The transport equation of TKE represents the starting point for

nearly all turbulence models developed to improve Prandtl’s mixing

length model, which is the very first turbulence model ever

proposed.

Before digging into the relation between TKE and mixing length,

let us see another possible way of deriving the TKE transport

equation.

Recalling that

k =
1

2
ρ · Tr

(
v ′i v

′
j

)
we can obtain the TKE transport equation directly from the

transport equation of the Reynolds’ stresses.
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Reynolds’ stress transport

Without derivation, the transport equation of the Reynolds’

stresses is:

D
(
v ′i v

′
j

)
Dt

= Pij + Φij − Πij − Tij + Dij − Eij

where:

Pij = Production term (production of turbulent stress through

interaction with mean strain rate ∂v
∂x ):

Pij = −
(
v ′i v

′
k

∂v j
∂xk

+ v ′j v
′
k

∂v i
∂xk

)
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Reynolds’ stress transport

Φij = Pressure strain term (redistribution of Reynolds stresses

due to pressure fluctuations):

Φij =
P ′

ρ

(
∂v ′j
∂xi

+
∂v ′i
∂xj

)

Πij Pressure transport term (transport due to pressure

fluctuations, usually negligible):

Πij =
1

ρ

(
∂p′v ′j
∂xi

+
∂p′v ′i
∂xj

)
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Reynolds’ stress transport

Tij = Turbulent pseudo-diffusion term (pseudo-diffusion of

Reynolds’ stresses due to turbulent vel. fluctuations):

Tij =
∂v ′i v

′
j v

′
k

∂xk

Note that v ′i v
′
j v

′
k can be interpreted as the transport of v ′i v

′
j in the

direction k , or the transport of v ′j v
′
k in i direction, and so on...

Dij = Molecular pseudo-diffusion term:

Dij = ν
∂2v ′i v

′
j

∂xk2

Eij = Dissipation term (dissipation due to fluctuations of viscous

stresses):

Eij = −2ν

(
∂v ′i
∂xk

∂v ′j
∂xk

)
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Reynolds’ stress transport

Taking the trace of the transport equation of the Reynolds’

stresses and multiplying by 1/2 yields:

1

ρ

Dk

Dt
=

1

2
Tr[Pij ]+

1

2
Tr[Φij ]−

1

2

∂Ciij

∂xj
+

∂

∂xj

ν ∂
(
v ′i v

′
i

)
∂xj

− 1

2
Tr[Eij ]

where:

Ciij = v ′i v
′
i v

′
j +

1

ρ
P ′v ′i δij +

1

ρ
P ′v ′j δij

since:

Cijk = v ′i v
′
j v

′
k +

1

ρ
P ′v ′i δjk +

1

ρ
P ′v ′j δik

and:
1

2
Tr[Φij ] = Φii =

1

2

P ′

ρ

(
∂v ′i
∂xi

+
∂v ′i
∂xi

)
=

P ′

ρ

∂v ′i
∂xi

Plugging in these expression yields the TKE transport equation.
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k − E model



TKE equation

To understand where the k − E model comes from, let us consider

the eddy viscosity:

µe = ρ`2
mix

∣∣∣∣∂v x∂y

∣∣∣∣
and `mix is the mixing length.

We can correlate directly k and νe = µe/ρ via dimensional analysis:

[νe ] =
[
m2/s

]
[k] =

[
m2/s2

] }
νe ∝ k1/2 `

and

νe = Cµ k
1/2 `

where Cµ = proportionality constant and ` = characteristic length

of the flow, not necessarily equal to `mix .
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Characteristic length

We need an expression for `. One possiblilty is to use:

[k] =
[
m2/s2

]
[E ] =

[
m2/s3

] }
` =

k3/2

E

and obtain:

νe = Cµk
1/2

(
k3/2

E

)
→ νe = Cµ

k2

E

Note that the characteristic velocity and time of the flow,

corresponding to ` will be:

τ =
k

E
[s]

u =
`

τ
= k1/2 [m/s]

Note: from now on, we will use the more common νt instead of νe .
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k − E model

The k − E model represents the eddy viscosity as:

νt = Cµ
k2

E

and needs therefore two equations: One for k and one for E (+ 3

RANS equations + Continuity equation) to close the model. For

this reason, it belongs to the class of Two-Equation Turbulence

Models.

The transport equation for k is the one we just derived, written as:

Dk

Dt
=
∂k

∂t
+ uj

∂k

∂xj
= Pk − E −

∂T ′

∂xj

where Φk has been neglected and all terms representing transport

by some diffusion mechanisms have been included in a single term:
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k − E model

T ′ :=
1

2
ρv ′i v

′
i v

′
j + P ′v ′j −

1

2
µ
∂v ′i v

′
i

∂xj

such that
∂T ′

∂xj
= Tk + Πk − Dk .

