Modelling of Turbulent Flows

Lecture 1.1 - Supplementary material

March 20, 2020

Energy Balance in Laminar Flow

Energy Balance for Laminar Poiseuille Flow Derivation of the Energy Equation Physical Meaning of Equation's Terms Behaviour across the Channel

Physical Interpretation

Consider the case of laminar Poiseuille flow in a plane channel (see Fig. 1). Assume incompressible and steady flow of a Newtonian fluid.

Figure 1: Fluid velocity profile for laminar channel flow.

The Navier-Stokes equations are:

$$\rho \frac{D\overline{u}}{Dt} = -grad \ p + \mu \nabla^2 \overline{u} \tag{1}$$

In the mean flow direction, the governing momentum equation becomes:

$$0 = -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 u}{\partial y^2} \quad . \tag{2}$$

This equation states that the pressure gradient balances viscous forces.

Derivation of the Energy Equation

Multiply by u to obtain the energy equation:

$$0 = -u\frac{\partial p}{\partial x} + \mu u\frac{\partial^2 u}{\partial y^2} .$$
(3)

Let $\tau = \mu \frac{\partial u}{\partial y}$. We may write:

$$\frac{\partial(\tau u)}{\partial y} = \tau \frac{\partial u}{\partial y} + u \frac{\partial \tau}{\partial y} = \mu \left(\frac{\partial u}{\partial y}\right)^2 + \mu u \frac{\partial^2 u}{\partial y^2} . \tag{4}$$

Since u = u(y), we may also write:

$$u\frac{\partial p}{\partial x} = \frac{\partial(pu)}{\partial x} - p\frac{\partial u}{\partial x} = \frac{\partial(pu)}{\partial x} .$$
 (5)

Thus, we end up with the following energy balance:

$$0 = \underbrace{-\frac{\partial(pu)}{\partial x}}_{I} + \underbrace{\frac{\partial(\tau u)}{\partial y}}_{II} - \underbrace{\mu\left(\frac{\partial u}{\partial y}\right)^{2}}_{III} \quad . \tag{6}$$

The terms in the equation represent the following:

Term I = work by pressure forces (per unit volume, time) Term II = work by viscous forces (per unit volume, time) Term III = viscous dissipation (per unit volume, time) The momentum equation can be solved for:

$$u(y) = \frac{3}{2}U_{ave}\left[1 - \left(\frac{y}{a}\right)^2\right] \quad . \tag{7}$$

The average velocity is:

$$U_{ave} = \frac{Q}{A} = \frac{1}{2a} \int_{-a}^{+a} u dy$$
 (8)

The shear stress is:

$$\tau = \mu \frac{\partial u}{\partial y} = -\frac{3\mu U_{ave}}{a^2} y \quad . \tag{9}$$

The pressure comes from:

$$\frac{\partial p}{\partial x} = \frac{\partial \tau}{\partial y} = -\frac{3\mu U_{ave}}{a^2} \quad . \tag{10}$$

Behavior of Terms / to ///

Substitution into the energy equation yields:

$$0 = \frac{9\mu U_{ave}^2}{2a^2} \left[\underbrace{\left(1 - \frac{y^2}{a^2}\right)}_{I} + \underbrace{\left(\frac{3y^2}{a^2} - 1\right)}_{II} - \underbrace{\left(\frac{2y^2}{a^2}\right)}_{III} \right] \quad . \tag{11}$$

Fig. 2 shows the behaviour of terms I to III across the channel.

8

Physical Interpretation

Maximum energy dissipation occurs at the wall, where work done by the fluid is minimum. To understand the work done by shear, examine the shear exerted on a fluid parcel (Fig. 3).

Near the wall (where $u < U_{ave}$), the parcel feels a net acceleration. Away from the wall (where $u > U_{ave}$), it feels a net deceleration, which is maximum in the center (where the parcel moves at U_{max}).

Figure 3: Shear forces acting on a fluid particle.

