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Reynolds Stress Modelling and the

Law of the Wall



Reynolds Stress Modelling

Following the Reynolds procedure, we determined the following

form for the averaged Navier-Stokes equations:

ρv̄j
∂ v̄i
∂xj

= −∂ P̄
∂xi

+
∂

∂xj

[
µ
∂ v̄i
∂xj
− ρv ′j v ′j

]
with ρ and µ uniform.

We examined the physical meaning of the Reynolds stresses and

we concluded that they are always (probably!) negative so that

they contribute with an extra drag.
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The analysis of a fluid parcel we made is much like the analysis of

the molecular motion done by Boussinesq (1877), suggesting a

possible way to model the Reynolds stresses with a “model”

viscosity:

τ
(t)
yx = −ρv ′xv ′y = µe

[
∂ v̄x
∂y

+
∂ v̄y
∂x

]
in which the superscript “e” indicates “eddy” and µe is not a fluid

property, but rather it represents the action of turbulence on fluid

motion.

Observation: at the wall v ′i v
′
j = 0, and therefore µe = 0.

This implies that µe = µe(y) where y is the wall distance in the

reference case of channel/pipe flow.
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Prandtl proposed the following equation/model for the eddy

viscosity:

µe = ρl2
∣∣∣∣dv̄xdy

∣∣∣∣
where l is the mixing length with the same physical meaning of the

“mean free path” of molecules in the kinetic theory of gases.

In addition l = l(y).

Prandtl hypothesized l ∝ y following the idea that the farther from

the wall, the larger the radius of the vortex which mixes the flow.
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Turbulent Flow in a Pipe

Let us consider the flow driven by a pressure gradient in a pipe

(Poiseuille flow), characterized by a turbulent Reynolds number:
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The force balance gives:

P1 − P2 = ∆P =
dP

dz
∆z

πR2P2 − πR2P1 = ∆z · 2πRτw

R[P2 − P1] = ∆z · 2τw

∆P

∆z
= − 2

R
τw A

In cylindrical coordinates we have

v̄z = v̄z(r) ; v̄r = v̄θ = 0 ;
dP̄

dz
= const.
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The only relevant component of N-S is the z component:

ρ

[
∂ v̄z
∂t

+ v̄r
∂ v̄z
∂r

+
v̄θ
r

∂ v̄z
∂θ

+ v̄z
∂ v̄z
∂z

]
=

−dP̄

dz
+

1

r

∂

∂r
(r τ̄rz + r τ̄ erz)+

1

r

∂

∂θ
(��τ̄θz +��τ̄

e
θz) +

∂

∂z
(��̄τzz +�

�̄τ ezz)

and finally

−dP̄

dz
+

1

r

d

dr
r(τ̄rz + τ̄ erz) = 0

NOTE: it is exactly the same as in the laminar case, but with the

presence of τ̄ erz . Upon integration:

τ̄rz + τ̄ erz =
r

2

dP̄

dz
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Equation A is:

∆P

∆z
= − 2

R
τw ⇒ dP̄

dz
= − 2

R
τ̄w

which, substituted into the previous one, yields:

τ̄rz + τ̄ erz = − r

R
τ̄w B

We know that:

τ̄rz = µ
dv̄z
dr

; τ̄ erz = −ρv ′zv ′r

and adopting the Prandtl mixing lenght model, we have:

τ̄ erz = −ρv ′zv ′r = ρl2
∣∣∣∣dv̄zdr

∣∣∣∣ dv̄zdr︸ ︷︷ ︸
C

= µe
dv̄z
dr
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In pipe flow, turbulence is generated at the wall and we want to

compute the velocity profile as a function of the wall distance, not

of the radius. We apply the following coordinate change:

y = R − r ⇒ dy = −dr

Then equation B plus C becomes:

µ
dv̄z
dr

+ µe
dv̄z
dr

= − r

R
τ̄w

µ
dv̄z
dr

+ ρl2
∣∣∣∣dv̄zdr

∣∣∣∣ dv̄zdr
+

r

R
τ̄w = 0

and with the coordinate change:

−µdv̄z
dy
− ρl2

∣∣∣∣dv̄zdy

∣∣∣∣ dv̄zdy
+

R − y

R
τ̄w = 0
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Note on the absolute value

In the Prandtl’s mixing length model for the viscosity, the absolute

value is necessary to avoid possible values of negative viscosity.

However, in our case the derivative of the velocity profile (average)

is always positive and we can safely remove the absolute value.

ρl2
(
dv̄z
dr

)2

+ µ
dv̄z
dr
−
(

1− y

R

)
τ̄w = 0

which is a first-order differential equation, non-linear in v̄z .

Boundary conditions are:v̄z = 0 at y = 0

v̄z = v̄z,max at y = R
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Wall Units

As usual, we must now make the equation dimensionless and we

need to identify proper scaling variables. We define the

Shear velocity u? :=

√
τ̄w
ρ

This velocity is characteristic of all the processes occurring at the

wall and is useful to define the so-called wall variables:

velocity : u? :=

√
τ̄w
ρ
⇒ u+ :=

v̄z
u?

length : l? :=
ν

u?
⇒ y+ :=

y

ν/u?
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Our equation becomes:

ρu?2l+2

(
du+

dy+

)2

+ µ
u?

l?
du+

dy+
−
(

1− y+

R+

)
τ̄w = 0

ρu?2l+2

(
du+

dy+

)2

+ ρ
ν

l?
u?

du+

dy+
−
(

1− y+

R+

)
τ̄w = 0

Remembering that τ̄w = ρu?2 we have

l+2

(
du+

dy+

)2

+
du+

dy+
−
(

1− y+

R+

)
= 0

This equation is a quadratic form in du+

dy+ and the solution is

du+

dy+
=
−1 +

√
1 + 4l?2(1− y+/R+)

2l+

which upon integration gives:

u+ =

y+∫
0

−1 +
√

1 + 4l?2(1− y+/R+)

2l+
dy+ D
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But we still have to define l?. According to Prandtl’s mixing

length model:

l+ = k y+ with k = 0.4

while the Van Driest relation is empirically based and it recovers

the Prandtl’s equation for y+ � A:

l+ = k y+
[
1− e−y

+/A
]

with k = 0.4 ; A = 36

In equation D there is no reminiscence of the scale of the system

except for R+ and if y+ � R+ the term y+/R+ becomes

negligible compared with 1. This has a physical meaning in the

sense that turbulence is produced and controlled by what happens

near the wall. Mathematically, this can simplify the equation.

