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Potential function

If the flow is irrotational in the entire domain, we can describe the

flow field by a suitable function which is called potential, 𝜑. It is a

scalar function (can be defined in 2 or 4 dimensions being an

Hamiltonian) and must satisfy the equation v⃗ = −∇⃗𝜑 where the

minus sign is by convention. It follows

vx = −𝜕𝜑
𝜕x

; vy = −𝜕𝜑
𝜕y

𝜑 has the same meaning of the potential V in electricity.
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We can rewrite the continuity equation in the following way:

𝜕vx
𝜕x

+
𝜕vy
𝜕y

= −𝜕
2𝜑

𝜕x2
− 𝜕2𝜑

𝜕y2
= ∇2𝜑 = 0

The problem with this equation is that 𝜑 must be known to find v⃗

and that pressure must be found by another equation.
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Streamfunction

The 2D field can be described also by another scalar function, 𝜓,

called streamfunction and defined as follows:

vx = −𝜕𝜓
𝜕y

; vy = +
𝜕𝜓

𝜕x

which automatically satisfies continuity:

𝜕vx
𝜕x

+
𝜕vy
𝜕y

= − 𝜕2𝜓

𝜕x𝜕y
+

𝜕2𝜓

𝜕x𝜕y
= 0
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Physical meaning of 𝜓

The set of all points characterized by the same value of 𝜓 is a

streamline. This is everywhere tangent to the velocity vector as

shown:

𝜓 = 𝜓(x , y) ⇒ d𝜓 =
𝜕𝜓

𝜕x
dx +

𝜕𝜓

𝜕y
dy = vydx − vxdy

If we consider a streamline:

𝜓 = cost ⇒ d𝜓 = 0 ⇒ vx
vy

=
dx

dy

⃒⃒⃒⃒
𝜓=cost
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The difference in value between two streamlines is the flowrate

actually flowing between the two streamlines.
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Q

W

⃒⃒⃒⃒
A−B

=

[︂
m3

ms

]︂
=

∫︁
A−B

n⃗ · v⃗dS =

∫︁
A−B

(nxvx + nyvy )dS =

=

∫︁
A−B

vx(nxdS)−
∫︁
A−B

vy (nydS) =

=

∫︁
A−B

vxdx −
∫︁
A−B

vydy =

=

∫︁
A−B

(−d𝜓) = −(𝜓B − 𝜓A) = 𝜓A − 𝜓B
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Relations between vorticity, potential and streamfunction

𝜔z =
𝜕vy
𝜕x

− 𝜕vx
𝜕y

= −𝜕
2𝜑

𝜕x2
+

𝜕2𝜑

𝜕x𝜕y
= 0

𝜔z =
𝜕vy
𝜕x

− 𝜕vx
𝜕y

=
𝜕2𝜓

𝜕x2
+
𝜕2𝜓

𝜕y2
⇒ 𝜔⃗ = ∇2𝜓

These relations are valid in the case of potential, irrotational flow

(which automatically satisfies the conditions of zero vorticity and

continuity). The last unknown quantity in this flow is the pressure,

which can be derived by the Navier-Stokes equations.
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N-S (dimensionless):

𝜕 v⃗

𝜕t
+ (v⃗ · ∇⃗)v⃗ = −∇⃗P +

1

Re
∇2v⃗

Since we are in the limit Re → ∞,

1

Re
∇2v⃗ → 0

and if the flow is steady (𝜕 v⃗𝜕t = 0) the equation becomes

(dimensional form):

(v⃗ · ∇⃗)v⃗ + ∇⃗P = 0
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Bernoulli equation

Now

(v⃗ · ∇⃗)v⃗ = ∇⃗
(︂
1

2
v⃗ · v⃗

)︂
−���v⃗ × 𝜔⃗

(zero because of the irrotational flow hypothesis) and

∇⃗P = p + 𝜌gh

so

𝜌∇⃗
(︂
1

2
v⃗ · v⃗

)︂
+ ∇⃗(p + 𝜌gh) = 0

∇⃗
(︂
1

2
𝜌v2 + p + 𝜌gh

)︂
= 0 → 1

2
𝜌v2 + p + 𝜌gh = cost

which is the Bernoulli equation.

This is indeed how Bernoulli derived this equation, not from the

energy balance equation. The Bernoulli equation is valid along one

streamline. Changing the line makes the constant change too.
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Note on the vorticity equation and on boundary conditions

The 2D vorticity equation is a 4th order equation:

A v⃗ · ∇⃗𝜔 =
1

Re
∇2𝜔

B 𝜔 = ∇2𝜑

However, equation B is 2nd order and describes the flow field.

