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Boundary Layers

u is the free stream velocity.

When a fluid in uniform flow at a velocity u meets with a bluff

bodythe speed at which disturbances (i.e. modifications to the

flow) are transported downstream is u. However, the velocity at

which disturbances are transported away from the wall (i.e. the

velocity with which the information at the wall is transported to

the outer flow) is proportional to the viscous diffusion velocity.
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Boundary Layers

u is the free stream velocity.

The perception is thus that disturbances are generated at the wall

but are also rapidly transported downstream, leaving the far field

essentially undisturbed.

This is the concept of the boundary layer, which allows to confine

the interactions of the body with fluid to a very thin region around

the body.
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Thickness of the B.L.

δ99 is the distance from

the wall at which the

velocity reaches 99% of

the free stream velocity.
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Displacement thickness

δ? is the thickness of a

layer with 0 (zero) velocity

which produces the same

deficit of mass transported

downstream.

v∞δ
? =

∞∫
0

v∞dy −
∞∫
0

v(y)dy

=

∞∫
0

[v∞ − v(y)]dy

⇒ δ? =

∞∫
0

[
1− v(y)

v∞

]
dy
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Momentum thickness

δ̂ is the thickness of a layer with zero velocity which produces the

same deficit of momentum transport downstream.

ρ δ̂ v?2∞ = ρ

∞∫
0

v(y)[v∞ − v(y)]dy

⇒ δ̂ =

∞∫
0

v(y)

v∞

[
1− v(y)

v∞

]
dy

It holds:

δ99 > δ? > δ̂
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Boundary Layer Equations

We want to derive the equations which are necessary to solve the

velocity profile inside the boundary layer which forms when a free

stream moving at velocity u∞ meets a flat stationary plate.

We hypothesize steady state flow and 2D geometry as sketched:
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Continuity:
∂vx
∂x

+
∂vy
∂y

= 0

N-Sx :

ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −∂P

∂x
+ µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
N-Sy :

ρ

(
vx
∂vy
∂x

+ vy
∂vy
∂y

)
= −∂P

∂y
+ µ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
We wish to make the equations dimensionless so to appreciate the

order of magnitude of each term. In this case we have no

characteristic length; we choose δ(x) for the y direction and L (the

length of the plate) for the x direction. u∞ and V will be the

characteristic velocities. δ and V are unknown.
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Continuity

u∞
L

∂ ṽx
∂x̃

+
V

δ

∂ ṽy
∂ỹ

= 0

If we move along the line at y?,

we observe that vx changes and

therefore it is vx(x , y).

Then both terms in the continuity equation must be of some order

of magnitude and

u∞
L
· δ
V

= O(1)⇒ V ' δ

L
u∞

with δ
L � 1 and consequently v

u∞
� 1.
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Navier-Stokes (x)

ρ
δ2u∞
L µ

[
ṽx
∂ ṽx
∂x̃

+ ṽy
∂ ṽx
∂ỹ

]
= − Π δ2

µ u∞ L
·∂ P̃
∂x̃

+

[(
δ

L

)2 ∂2ṽx
∂x̃2

+
∂2ṽx
∂ỹ2

]

with Π the scaling pressure.

We learned that by definition, in the Boundary Layer, inertial and

viscous terms must have the same order of magnitude and then

ρ
u∞δ

2

Lµ
= O(1)⇒ δ '

√
µ L

ρ u∞
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Navier-Stokes (x)

We can define a Reynolds number for the B.L. as

ReL :=
ρ L u∞
µ

and then

δ = L · Re−1/2L

and we find that pressure scales with inertial forces:

Π = µ
u∞ L

δ2
= ρ u2∞

The diffusion term
(
δ
L

)2 · ∂2ṽx
∂x̃2

is negligible and we have

N-Sx : ρ

(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −∂P

∂x
+
∂2vx
∂y2
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Navier-Stokes (y)

(
δ

L

)2 [
ṽx
∂ ṽy
∂x̃

+ ṽy
∂ ṽy
∂ỹ

]
= −∂ P̃

∂ỹ
+

(
δ

L

)2
[(

δ

L

)2 ∂2ṽy
∂x̃2

+
∂2ṽy
∂ỹ2

]

All terms except for the pressure gradient are negligible, thus:

N-Sy :
∂ P̃

∂ỹ
' 0

which tells us that P = P(x) .
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Pressure

Because the pressure does not

depend on y , but only on x , we

can determine the behavior of

the pressure along y3 with the

Potential Flow equation for

pressure (the Bernoulli equation).