13



Universal Profile

If we neglect the term y+/R+ we obtain

u+ =

y+∫
0

−1 +
√

1 + 4l+2

2l+2
dy+

This equation depends only on the wall distance and therefore it

can be generalized for any type of turbulent flow over a wall (in a

pipe or in a channel). The solution of this equation will produce a

universal profile which means that measurements obtained for

different geometries and for different Reynolds numbers must

overlap if plotted in terms of y+ and u+.

Let’s look for the solution of this equation in two different regions:

inner flow (near the wall) and outer flow (far from the wall).
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Viscous Sublayer

Let us examine again the complete equation:

l+2

(
du+

dy+

)2

︸ ︷︷ ︸
Reynolds stress

+
du+

dy+︸︷︷︸
shear stress

−
(

1− y+

R+

)
︸ ︷︷ ︸
pressure gradient

= 0 E

The shear stress dominates near the wall, while the Reynolds

stresses become important farther away from the wall.

To neglect the Reynolds stresses, it must be l+ � 1 so that

l+2 � 1. If we apply the Van Driest model we obtain:

y+ = 10 → l+ = 1 → l+2 = 1

y+ = 5 → l+ = 0.259 → l+2 = 0.067

so when we are very close to the wall the flow is viscosity-

dominated (shear stress) and we call this region viscous sublayer.
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Solution for the Viscous Sublayer (Inner Region)

y+ � R+ and equation E becomes

du+

dy+
= 1 ⇒ u+ =

∫ y+

0
dy+

u+ = y+ which is reminiscent of Couette flow.

If we start from equation D and we apply y+ � R+,

u+ =

y+∫
0

−1 +
√

1 + 4l+2

2l+2
dy+ =

=

y+∫
0

2

1 +
√

1 + 4l+2
dy+

l+�1'
y+∫
0

dy+ = y+
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Solution for the Inertial Layer (Outer Region)

(Also called ”Turbulent Core”) Now we have to integrate from y+

to R+:

u+
∣∣R+

y+ =

R+∫
y+

−1 +

√
1 + 4l+2

(
1− y+

R+

)
2l+2

dy+

u+ = u+max +

R+∫
y+

1−
√

1 + 4l+2
(

1− y+

R+

)
2l+2

dy+

For l+ � 1 we have 1−
√

1 + 4l+2
(

1− y+

R+

)
' −2l+

√
1− y+

R+

and

u+ = u+max −
R+∫

y+

√
1− y+

R+

l+
dy+
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Of course, the same equation can be derived also from equation

E when we neglect the shear stress term:

l+2

(
du+

dy+

)2

+
�
�
�du+

dy+
−
(

1− y+

R+

)
= 0

In the Outer Region we can apply Prandtl’s model: l+ = ky+ and

solve the integral

u+ = u+max −
R+∫

y+

√
1− y+

R+

l+
dy+ =

= u+max −
1

k

R+∫
y+

√
1− y+

R+

y+

R+

dy+

R+
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So we want to solve
∫ √1−x

x dx . If we do that (a little tedious), we

obtain

u+ = u+max +
2

k

√
1− y+

R+
+

1

k
ln

1−
√

1− y+

R+

1 +
√

1 + y+

R+

We remark here that this solution is only valid far from the wall:

Indeed, the logarithm diverges for y+ → 0!
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Now, if y+

R+ is small, as it is when y+ approaches R+, then the

square root can be approximated as follows:√
1− y+

R+
' 1− 1

2

y+

R+
+ . . .

and then we have

u+ =
1

k
lny+ + u+max

const.

+
2

k
const.

−1

k

y+

R+

=
1

k
lny+ + [const.] +O

[
y+

R+

]
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Experimental Results

From experimental measurements, we have
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We have solved the equation in the following way:

1) Viscous sublayer: only the viscous term is important

u+ = y+
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We have solved the equation in the following way:

2) Buffer sublayer: both viscous and inertial terms of the stresses

are important

u+ = ?
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We have solved the equation in the following way:

3) Inertial sublayer: only the inertial term of the stress is important

u+ = 2.5lny+ + 5.5
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We can now try to plot the entire velocity profile:
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Blasius profile

The law of the wall as derived in the logarithmic form is sometimes

not used, preferring other empirical expressions, as the Blasius

profile:

v̄z(y)

v̄z,max
=
( y
R

)m
or

v̄z(y)

〈v̄z〉
=

(m + 1)(m + 2)

2

( y
R

)m
with 1

10 < m < 1
6 (usually m = 1

7).
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With this equation, it is not possible to predict the shear stress at

the wall: it would turn out to be infinite.

This equation is used with the famous Blasius relation to predict

the friction factor in turbulent pipe flow:

∆P = 2ρ〈v〉2f L

D

f = 0.079Re−1/4

or

∆P =
1

2
ρ〈v〉2f L

D

f = 0.316Re−1/4
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