Therefore, usual B.C. cannot be applied:

v⃗ · n⃗ = 0 no-cross condition;

v⃗ · t⃗ = 0 free-slip condition

(t⃗ is the tangent versor to the surface; n⃗ is the normal versor to

the surface).

The no-slip condition is thus redundant and not applied.
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D’Alembert Paradox

Paradox

From Greek παράδοξος, παράδοξον (παρά “contrary to” and

δόξα “opinion”): an assertion that is essentially self-contradictory,

though based on a valid deduction from acceptable premises.

Acceptable premises: If Re is very high, only inertial forces are

important, since pressure contribution should be balanced by

inertial forces and viscus contribution should be negligible. (For

instance, hands out of a car window.)
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D’Alembert reasoning

D’Alembert wanted to compute the force acting on a circular

cylinder immersed into a fluid at high Reynolds number: most of

the force must be created by pressure (the blocking effect of the

cylinder) and the shear force at the cylinder surface should be

negligible.

Therefore, this should be the benchmark example for the Potential

Flow theory.
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Complex potential

The potential 𝜑 and the streamfunction 𝜓 both satisfy the Laplace

equation and at all points are orthogonal to each other, since:

Cauchy-Riemann:

⎧⎨⎩vx = −𝜕𝜓
𝜕y = −𝜕𝜑

𝜕x

vy = 𝜕𝜓
𝜕x = −𝜕𝜓

𝜕y

These relationships, known as Cauchy-Riemann relations, must

be satisfied by real and imaginary parts of all analytic functions

w(z) of the complex variable z = x + iy .

The function w(z) is the complex potential, defined as:

w(z) :− 𝜑(x , y) + i𝜓(x , y)

Velocity components can be derived by:

dw(z)

z
= −vx(x , y) + ivy (x , y)

in which dw(z)
z is the complex velocity. 15



Example

This flow field, describing

the streamlines around a

circular cylinder, can be

described by the complex

potential

w(z) = v∞

[︂
z +

R2

z

]︂
Rewriting the complex potential, we can obtain in a

straightforward way the potential and the streamfunction:

w(z) = v∞x

[︂
1 +

R2

x2 + y2

]︂
⏟  ⏞  

𝜑(x ,y)

+i v∞y

[︂
1− R2

x2 + y2

]︂
⏟  ⏞  

𝜓(x ,y)
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Using polar coordinates:

𝜑(r , 𝜃) = v∞

[︂
r +

R2

r

]︂
cos 𝜃

𝜓(r , 𝜃) = v∞

[︂
r − R2

r

]︂
sin 𝜃

from which the velocity is easy to obtain:

vr (r , 𝜃) = −𝜕𝜑
𝜕r

= −v∞

[︂
r − R2

r2

]︂
cos 𝜃

v𝜃(r , 𝜃) = −1

r

𝜕𝜓

𝜕𝜃
= v∞

[︂
1 +

R2

r2

]︂
sin 𝜃
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We observe that at the cylinder surface r = R:

vr = 0 ⇒ No cross condition

v𝜃 = 0 at 𝜃 = 0 and 𝜃 = 𝜋: stagnation points

The flow is perfectly symmetric.

To obtain the pressure we must use the Bernoulli equation without

gravity (here p0 is a reference pressure):

p = p0 −
1

2
𝜌v2

= p0 −
1

2
𝜌
[︀
v2r + v2𝜃

]︀
= p0 −

1

2
𝜌v2∞

[︃
1 +

(︂
R2

r2

)︂2

+ r
R2

r2
(sin2 𝜃 − cos2 𝜃)

]︃

= p0 −
1

2
𝜌v2∞

[︃(︂
1− R2

r2

)︂2

+ 4
R2

r2
sin2 𝜃

]︃
A
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Results are:

No friction drag (expected)

No form drag (unexpected!)

From equation A we have that for both the stagnation points

p = p0

The predicted pressure distribution is
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Explanation

Why does the Potential Flow theory fail?

It is indeed the source of the Paradox: We believe our premises

were acceptable because the Reynolds number of the flow was very

high; in fact, our premises are not acceptable, because precisely in

the region where we want to compute the force the local Reynolds

number is small! Locally, viscous forces become comparable with

inertial forces.

Consequence Our model is not just slightly off: it is totally

wrong! (when it rains, it pours)
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