120 BILANCIO DELL'ENERGIA PER FLUSSO LAMINARE (e.g. IN CANALE) 15111 + h Ipotesi : · Flusso incomprimibile · Flusso stesionario · Fluido Neutoniana kontrand-R di bibincio sono le continuito e Le equesioni Numer - Stokes: OUX =0 CASO 2D $\left| \begin{array}{c} \frac{\partial v_i}{\partial x_i} = 0 \\ \frac{\partial v_i}{\partial x_i} = 0 \end{array} \right|$ $\int \mathcal{P} \frac{\mathcal{V}_i}{\mathcal{D}_i} = -\mathcal{V}_i \mathcal{P} + \mathcal{M} \frac{\partial^2 \mathcal{V}_i}{\partial x_j^2} \xrightarrow{\text{CASO 2D}}$ $O = -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 v_x}{\partial y^2}$ to se flusso Stationario $\left[0 = -\frac{\partial p}{\partial x} + \frac{\partial z_{yx}}{\partial y}\right]$ objene moltiplicando tubo L'ep. dell'energie si per Nx $O = -v_{x} \frac{\partial p}{\partial x} + \mu v_{x} \frac{\partial^{2} v_{x}}{\partial y^{2}} (1)$ Ricordondo che Zxy = u Nx (con Ny/2 =0) si ho:

• $V_X \frac{\partial p}{\partial x} = \frac{\partial (pv_x)}{\partial x} - \frac{p}{\partial x} \frac{\partial v_x}{\partial x}$ 12 • $\nabla_{\mathbf{x}} \frac{\partial^2 \nabla_{\mathbf{x}}}{\partial y^2} = \nabla_{\mathbf{x}} \frac{\partial}{\partial y} \left(\frac{\partial \nabla_{\mathbf{x}}}{\partial y} \right) = \nabla_{\mathbf{x}} \frac{\partial}{\partial y} \left(\frac{\mathcal{E}_{\mathbf{x}y}}{\mu} \right) =$ $= \frac{1}{\mu} \left(\nabla_{\mathbf{x}} \cdot \frac{\partial \mathcal{E}_{\mathbf{x}y}}{\partial y} \right) = \frac{1}{\mu} \left[\frac{\partial (\mathcal{E}_{\mathbf{x}y} \cdot \nabla_{\mathbf{x}})}{\partial y} - \mathcal{E}_{\mathbf{x}y} \frac{\partial \nabla_{\mathbf{x}}}{\partial y} \right]$ $= \frac{1}{\mu} \left[\frac{\partial (\mathcal{E}_{\mathbf{x}y} \cdot \nabla_{\mathbf{x}})}{\partial y} - \frac{\mu (\partial \nabla_{\mathbf{x}})^2}{\partial y} \right]$ Lep. (1) divente: $O = \frac{\partial(pv_x)}{\partial x} + \frac{\partial(z_y, v_x)}{\partial y} - \mu \left(\frac{\partial v_x}{\partial y}\right)^2 (2)$ LAVORD DELLE LAVORO DELLE DISSIPATIONE VISCOSA (PER FORGE VISCOSE FORTE DI PRESSIONE UNITA DI VOL. (PER UNITA) (PER UNITA' DI VOLUME E DI TEMPO) VOL. ETETIPO) E TEMPO) NOTA: $\int th \frac{\partial (\mathcal{T}_{xy}, \mathcal{V}_{x})}{\partial y} dy = \mathcal{T}_{xy}(y+h) \cdot \mathcal{V}_{x}(y=+h)$ - Txy (y=-k). Ux (y=-k)=0 ovvero il lavoro delle forse viscose è zero se integrate Su tubo le sezione del conste quando le pareti del

Candle somo ferme come mel caso di mobo di Poiseuille. Se ressimo mob di Conete-Poiseuille Allore almeno uno delle C.C. Vx(y=th)/Vx(y=-h) sorebbe diversa de zero, prneudo con lavor non nullo.

