
Modelling of Turbulent Flows

Lecture 1.2

March 24, 2020

1



Vorticity Dynamics



Outline

Flow past a Bluff Body

Vorticity Dynamics

Definition of Vorticity

Vorticity Transport Equation (for Incompressible Fluids)

Vorticity Stretching

Baroclinic Effect

Kelvin’s Theorem

2



Flow past a Bluff Body

When we consider the flow of a fluid (with density ρ and viscosity

µ) past a bluff body we can analyze the flow field in the following

way:

We can identify three regions:
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Flow past a Bluff Body

1 Potential flow Far from the body but with deformation of the

streamlines:

Negligible viscous dissipation

Vorticity = 0
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Flow past a Bluff Body

2 Wake region characterized by vortex stretching:

Negligible viscous dissipation

Non-zero vorticity
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Flow past a Bluff Body

3 Wall region Boundary layer:

Important viscous dissipation

Non-zero vorticity

The velocity gradient near the wall is important due to the no-slip

boundary dissipation due to the viscous stress:

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
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Definition of vorticity

~ω = rot~v = ~∇× ~v =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣∣
= ~i

(
∂vz
∂y
− ∂vy

∂z

)
ωx

+~j

(
∂vx
∂z
− ∂vz
∂x

)
ωy

+~k

(
∂vy
∂x
− ∂vx
∂y

)
ωz

Vorticity represents the local rotation rate of an elementary parcel

of fluid. Since vorticity is defined by the derivatives of the velocity

vector, it is also related to the deformation rate.

We can now try to make some examples to understand better the

role of vorticity.
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Example 1

A fluid is rotating as if it were a rigid body with

angular rotation rate Ω. The velocity field is

~u = ~Ω× ~r

with ~Ω = Ωz k̂ and ~r = x~i + y~j .

~v = Ωz k̂ × (x î + j ĵ) =

∣∣∣∣∣∣∣
î ĵ k̂

0 0 Ωz

x y 0

∣∣∣∣∣∣∣ = Ωz · x ĵ −Ωz · y î

and vz = 0.
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Example 1

The components of vorticity are:

ωx =
�
�
�∂vz

∂y
− ∂vy

∂z
= − ∂

∂z
(Ωz · x) = 0

ωy =
∂vx
∂z
−

�
��
∂vz
∂x

=
∂

∂z
(Ωz · y) = 0

ωz =
∂vy
∂x
− ∂vx
∂y

=
∂

∂x
(−Ωz · y)− ∂

∂y
(Ωz · x) = 2Ωz

⇒ ~ω = ωz k̂ orthogonal to the motion plane.
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Example 2

Every fluid particle is moving on a circular path about the z-axis,

but with the radial velocity distribution corresponding to the

torsional flow.

vθ = k
r with k = constant. It is the flow

generated in a cylindrical container by the

boundary which moves at constant speed.

Radial and azimuthal vorticities are null:

ωr =
1

r

∂vz
∂θ
− ∂vθ
∂z

= 0

ωθ =
∂vθ
∂z
− ∂vz
∂z

= 0

while

ωz =
1

r

∂

∂r
(rvz)−

�
�
�1

r

∂vr
∂θ

=
1

r

∂

∂r
(r · k

r
) = 0
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Examples 1 & 2

In the limit of very small:

Rigid body rotation Circulation without rotation
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Example 3

This is the simple shear flow in a Couette device..

vx(y) =
U

H
y

ωx =
∂vz
∂y
− ∂vy

∂z
= 0

ωy =
∂vx
∂z
− ∂vz
∂x

= 0

ωz =
∂vy
∂x
− ∂vx
∂y

= −U

H

. U
H is, of course, the slope of the velocity profile.

9



Example 4

Plane Poiseuille flow.

vx(y) =
1

2µ

(
∆P

L

)[
y2 − H2

4

]
ωx = ωy = 0

ωz = −∂vx
∂y

= − 1

2µ

(
∆P

L

)
2y

= − 1

µ

∆P

L
y

Maximum vorticity (magnitude) is at both walls. Vorticity is zero

in the centerplane.
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Example 4
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Vorticity transport equation

The vorticity transport equation describes the space and time

evolution of vorticity. The equation is obtained by applying the

curl operation to all terms of the Navier-Stokes equation.

rot

[
ρ

(
∂~vl
∂t

+ ~v · ~∇~v
)]