T ′ is the term to be modelled in order to close the TKE transport

equation. To this aim, we use the gradient diffusion model to

write:

T ′ = − ν
t

σk

∂k

∂xj
[∗]

where the closure coefficient σk is the analogous of the Prandtl

number for the transport of TKE:

σk =
Diffusivity of the momentum

Diffusivity of the TKE via turbulent transport
19



k − E model

Based on [∗], the transport equation for the TKE reads as:

∂k

∂t
+ uj

∂k

∂xj
= Pk − E +

∂

∂xj

[
νt

σk

∂k

∂xj

]
while the transport equation for E (derivation is omitted) is:

∂E
∂t

+ uj
∂E
∂xj

= CE1Pk
E
k
− CE2

E2

k
+

∂

∂xj

[
νt

σE

∂E
∂xj

]
where the closure coefficient

σE =
momentum diffusivity

diffusivity of turbulent dissipation via turbulent transport

is the analogous of the Prandtl number for the transport of the

turbulent dissipation rate.
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k − E model

These two equations are coupled with the Continuity and RANS

equations:
∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xj
+

(
µ+ µt

ρ

)
∂2ui
∂xj2

where
µ+ µt

ρ
= ν + νt

and νt = Cµ
k2

E . Their solution is needed in order to solve the two

equations of the model.
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k − E model

Values of the constants. For the Standard k − E model :

1) Cµ = 0.09

This value comes from observations that, in turbulent shear flow :

νt =

∣∣∣v ′i v ′j ∣∣∣
Pk

⇒

∣∣∣v ′i v ′j ∣∣∣
k

=

√
Cµ

Pk

E
⇒ Cµ =

(∣∣∣u′iu′j ∣∣∣
k

)2

· E
Pk

and that

∣∣∣v ′i v ′j ∣∣∣
k
' 0.3 if Pk ∼ E ;

which yields Cµ = 0.32 · 1 = 0.09.

However, in channel flow

Cµ = νtE/k2

is not uniform in the wall-normal dir.
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k − E model

2) σk = 1.0

This value implies that momentum diffusivity is equal to TKE

diffusivity: If this is not the case, than the model might not be

reliable anymore.

3) σE = 1.3

4) CE1 = 1.44

5) CE2 = 1.92

This value is obtained fitting experimental data obtained for grid

turbulence: Grid turbulence is homogeneous and characterized by

a spatially-decaying intensity along the mean flow direction, as the

flow moves away from the grid. This flow features are not observed

in pipe/channel flow, for instance...
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k − E model

Other sets of values are available in the literature. For example:

Cµ = 0.0845, σk = σE = 0.72, CE1 = 1.42, CE2 = 1.68

When this set of values is used, we refer to the k − E RNG

(Re-Normalisation Group) model.

Cµ =
1

A0 + As
k
E
, σk = 1.0, σE = 1.2, CE1 = 1.44, CE2 = 1.9

with A0 = 4.04 and As = f (∂vi∂xj
). When this set of values is used,

we refer to the Realisable k − E model.
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Note on Gradient Diffusion model

Consider a generic scalar function Φ. Then:

• Flux of Φ: ~vΦ

• Turbulent flux of Φ: ~v ′Φ′

since ~v = ~〈v〉+ ~v ′ and Φ = 〈Φ〉+ Φ′

• Mean gradient of Φ: −∇〈Φ〉

Gradient diffusion hypothesis: The mean turbulent flux of Φ occurs

in the direction of the mean gradient of Φ and is proportional to it:

〈~v ′Φ′〉 ∝ −∇〈Φ〉

Therefore, we can define a positive scalar Γt(~x , t) such that:

〈~v ′Φ′〉 = −Γt · ∇〈Φ〉 [?]

Eq. [?] is analogous to Fourier’s law and to Fick’s law. 25



Note on Gradient Diffusion model

Physical meaning of Γt(~x , t): turbulent diffusivity (=turbulent

diffusion coefficient).

Analogy with:

−〈v ′i v ′j 〉 = −νt · ∇〈~v〉

Indeed, consider the transport equation for Φ:

∂Φ

∂t
+∇(~v · Φ) = Γ ∇2

Φ

Take average:

∂〈Φ〉
∂t

+∇(〈~v · Φ〉) = Γ ∇2〈Φ〉 [1]

with:

〈~v · Φ〉 = 〈~v〉 · 〈Φ〉+ 〈~v ′ · Φ′〉︸ ︷︷ ︸
Turb. flux of Φ

[2]
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Note on Gradient Diffusion model

Plug [2] into [1] to get:

∂〈Φ〉
∂t

+∇(〈~v〉 · 〈Φ〉)︸ ︷︷ ︸
D〈Φ〉
Dt

+∇(〈~v ′ · Φ′〉) = Γ ∇2〈Φ〉

D〈Φ〉
Dt

= Γ ∇2〈Φ〉 − ∇(〈~v ′ · Φ′〉)

Using [?]:
D〈Φ〉
Dt

= Γ ∇2〈Φ〉 − ∇(Γt ∇〈Φ〉)

Analogy with RANS:

D〈~v〉
Dt

= ν ∇2〈~v〉 − ∇(νt ∇〈~v〉)

27



Weaknesses of the k − E model

1) Gradient diffusion assumption

Based on this assumption, we can set µt = ρΓt and, in turn:

τ txy = −ρv ′xv ′y = µt
∂v x
∂y

such that τ txy = 0 if ∂vx
∂y = 0. However, this is not always true:

In A and B, ∂vx
∂y = 0 (local vel.

minimum), but τ txy might be

different from 0. Yet the model

would yield τ txy = 0!