L'eq. (2) e risolvibile comoscendo il profilo di $velocità: \left[\frac{N_{\chi}(y)}{2} = \frac{3}{2} \left(\frac{1}{2} - \left(\frac{y}{k} \right)^{2} \right] \right]$ $com \left(N_{\chi} \right) = \frac{Q}{A} = \frac{1}{2k} \left[-\frac{1}{k} \frac{1}{2k} \left(\frac{y}{k} \right)^{2} \right]$

$$\frac{\partial v_x}{\partial y} = \frac{3}{2} \langle v_x \rangle \left(\mathbf{0} - \frac{2y}{R^2} \right) = -\frac{3 \langle v_x \rangle \cdot y}{R^2}$$

• $T_{xy} = \mu \frac{\partial v_x}{\partial y} = \frac{3}{2}\mu \langle v_x \rangle \left(\mathbf{0} - \frac{2y}{R^2} \right) = -\frac{3}{R^2} \frac{3}{R^2} \frac{\partial v_x \rangle y}{R^2}$

$$\frac{\partial (\overline{c}_{xy}, \overline{v}_{x})}{\partial y} = \frac{\partial}{\partial y} \left[-\frac{3\mu \langle \overline{v}_{x} \rangle y}{R^{2}} + \frac{3}{2} \langle \overline{v}_{x} \rangle (1 - \frac{y^{2}}{R^{2}}) \right]$$

$$= -\frac{9\mu \langle \overline{v}_{x} \rangle}{2R^{2}} \frac{\partial}{\partial y} \left(\frac{4}{y} - \frac{y^{3}}{R^{2}} \right)$$

$$= -\frac{9\mu \langle \overline{v}_{x} \rangle}{2R^{2}} \frac{\partial}{\partial y} \left(\frac{4}{y} - \frac{y^{3}}{R^{2}} \right)$$

$$\frac{1 - 3\frac{y^{2}}{R^{2}}}{2R^{2}} \frac{\partial}{\partial y} \left(\frac{4}{x} - \frac{y^{3}}{R^{2}} \right)$$

$$\frac{\mu \left(\frac{3v_{x}}{\partial y} \right)^{2}}{R^{2}} + \frac{9\mu \langle \overline{v}_{x} \rangle^{2} y^{2}}{R^{4}} = +\frac{3\mu \langle \overline{v}_{x} \rangle^{2}}{2R^{2}} \frac{2y^{2}}{R^{2}}$$

$$O = \frac{9}{2} \frac{\mu \langle \overline{v}_{x} \rangle^{2}}{R^{2}} \left[\left(1 - \left(\frac{4}{R} \right)^{2} \right) - \left(\frac{1 - 3y^{2}}{R^{2}} \right) - \frac{2y^{2}}{R^{2}} \right]$$

$$+ h \frac{\mu \langle \overline{v}_{x} \rangle}{R^{2}} \frac{\partial}{\partial y} \left[\left(1 - \left(\frac{4}{R} \right)^{2} \right) - \left(\frac{1 - 3y^{2}}{R^{2}} \right) - \frac{2y^{2}}{R^{2}} \right]$$

$$+ gusdasyno oli energia ; - = pendide di energia$$

N.B. Il punto
$$y = \pm \frac{13}{3}R$$
 e⁻il punto dove $\frac{15}{5}$
 $v_x = \langle v_x \rangle \sqrt{7}$

Luando una particella finida si trava vicino alla parete (distanza < 13 2 dalla parete) n'imore prin la tomente del flusso medio e "sente" prindi un'accelerazione imposta del prastiente. advando la porticella si trona lontono della parete (durbuzo > 15 k) si muore più velocemente del flusso medio e "sente" puindi una decelora Dione (io' spriepd i segni + e - del termine 2: Quando il lavoro delle forse viscose serve sol "accelerare" il fluido allora tale lavoro ha seguo positios. Quando sene à "decelerare" il fluido Ilors ha segno nepatino.

