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Boundary Layer on a Flat Plate
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The available equations are

∂vx
∂x

+
∂vy
∂y

= 0

ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= ρu∞

du∞
dx

+ µ
∂2vx
∂y2

Since u∞ is constant,
du∞
dx

= 0
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The problem in this case is rather complicated: we have two

unknown dependent variables, vx and vy , which both depend on

the two independent variables, x and y .

vx(x , y) 6= 0 ; vy (x , y) 6= 0

We can apply the similarity theory to reduce the dependence on

two variables to the dependence on one function of two variables.

We find the same value of the

velocity v̂ at two different

stations x1 and x2 for two

different values of y , so we can

identify a similarity function

η(x , y) so that

v̂x(η̂) = v̂ [η̂(x1, y1)] = v̂ [η̂(x2, x2)]
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However, in this case this is not enough, since we still have vx and

vy . If we use the streamfunction we can however reduce the

unknown variables to one; this at the price of increasing the order

of the differential equation.∂vx
∂x +

∂vy
∂y = 0

vx
∂vx
∂x + vy

∂vx
∂y = ν ∂

2vx
∂y2

BCs: vx = vy = 0 at y = 0; vx = u∞ as y →∞.

NOTE: The similarity function is

actually a similarity variable

obtainsed just by rescaling the y

coordinate with the thickness of

the Boundary Layer. The

concept is the stretching of the

coordinate (η ∝ y/δ(x)).
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Streamfunction

vx =
∂ψ

∂y
; vy =

∂ψ

∂x

Continuity (automatically satisfied):

− ∂2ψ

∂x∂y
+

∂2ψ

∂x∂y
= 0

NSx :
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= −ν ∂

3ψ

∂y3
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Defining the similarity variable as

η =
y

δ(x)
=

y√
νx
u∞

= y

√
u∞
νx

Computing vx from the definition of ψ,

ψ = f (η)⇒ vx = −∂ψ
∂y

= −∂ f (η)

∂y
= −df

dη

∂η

∂y
= −f ′

√
u∞
νx

We have to avoid an explicit dependence of vx on x . In addition,

we would like to ”fix” the dimensions of the streamfunction and we

would rather have a dimensionless f (η). We then define

ψ(η) := −
√
ν u∞ xf (η)

where f is dimensionless and [ψ] = m2/s. We thus find that

vx = −∂ψ
∂y

= u∞ f ′ 1
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We need the other derivatives of ψ:

∂ψ

∂x
= vy

= −1

2

√
ν u∞
x

f −
√
ν u∞ x

df

dη

∂η

∂x

= −1

2

√
ν u∞
x

f −
√
ν u∞ xf ′ ·

(
−1

2

)
1

x
y

√
u∞
ν x︸ ︷︷ ︸
η

= −1

2

√
ν u∞
x

f +
1

2

√
ν u∞
x

ηf ′

2
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∂2ψ

∂x∂y
=

=
∂

∂x

∂ψ

∂y
=

∂

∂x

[
−u∞ f ′

]
= −u∞

df ′

dη

∂η

∂x

= −u∞ f ′′
(
−1

2

)
y

x

√
u∞
ν x

=
1

2

u∞
x
η f ′′

3
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∂2ψ

∂y2
= −u∞ f ′′

∂η

∂y
= −u∞

√
u∞
ν x

f ′′ 4

∂3ψ

∂y3
= −u∞

√
u∞
ν x

f ′′′
∂η

∂y
= −u2∞

ν x
f ′′′ 5
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We need now to substitute ψ into the Navier-Stokes equation

expressed in terms of ψ.

