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Turbulence: Phenomenology &

Modeling



Governing equations

We examined the different terms of the balance equations to

identify one single scaling parameter (the Reynolds number, Re)

and have the possibility to neglect some terms of the balance

equations:

Continuity:
∂vi
∂xi

= 0

N-S: ρ

[
∂vi
∂t

+ vj
∂vi
∂xj

]
= −∂P

∂xi
+ µ

∂2vi
∂xj2
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Simplifications

1. Creeping Flow:

Re =
ρV D

µ
→ 0

Inertia forces vanishing independent of the geometry.

2. Lubrication Approximation:

Inertia forces negligible but with the help of a particular

geometry.

3. Potential Flow:

Re →∞

Viscous forces truly negligible.

4. Boundary Layer Theory:

All terms are to be considered: pressure may be estimated by

the potential flow theory applied in the outer flow region.
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Terms of N-S

Look at the N-S equations from another viewpoint:

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
︸ ︷︷ ︸

inertial terms

= −∂P
∂xi︸ ︷︷ ︸

pressure term

+ µ
∂2vi
∂xj2︸ ︷︷ ︸

viscous term

where the viscous term is also the term which dissipates.

The pressure term feeds energy into the flow system and inertial

terms increase (so there is acceleration) but the viscous terms

brake strongly with the viscous damping.
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Stability

The Navier-Stokes equations describe a stable system if the inertial

terms are not too big compared with the viscous terms. If they

become too large, then the equations describe an unstable system.

If the system is stable/unstable, then it is stable/unstable for

arbitrarily big/small amplitudes of the perturbation.
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Reynolds flow visualization

The experiment took place in Manchester, U.K., 1883.
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Reynolds flow visualization

The experiment took place in Manchester, U.K., 1883.
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Reynolds documented

his experiment with

sketches rather than

photography. However,

the original apparatus

has survived and, a

century later, N. H.

Johannesen and C.

Lowe have taken this

sequence of

photographs.
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Macroscopic consequences of turbulence

The image shows a comparison of laminar (i) and turbulent (ii)

velocity profiles in a pipe. The Reynolds number is about 4000.

Same velocity:
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Macroscopic consequences of turbulence

The image shows a comparison of laminar (i) and turbulent (ii)

velocity profiles in a pipe. The Reynolds number is about 4000.

Same pressure gradient:
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Large-scale and small-scale structures in turbulence

Increasing the Reynolds number produces smaller structures:
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Large-scale and small-scale structures in turbulence

Increasing the Reynolds number produces smaller structures:
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Turbulent flow similarity
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Turbulent flow similarity
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Observations

From the experiment of Reynolds we see that:

Re
critical Re number (Rec)

stable unstable

Below Rec , perturbations are damped.

Above Rec , perturbations are amplified.
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Observations

Suppose we have a Poiseuille flow in a channel (flow driven by a

pressure gradient).
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Observations

Suppose we have a Poiseuille flow in a channel (flow driven by a

pressure gradient).
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Observations

In fact, we are not really interested in the instantaneous behavior

of the quantities (velocity, pressure, etc.), but rather in average

quantities. A velocity probe in our channel will yield a signal like

this:
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Average of a variable

In the discrete space, the average of a generic variable ξi is:

ξ̄ =
1

N

N∑
i=1

ξi

and in the continuous space

ξ̄(t) =
1

2T

t+T∫
t−T

ξ(t)dt

with T →∞.
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Average of velocity

In a channel with constant pressure drop we have for the average

velocity:

ūi (x , y , z) = lim
t→∞

1

2T

T∫
−T

ui (x , y , z , t)dt
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Decomposition of velocity

We can decompose the velocity as:

u(x , y , z , t) = ū(x , y , z) + u′(x , y , z , t)

with:

u: instantaneous velocity

ū: average velocity not dependent on time

u′: fluctuating velocity
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Decomposition of velocity

In general applications, we are not interested in the fluctuating

part of the variables: we are rather interested in their average

value. In the same way reasoned Reynolds, who proposed the

following procedure:

1 We decompose the variables into average and fluctuating parts

and we substitute them into the balance equations;

2 we average the equations over time so to obtain time

independent equations in which most (hopefully all)

fluctuating terms are eliminated;

3 we can solve these equations to obtain the average variables.
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Application to balance equations

Balance equations:

Continuity:
∂vi
∂xi

= 0

N-S: ρ

[
∂vi
∂t

+ vj
∂vi
∂xj

]
= −∂P

∂xi
+ µ

∂2vi
∂xj2

Variables:

vi = v̄i + v ′i ; P = P̄ + P ′
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Mean Continuity equation

We start with the Continuity equation:

∂

∂xi
(v̄i + v ′i ) =

∂ v̄i
∂xi

+
∂v ′i
∂xi

= 0

Applying the time average, we have (x and t are independent):

