Modelling of Turbulent Flows
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Turbulence: Phenomenology &
Modeling



Governing equations

We examined the different terms of the balance equations to
identify one single scaling parameter (the Reynolds number, Re)
and have the possibility to neglect some terms of the balance
equations:
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Simplifications

1. Creeping Flow:

Inertia forces vanishing independent of the geometry.
2. Lubrication Approximation:

Inertia forces negligible but with the help of a particular
geometry.

3. Potential Flow:
Re — oo
Viscous forces truly negligible.
4. Boundary Layer Theory:
All terms are to be considered: pressure may be estimated by
the potential flow theory applied in the outer flow region.



Terms of N-S

Look at the N-S equations from another viewpoint:
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where the viscous term is also the term which dissipates.
The pressure term feeds energy into the flow system and inertial
terms increase (so there is acceleration) but the viscous terms

brake strongly with the viscous damping.



Stability

The Navier-Stokes equations describe a stable system if the inertial
terms are not too big compared with the viscous terms. If they
become too large, then the equations describe an unstable system.
If the system is stable/unstable, then it is stable/unstable for
arbitrarily big/small amplitudes of the perturbation.
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Reynolds flow visualization

The experiment took place in Manchester, U.K., 1883.




Reynolds flow visualization

The experiment took place in Manchester, U.K., 1883.
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Fig. 9.2. Reynolds’s drawings of the flow in his dye experiment.



Reynolds documented

his experiment with
sketches rather than

photography. However,

the original apparatus

has survived and, a
century later, N. H.
Johannesen and C.
Lowe have taken this
sequence of
photographs.




Macroscopic consequences of turbulence

The image shows a comparison of laminar (i) and turbulent (ii)
velocity profiles in a pipe. The Reynolds number is about 4000.
Same velocity:
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Macroscopic consequences of turbulence

The image shows a comparison of laminar (i) and turbulent (ii)
velocity profiles in a pipe. The Reynolds number is about 4000.
Same pressure gradient:
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Large-scale and small-scale structures in turbulence

Increasing the Reynolds number produces smaller structures:

176. Large-scall i bul

ina mixing layer.
Nitrogen above flowing at 1000 cm/s mixes with a helium-
argon mixture below at the same density flowing at 380
cm/s under a pressure of 4 atmospheres. Spark shadow
phy shows si tdge and plan views,
ing the sp: ion of the large

d

eddies. The streamwise streaks in the plan view (of which
half the span is shown) correspond to a system of second-
ary vortex pairs oriented in the streamwise direction.
Their spacing at the downstream side of the layer is larger
than near the beginning. Photograph by J. H. Konrad, Ph.D.
thesis, Calif. Inst. of Tech., 1976.



Large-scale and small-scale structures in turbulence

Increasing the Reynolds number produces smaller structures:

177. Coherent structure at higher Reynolds number. ture without significantly altering the large-scale structure.
This flow is as above but at twice the pressure. Doubling M. R. Rebollo, Ph.D. thesis, Calif. Inst. of Tech., 1976; Brown
the Reynolds number has produced more small-scale struc- & Roshko 1974



Turbulent flow similarity

172. Wake of an inclined flat plate. The
wake behind a plate at 45° angle of attack is
turbulent at a Reynolds number of 4300.
Aluminum flakes suspended in water show
its characteristic sinuous form. Cantwell
1981. Reproduced, with permission, from the
Annual Review of Fluid Mechanics, Volume
13. © 1981 by Annual Reviews Inc.
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Turbulent flow similarity

173. Wake of a grounded tankship. The tanker Argo  number is approximately 107, the wake pattern is remark-
Merchant went aground on the Nantucket shoals in 1976. ably similar to that in the photograph at the top of the
Leaking crude ofl shows that she happened to be inclined  page. NASA photograph, couttesy of O. M. Grifin, Naval
at about 45° to the current. Although the Reynolds  Research Laboratory.

10



From the experiment of Reynolds we see that:

critical Re number (Re.)

Re

stable ' unstable

Below Re., perturbations are damped.
Above Re., perturbations are amplified.
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Suppose we have a Poiseuille flow in a channel (flow driven by a
pressure gradient).
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Suppose we have a Poiseuille flow in a channel (flow driven by a
pressure gradient).
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In fact, we are not really interested in the instantaneous behavior
of the quantities (velocity, pressure, etc.), but rather in average
quantities. A velocity probe in our channel will yield a signal like
this:
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Average of a variable

In the discrete space, the average of a generic variable &; is:
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and in the continuous space
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with T — oo.
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Average of velocity

In a channel with constant pressure drop we have for the average
velocity:
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Decomposition of velocity

We can decompose the velocity as:
u(x,y,z,t) = i(x,y,z) + u'(x,y,z,t)
with:

u: instantaneous velocity
u: average velocity not dependent on time

u': fluctuating velocity
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Decomposition of velocity

In general applications, we are not interested in the fluctuating
part of the variables: we are rather interested in their average
value. In the same way reasoned Reynolds, who proposed the

following procedure:

1 We decompose the variables into average and fluctuating parts
and we substitute them into the balance equations;

2 we average the equations over time so to obtain time
independent equations in which most (hopefully all)
fluctuating terms are eliminated;

3 we can solve these equations to obtain the average variables.
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Application to balance equations

Balance equations:
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Mean Continuity equation
We start with the Continuity equation:
0
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Mean Continuity equation

The Continuity equation becomes

ovi
ox;

0

which, substituted in the non-averaged Continuity equation, gives
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So we have that both the divergence of the average velocity and
the divergence of the fluctuating velocity are zero (representing

average Continuity and fluctuating Continuity, respectively).
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Mean N-S equations

Using the same procedure with the N-S equations, we can write:
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Mean N-S equations
Knowing that:
e time and space are independent

e the average of an average is the average itself
e the following identities hold
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Mean N-S equations

Substituting into the N-S equations we have:
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So we have an equation with averaged variables but with an extra

term too:
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T is the Reynolds stress tensor. The elements of this tensor are

0o
the so-called Reynolds stresses, pv;v;.
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We have been able to derive an average equation in which only
average variables appear. However, we have now the problem of

getting acquainted with the new character: 7X.

ij

As the equation is now cast, it seems that we have more damping
for the same pressure gradient. And if it were true, that would
explain the velocity profiles we have seen before: in turbulent flows

we are able to transfer less flowrate for the same pressure gradient.
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Reynolds stresses

TR = —pvjvi # 0 only if the two variables, v; and vj, are not

independent of each other.
We observe the situation of the turbulent channel flow to examine

the behavior of the Reynolds’ stresses.

If
<

Note: i = x, j
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Reynolds stresses

The fluid parcel (1) has a
positive velocity
fluctuation in the y
direction (average v, = 0)
and moves in a region

where all parcels have a

T Y S larger velocity in the x
direction.
It is likely (we speak of statistical fluctuations) that the

instantaneous velocity in x will be lower than the mean: v, <0

= v, >0and v, <0=vv, <0
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Reynolds stresses

The fluid parcel (2) has a
negative velocity
fluctuation in the y

direction.

It is likely that the instantaneous velocity in x will be higher than
the mean: v, >0

= v, <0and v, >0=v,v, <0

Then, for these two parcels:
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