= rot
[
−~∇P + µ∇2~v

]
ρ

(
~∇× ∂~v

∂t
+ ~∇× (~v · ~∇~v)

)
= −~∇× ~∇P + ~∇× (µ∇2~v)

∂

∂t
(~∇× ~v)

vorticity

+~∇× (~v · ~∇~v) = −
~∇× ~∇P

ρ
+
µ

ρ
~∇× (∇2~v)
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Some useful vector properties

I. ∀ scalar field A~∇× ~∇A = 0 ⇒ ~∇× ~∇P = 0

II. ~∇× ~∇~v = ∇2~ω

III. ~∇× (~v · ~∇~v) = (~v · ~∇)~ω − (~ω · ~∇)~v

=0 in 2D
because

~∇× (~v · ~∇~v) = ~∇×
[
~∇
(

1

2
~v · ~v − ~v × ~ω

)]
=

���������
~∇×

[
~∇
(

1

2
v2

)]
− ~∇× (~v × ~ω)

= −~v(~∇ · ~ω) + ~ω����(~∇ · ~v)

incompr.

+(~v · ~∇)~ω − (~ω · ~∇)~v

= −~v������~∇ · (~∇× ~v) + (~v · ~∇)~ω − (~ω · ~∇)~v = (~v · ~∇)~ω − (~ω · ~∇)~v

=0 in 2D
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Vorticity transport equation

The equation becomes

∂~ω

∂t
+ (~v · ~∇)~ω

material derivative of ~ω

= (~ω · ~∇)~v

vortex stretching; =0 in 2D

+
1

Re
∇2~ω

vorticity diffusion

where Re is obtained upon proper non-dimensionalization of the

equation.
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Vortex stretching term

Considering for simplicity just one component (x), the vortex

stretching term is[
(~ω · ~∇~v

]
x

= ωx
∂vx
∂x

vortex stretching part

+ωy
∂vx
∂y

+ ωz
∂vx
∂z

The vortex stretching part acts when a velocity gradient exists in

the same direction of vorticity.
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Due to this action, when the fluid parcel is stretched, then, to

conserve the angular momentum, there will be a corresponding

rotation rate increase and consequently an increase of vorticity

(much like the rotation speed of an ice-skate dancer).

N.B. This effect is very important in turbulence because it helps

creating smaller scales.

This effect is an auto-amplification effect: just due to the

alignment of velocity gradients and vorticity there is an increase in

vorticity.
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Vortex stretching term

Considering for simplicity just one component (x), the vortex

stretching term is[
(~ω · ~∇~v

]
x

= ωx
∂vx
∂x

+ ωy
∂vx
∂y

+ ωz
∂vx
∂z

vorticity transfer

The other two terms, ωy
∂vx
∂y and ωz

∂vx
∂z , contribute to rotate part

of the existing vorticity and therefore to transfer vorticity from

one component to the other.
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Baroclinic effect

We have considered an incompressible fluid. If we allow difference

in density we might have density gradients and the pressure term

does not disappear from the vorticity equation, which becomes:

∂~ω

∂t
+ (~v · ~∇)~ω =

~∇ρ× ~∇P
ρ2

baroclinic term

+ν∇2~ω + (~ω · ~∇)~v

Usually, when density is allowed to vary, the density gradient is

aligned with the pressure gradient (ocean density, atmospheric

density in stable conditions). However, situations may arise when

these two gradients are not aligned and vorticity is produced.
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Consider the following example:

In a container we have low and high density fluid separated by a

sect.
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Two-dimensional vorticity equation

In a steady, 2D incompressible flow the vorticity equation is

∂~ω

∂t
= 0⇒ (~v · ~∇)~ω =

1

Re
∇2~ω

Assuming negligible viscous dissipation, we have

ν → 0⇒ Re →∞ and

(~v · ~∇)~ω = 0

In 2D ~ω = ω and ~v · ~∇ω = 0, which implies that ~v ⊥ ~∇ω.
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Kelvin’s theorem

Kelvin’s theorem states that in an inviscid fluid (ν = 0) the

circulation of a material tube is constant. The circulation is

Γ =

∫
ωdS

where dS is the differential surface of a material tube.

If we are far from the body and the fluid is irrotational (i.e. ω = 0)

in that region, Kelvin’s theorem states that the flow field is

irrotational everywhere.
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