Assuming no gravity effect,

p − 1

2
ρ u2∞ = const

∂P

∂x
=

dP

dx
= −ρ u∞

du∞
dx
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Boundary Layer equations

The equations for the BL are:

continuity:
∂vx
∂x

+
∂vy
∂y

= 0

N-S: ρ

∂vx
∂t︸︷︷︸
∗

+vx
∂vx
∂x

+ vy
∂vx
∂y

 = ρ u∞
du∞
dx

+ µ
∂2vx
∂y2

(∗ : this term only when we want to study non-stationary B.L.)
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Stokes’ Boundary Layer

(We solve this problem first, to become familiar with the similarity

procedure) We consider a flat plate, infinitely long, which is

suddenly set in motion.
The plate is aligned with

the x axis and the half

infinite domain above is

fluid which is still. At

t = 0 the plate is set in

motion in the x direction

at velocity u.

The half domain is characterized by a velocity directed only along

x :

vx 6= 0 and vy = 0

Of course, in this case vx is not function of x , but only of y and t.
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Continuity:
∂vx
∂x

+
�
�
�∂vy

∂y
= 0

N-S:

ρ
∂vx
∂t

= µ
∂2vx
∂y2

Boundary conditions:

vx(0, t) =

0 t ≤ 0

u t > 0
; vx(y →∞, t) = 0

In this problem there is no advection of momentum, which is

transferred along y just by the diffusion term. It is analogous to

heat transfer from a wall or mass transfer, for instance CO2

absorption at a film surface.
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The solution is based on the similarity theory.

The differential equation has one dependent variable which is a

function of two independent variables (y and t).

We see that

v̂x(y1, t1) = v̂x(y2, t2), so

we look for a function η of

y and t which has the

following form:

η(y , t) = α
y

tn

with α and n to be

determined.

For the similarity theory, it is:

vx(y , t)

u
= f (η)
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On an intuitive basis this is justified with the following:

If u is doubled, then we expect vx to double, so vx is proportional

to u and its slope is given by f (η).

Our problem is now:
vx(y , t) = u · f (η) A

∂vx
∂t︸︷︷︸
I

= ν
∂2vx
∂y2︸ ︷︷ ︸
II

B

Substituting A in B , the term I becomes

∂vx
∂t

= u
df

dη

∂η

∂t
= f ′α(−n)

y

tn+1
u = −n

t
ηf ′u

and the term II is
∂vx
∂y

= uf ′
∂η

∂y
= uf ′

α

tn

∂2vx
∂y2

= u
α2

t2n
f ′′
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Substituting,

−u

t
ηf ′�u =�u

α2

t2n
f ′′ν

We do not want an explicit dependence on t and therefore we

choose n = 1/2:

να2f ′′ = −η
2
f ′

in which η = αy√
t
.

Since η must be dimensionless, we choose

α =
1

2
√
ν
⇒ η =

1

2

y√
νt

(we put 2 because the solution becomes more convenient)

So the final equation is

f ′′ + 2ηf ′ = 0
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To solve this equation, we separate variables:

df ′

f ′
= −2ηdη

d(ln f ′) = −2ηdη

ln f ′ = −η2 + Ĉ1
and

f ′(η) = C1e−η
2

with Ĉ1 = ln C1 With a further integration,

f (η) = C1

η∫
0

e−η
2
dη + C2

Boundary conditions areη →∞ that is y →∞, t → 0) ⇒ f (η) = 0

η → 0 ⇒ f (0) = 1
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Applying the B.C. for η = 0,

f (0) = C1

0∫
0

e−η
2
dη + C2 = 1

The integral behaves well and is zero and therefore C2 = 1.

f (η →∞) = C1

∞∫
0

e−η
2
dη + 1

We know that
∞∫
0

e−η
2
dη =

√
π
2 and then C1 = − 2√

π
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The velocity is thus
vx(y , t) = u

[
1− 2√

π

η∫
0

e−η
2
dη

]
η = y

2
√
νt

Defining the error function

erf (η) :=
2√
π

η∫
0

e−η
2
dη

we finally obtain

vx(y , t) = u [1− erf (η)]
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