2) Isotropic eddy viscosity

The model assumes isotropic eddy viscosity νt : This is not true in

flows that are strongly 3D, or have significant curvature effects.
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Weaknesses of the k − E model

3) Overestimation of k

In the presence of strong deformation in the direction normal to

the mean flow (e.g. near the wall in channel flow), k is

overestimated, and so is νt ∝ k .

Too high values of k and νt lead to inaccurate prediction of the

flow structure and of flow separation phenomena.

4) Underestimation of E
In flows with separation, E is underestimated near the wall, so the

energy of the flow is overestimated. This can lead to a ”delay” of

flow separation, but also to ovestimation of the heat transfer rates.

Despite these disadvantages, the k − E model is still one of the

most popular in RANS-based CFD codes.
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Alternative turbulence models



k − ω model

The k − ω model is a Two-Equation model alternative to k − E .

The kinetic energy is kept as model variable, while dissipation is

replaced by vorticity:

ω =
E
k

Putting E = ω · k in the transport equation for E , one finds:

Dωi

Dt
=

∂

∂xj

(
νt

σω

∂ωi

∂xj

)
+(CE1 − 1)

Pkωi

k
−(CE2 − 1)ω2

i +
2νt

σωk

∂ωi

∂xj

∂k

∂xj

The k − ω model:

1) is a low Reynolds number model,

2) works better than k − E with wall-bounded flows, high-

curvature flows, flows with separation, jets,

3) has lower convergence rate and higher sensitivity to initial

conditions wrt k − E .
30



Algebraic models

These models are also called Zero-Equation Models.

1) Mixing Length model (Prandtl)

τ tij = −ρv ′i v ′j ⇒
τ tij
ρ
' νt ∂v i

∂xj

Recall: Dimensional analysis shows that

[νt ] =

[
m2

s

]
∼ `∆v

where ` is the mixing length (length above which flow structures

lose their coherence, momentum and energy).
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Algebraic models

Velocity fluctuation over a

distance `:

∆v ∼ `
∣∣∣∣∂v i∂xj

∣∣∣∣
νt = `2

∣∣∣∣∂v i∂xj

∣∣∣∣
Mixing length model for τ t :

τ tij
ρ

= `2

∣∣∣∣∂v i∂xj

∣∣∣∣ (∂v i∂xj

)
∂v x
∂y
' v x(y + l)− vx(y)

L
=

∆v

`

⇒ ∆v = `

(
∂v x
∂y

)
The model is simple and of practical use for engineering

calculations provided that an estimate for ` is available.
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Algebraic models

Notes on the mixing length model:

1) The model is based on the gradient diffusion hypothesis too, so

it predicts zero flux (no transport) anytime the mean vel. gradient

is zero: This is not always true, especially in complex flows (e.g.

wall-bounded or with separation).

2) The mixing length is not universal : It is flow-depending and

may even change in different locations within the same flow.
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Algebraic models

2) Smagorinsky model

νt = 2`2 (e ij · e ij)1/2

where e ij = 1
2

(
∂v j

∂xi
+ ∂v i

∂xj

)
= mean strain rate.

3) Baldwin and Lomax model

νt = `2
(
2ΩijΩij

)1/2

where Ωij = 1
2

(
∂v j

∂xi
− ∂v i

∂xj

)
= mean rotation rate.

Note: Any tensor J can be decomposed in a symmetric part and

an antisymmetric part: S = (J + JT )/2, A = (J − JT )/2,

respectively. In this case, J = ∂v i/∂xj , S = e and A = Ω.
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One-Equation models

One-Equation models require just one transport equation for one

turbulent quantity: The TKE. Such transport equation is necessary

in order to evaluate the eddy viscosity, according to the following

expression:

νt ∼ `∆v ∼ `k1/2

νt = C`k1/2 *

where C is a constant.

To compute νt , we must:

1) specify the mixing length ` = `(~x , t)
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One-Equation models

2) determine k = k(~x , t) from the transport equation

Dk

Dt
= ∇ ·

(
νt

σk
∇k
)

+ Pk − E *

3) model E as

E = CD
k3/2

`
*

with constant CD . Since ` =
νt

Ck1/2
, we obtain

E = C · CD
k2

νt
⇒ νtE

k2
= C · CD = const.
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One-equation models

In addition to eqns. marked with * , the turbulent viscosity

hypothesis is also imposed:

v ′i v
′
j =

2

3
kδij − νt

(
∂v i
∂xj

+
∂v j
∂xi

)
This hypothesis assumes that the deviatoric part of the Reynolds’

stress −ρv ′i v ′j + 2
3ρkδij is proportional to the mean strain rate

ρνt(∂v i/∂xj + ∂v j/∂xi ).
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