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Conservation equations



Outline

Balance Equations

Mass Conservation/Continuity

Momentum Conservation/ Navier Stokes Equations (for

Incompressible Fluids)

Different Notations

Physical meaning of the terms in the equations

Adimensionalization of the Balance Equations

Why?

Adimensionalization is a crucial step in order to look for

Approximate Solutions

Indeed, we will look for Exact Solutions to Approximate

Equations: We will need to know which of the terms of

the equations can be discarded because not important
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Balance Equations

~∇ · ~v =
∂vi
∂xi

=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0

It is possible to visualize the Continuity Equation in two

dimensions:

xy

∂vx
∂x > 0

∂vx
∂x > 0

∂vy
∂y < 0

∂vy
∂y < 0

0 (1)
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Balance Equations

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
=
∂P
∂xi

+ µ
∂2vi
∂x2

j

(2)

With ρ = Fluid density and µ = Fluid Viscosity

Continuity Equation and Navier-Stokes Equations constitute a set

of four (4) differential equations in four unknowns (Pressure P and

the three components of the velocity vector, vi ). In general, this

set of equations, although provided by suitable boundary

conditions, does not allow for a solution.

Simple cases, in which suitable assumptions lead to the

simplifications necessary to solve the equations, are available.
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Simplification of the Balance Equations

Our Approach is based on the presumption that an exact solution

of the approximate equations is also an approximate solution

of the exact equations

The rationale of the simplification procedure is depicted in the

following scheme.

Exact equations Approximate equations

Approximate solution to
the exact equations

Exact solution to
approximate equations

solutioncheckDesired way

Strategy to obtain approximate Solutions
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Simplification of the Balance Equations 2

One nice example is the following:

0.01x + y = 0.1 (3)

x + 101y = 11 (4)

If we assume that x and y are of comparable magnitude, we may

safely neglect the left term in the first equation and we may obtain

y = 0.1. Then from the second equation we obtain x = 0.9. Now,

to check, we plug x = 0.9 in the first equation and we obtain that

the neglected term is (0.01x = 0.009), which is negligible. So it

seems that the method we have used satisfies our requirement.

However, the solution of the full system of equation leads to

x = −90 and y = 1 (L.A. Segel ”Simplification and Scaling”

SIAM Rev. (1972))
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Physical meaning of the terms in the Navier-Stokes Equations

ρ

 ∂vi
∂t︸︷︷︸
1

+ vj
∂vi
∂xj︸ ︷︷ ︸
2

 =
∂P
∂xi︸︷︷︸

3

+µ
∂2vi
∂x2

j︸ ︷︷ ︸
4

(5)

1 Temporal term (Accumulation term). This term is present if the

motion is changing: We cannot do anything about it (we

cannot simplify it)

2 Convection term (Non-Linear)

3 Pressure term (In this form it includes the gravity term). This

term is the system forcing.

4 Diffusion term

The only option we are left with is to neglect either term 2. or

term 4. (convection or diffusion).
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Convection and diffusion on momentum in the Navier-Stokes

Equations

Diffusion and convection of momentum. Mass transfer analogy:

∆t1

stirring

∆t2

� ∆T2

∆T1 ∆T2

Molecular diffusion

Convection + molecular diffusion
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Adimensionalization

The correct adimensionalization

is based on the choice of

characteristic variables.

We have:

U velocity

T time 1

L space

Π pressure

(ν = µ/ρ)

A

dimensionless variable is

indicated by a tilde: •̃

1Time during which we have appreciable variations. If the flow is pulsed, e.g.

heat or engine, then the time scale is fixed.
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Nondimensional equations

The solution of a differential equation is not changed by a

multiplication constant, so for the uncompressible continuity

equation

∂vi
∂xi

=
∂vi/U

∂xi/L
· U
L

=
∂ṽi
∂x̃i
· U
L
⇒ ∂ṽi

∂x̃i
= 0

while for NS equations

ρ

(
U

T

∂ṽi
∂ t̃

+
U2

L
ṽj
∂ṽi
∂x̃j

)
= −Π

L

∂σ̃

∂x̃i
+ µ

U

L2

∂2ṽi
∂x̃2

j

If there is no forcing term, T = L
U , which can be considered as the

flow renewal time.
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For sake of simplicity, in the notation we neglect the ∼:

ρ

(
U

T

∂vi
∂t

+
U2

L
vj
∂vi
∂xj

)
= −Π

L

∂P
∂xi

+ µ
U

L2

∂2vi
∂x2

j

coefficient of inertial term coefficient of viscous term

E.g. if we are on the freeway, going from Wien to Brno, U = 100km/h,

L = 100km, T = 1h.

Check dimensionality:

ρU

T
=
ρU2

L
→ kg

m3

m2

s2

1

m
=

kg

m2s2

µ
U

L2
→ kg

sm

m

s

1

m2
=

kg

m2s2

Π

L
→ kg m/s2

m2

1

m
=

kg

m2s2

Dividing by µU
L2

ρUL

µ

[
∂vi
∂t

+ vj
∂vi
∂xj

]
= −Π

µ

L

U

∂P
∂xi

+
∂2vi
∂x2
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Characteristic pressure Π

In general there is no value for Π, it suits the flowfield (e.g. hands

out of car windows):

inertial forces dominated flow: Π = ρU2(
Re := ρ

UL

µ

)
⇒ ∂vi

∂t
+ vj

∂vi
∂xj

+
∂P
∂xi

=
1

Re

∂2vi
∂x2

j

Re →∞ inviscid fluid; µ→∞ (perfect)

viscous forces dominated flow: Π = µU
L

⇒ ρUL

µ

[
∂vi
∂t

+ vj
∂vi
∂xi

]
= −∂P

∂xi
+
∂2vi
∂x2

j

Re → 0 creeping flow; ρ→ 0
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