− u∞ f ′
1

2

u∞
x
η f ′′ +

[
1

2

√
v u∞
x

f − 1

2

√
νu∞
x

η f ′
]
·

·
(
−u∞

√
u∞
νx

f ′′
)

=
ν u2∞
ν x

f ′′′

⇒−
��

���u2∞
2x

ηf ′f ′′ +
1

2

√
νu∞
x

[
f −�

�η f ′
]
·
(
−u∞

√
u∞
νx

f ′′
)

=
ν u2∞
ν x

f ′′′

⇒− 1

2

u2∞
x

f f ′′ =
u2∞
x

f ′′′

⇒ f ′′′ +
1

2
f f ′′ = 0
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The equation to be solved is η = y
√

u∞
ν x = y

δ(x)

f ′′′ + 1
2 f f

′′ = 0

Boundary Conditions: 
f ′ = 0 at η = 0

f ′ = 1 for η →∞

f = 0 at η = 0
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Unfortunately this equation, although coming from an elegant

derivation, must be found by numerical integration.
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Wall shear stress

We started all of this to compute the forces acting at the wall.

The wall shear stress is

τw (x) = µ
∂vx
∂y

∣∣∣∣
y=0

= −µ ∂2ψ

∂y2

∣∣∣∣ y = 0 =

= µ u∞

√
u∞
ν x

f ′′
∣∣∣∣
y=0

Numerically f ′′|y=0 = f ′′(0) ' 0.332, so

τw (x) = 0.332u∞ µ

√
u∞
ν x
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Boundary Layer Thickness

The thickness of the BL:

δ? =

∞∫
0

[
1− vx(y)

u∞

]
dy = 1.72

√
ν x

u∞

The BL thickness increases with
√
x , while the wall shear stress

decreases with 1√
x

: this is expected, given the decreasing slope of

the velocity profile with x .

16



If we consider the case of a cylinder as an example:

in A :

∂P

∂x
< 0 ;

∂ux
∂y

> 0 ; τw = µ
∂vx
∂y

> 0 ; ωz = −∂ux
∂y

< 0 ∗

in S :

∂P

∂x
= 0 ;

∂ux
∂y

= 0 ; τw = µ
∂ux
∂y

= 0 ; ωz = 0

in B :
∂P

∂x
> 0 ;

∂ux
∂y

< 0 ; τw < 0 ; ωz > 0

∗: clockwise rotation
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Detachment (separation) of Boundary Layers

It was not possible to predict the drag on a cylinder by means of

the Potential Flow theory because this theory does not account for

the fact that the Boundary Layer detaches from the sphere surface.
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We can ”straighten” the sphere/cylinder surface on a plane:
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Why does the BL detach?

In case we have a flat plate, may the BL separate? Maybe.

The boundary layer thickness increases with x and the velocity

gradient decreases. If the velocity gradient reaches zero the

velocity profile hase a vertical derivative at the wall.

However, to change the direction of the velocity we need that the

second derivative of the velocity profile changes sign:

∂2vx
∂y2

∣∣∣∣
y=0

(∗)

Now, at the wall inertia is null and the NSx becomes

−∂P
∂x

+ µ


�
�
�∂2vx

∂x2︸ ︷︷ ︸
∗

+
∂2vx
∂y2


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Then
∂p

∂x
= µ

∂2vx
∂y2

∣∣∣∣
y=0

and we remember that derivpy = 0, so the pressure behavior at the

wall depends on what happens in the external flow. So if the

pressure gradient in the external flow does not change sign, the

concavity of the velocity profile may not happen and the boundary

layer does not separate.
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Classification of Boundary Layers

So what happens in the BL depends on what happens in the outer

flow, and in particular on the behavior of the equation

dp

dx
= −ρ u∞

du∞
dx
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Classification of Boundary Layers

du∞
dx

> 0 ;
dp

dx
< 0

The pressure decreases with x and we can describe it as BL in a

favourable pressure gradient. In this case, the BL is thin and the

advection dominates the viscous diffusion, which is the cause of

expansion of the BL. This BL has similar dynamics to the

zero-pressure-gradient BL which we examined in great detail.
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Classification of Boundary Layers

du∞
dx

< 0 ;
dp

dx
> 0

The pressure increases with x , and we speak of an adverse

pressure gradient. In this case, the advection cannot work much

and the thickness of the BL increases. This boundary layer is prone

to separation.
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