∂ v̄i
∂xi

= lim
T→∞

1

2T

T∫
−T

∂ v̄i
∂xi

dt =
∂ v̄i
∂xi

∂v ′i
∂xi

= lim
T→∞

1

2T

T∫
−T

∂v ′i
∂xi

dt =

= lim
T→∞

1

2T

∂

∂xi

T∫
−T

v ′i dt

︸ ︷︷ ︸
=0 by definition

= 0
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Mean Continuity equation

The Continuity equation becomes

∂ v̄i
∂xi

= 0

which, substituted in the non-averaged Continuity equation, gives

∂v ′i
∂xi

= 0

So we have that both the divergence of the average velocity and

the divergence of the fluctuating velocity are zero (representing

average Continuity and fluctuating Continuity, respectively).
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Mean N-S equations

Using the same procedure with the N-S equations, we can write:

ρ

[
∂(v̄i + v ′i )

∂t
+ (v̄j + v ′j )

∂(v̄i + v ′i )

∂xj

]
= −∂(P̄ + P ′)

∂xi
+µ

∂2(v̄i + v ′i )

∂xj2

Then we take the average

ρ

[
∂(v̄i + v ′i )

∂t
+ (v̄j + v ′j )

∂(v̄i + v ′i )

∂xj

]
= −∂(P̄ + P ′)

∂xi
+µ

∂2(v̄i + v ′i )

∂xj2

ρ

[
∂ v̄i
∂t

+
∂v ′i
∂t

+ v̄j
∂ v̄i
∂xj

+ v̄j
∂v ′i
∂xj

+ v ′j
∂ v̄i
∂xj

+ v ′j
∂v ′i
∂xj

]
=

= −∂ P̄
∂xi
− ∂P ′

∂xi
+ µ

∂2v̄i
∂xj2

+ µ
∂2v ′i
∂xj2
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Mean N-S equations

Knowing that:

• time and space are independent

• the average of an average is the average itself

• the following identities hold

∂ v̄i
∂t

= 0 ;
∂v ′i
∂t

= 0 ;
∂p′

∂xi
= 0

v̄j
∂ v̄i
∂xj

= v̄j
∂ v̄i
∂xj

v̄j
∂v ′i
∂xj

= 0 ; v ′j
∂ v̄i
∂xj

= 0

v ′j
∂v ′i
∂xj

=
∂v ′j v

′
i

∂xj
− v ′i

�
�
��∂v ′j

∂xj
=
∂v ′j v

′
i

∂xj
since

∂v ′j
∂xj

= 0

∂2v ′i
∂xj2

= 0
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Mean N-S equations

Substituting into the N-S equations we have:

ρ

[
v̄j
∂ v̄i
∂xj

]
= −∂ P̄

∂xi
+ µ

∂2v̄i
∂xj2

− ρ
∂v ′j v

′
i

∂xj

So we have an equation with averaged variables but with an extra

term too:

ρ

[
v̄j
∂ v̄i
∂xj

]
= −∂ P̄

∂xi
+

∂

∂xj

[
µ
∂ v̄i
∂xj

]
− ∂

∂xj

[
ρv ′j v

′
i

]
ρ

[
v̄j
∂ v̄i
∂xj

]
= −∂ P̄

∂xi
+

∂

∂xj

[
µ
∂ v̄i
∂xj︸ ︷︷ ︸
τij

− ρv ′j v ′i︸ ︷︷ ︸
τ̄Rij

]

τ̄Rij is the Reynolds stress tensor. The elements of this tensor are

the so-called Reynolds stresses, ρv ′j v
′
i .
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Recap

We have been able to derive an average equation in which only

average variables appear. However, we have now the problem of

getting acquainted with the new character: τ̄Rij .

As the equation is now cast, it seems that we have more damping

for the same pressure gradient. And if it were true, that would

explain the velocity profiles we have seen before: in turbulent flows

we are able to transfer less flowrate for the same pressure gradient.
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Reynolds stresses

τ̄Rij = −ρv ′j v ′i 6= 0 only if the two variables, v ′i and v ′j , are not

independent of each other.

We observe the situation of the turbulent channel flow to examine

the behavior of the Reynolds’ stresses.

Note: i ≡ x , j ≡ y .
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Reynolds stresses

The fluid parcel 1 has a

positive velocity

fluctuation in the y

direction (average v̄y = 0)

and moves in a region

where all parcels have a

larger velocity in the x

direction.

It is likely (we speak of statistical fluctuations) that the

instantaneous velocity in x will be lower than the mean: v ′x < 0

⇒ v ′y > 0 and v ′x < 0⇒ v ′xv
′
y < 0
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Reynolds stresses

The fluid parcel 2 has a

negative velocity

fluctuation in the y

direction.

It is likely that the instantaneous velocity in x will be higher than

the mean: v ′x > 0

⇒ v ′y < 0 and v ′x > 0⇒ v ′xv
′
y < 0

Then, for these two parcels:

τ̄yx = µ
∂ v̄x
∂y
− ρv ′xv ′y > µ

∂ v̄x
∂y
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