Dab un volume di fluido AV contenente une massa AM di fluido e recchivo da una superficie AS, le epue ationi fondamentali delle fluidodinamica si attenyono applicando il principio di conservazione:

$$\frac{d\Gamma}{dt} = \Pi_{im} - \Pi_{out}$$

con T = qto du si conserve nel volume di controllo. 1. GNS. MASSA(T=m) $\frac{\partial f}{\partial t} + \overline{V}(pv) = 0$ (VETT.) => $\frac{\partial V_i}{\partial X_i} = 0$ (per fluido incomprise.) $\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} (p v_i) = 0 \quad (SGL.)$ COM p= lim AM DENSITA DEL FLUIDO AV >0 AV V = Ux 1 + VJ + VZ K VET. VELOCITA DEL FLUIDO 2. CONS. Q.d. M. $(\Gamma = m\vec{v})$ $\int \frac{D\vec{v}}{Dt} = \vec{\nabla} \cdot \vec{\sigma} + \vec{p}\vec{g}$ (VETT.)

$$P \frac{Dv_i}{Dt} = \frac{\partial B_i}{\partial x_i} + Pg_i$$
 (SCAL.)

ED. DI CAUCHY (per fluido incompr.)

1

I termini Bij rappresentous gli spori di toplio 22 Agenti sul volume DV e somo elementi del TENSORE DEGLI STORZI (simmetrico):

$$\begin{split} \mathcal{S}_{ii} &= -p + \frac{2}{\mu} \frac{\partial \mathcal{V}_{i}}{\partial x_{i}} - \frac{2}{3}\mu \,\overline{\mathcal{V}}_{i} \,\vec{\mathcal{V}} \\ \mathcal{Z}_{ij} &= \mu \left(\frac{\partial \mathcal{V}_{i}}{\partial x_{j}} + \frac{\partial \mathcal{V}_{i}}{\partial x_{i}} \right) \\ \mathcal{S}_{e} \quad i\ell \; fluido \; e^{-} \; Newtonismo, \; le \; ep. \; di \; Cauchy \\ \mathcal{S}_{i} \; ziolucomo \; slle \; ep. \; oli \; Novier - Stokess \\ \int \frac{\partial \mathcal{V}}{\partial t} &= - \nabla \mathcal{P}_{+} \mu \; \nabla^{2} \vec{\mathcal{V}} \; spiepare \; termini \\ \int \frac{\partial \mathcal{W}_{i}}{\partial t} &= - \frac{\partial \mathcal{P}}{\partial x_{i}} + \mu \; \frac{\partial^{2} \mathcal{V}_{i}}{\partial x_{i}^{2}} \end{split}$$

3. CONSERVAZIONE DELL'ENERGIA
$$(T = E_{Tot})$$

 $T = temperatura (-scarate PASSIVO F)$
 $\int G_{T} \left(\frac{\partial T}{\partial t} + \sqrt{2} \frac{\partial T}{\partial X} + \sqrt{2} \frac{\partial T}{\partial y} + \sqrt{2} \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \sqrt{2} \frac{\partial T}{\partial y} + \sqrt{2} \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \sqrt{2} \frac{\partial T}{\partial y} + \sqrt{2} \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \sqrt{2} \frac{\partial T}{\partial y} + \sqrt{2} \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \sqrt{2} \frac{\partial T}{\partial z} + \sqrt{2} \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \frac{\partial T}{\partial z} + \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial z} + \frac{\partial^{2} T}{\partial z^{2}}\right)$
 $\int \frac{\partial T}{\partial t} + \frac{\partial T}{\partial z} + \frac{\partial T}{\partial z}\right) = \lambda \left(\frac{\partial^{2} T}{\partial x} + \frac{\partial^{2} T}{\partial z} + \frac{\partial^{2} T}{\partial z}\right)$
 $\int \frac{\partial T}{\partial t} + \frac{\partial T}{\partial t}$

$$Re = \int \frac{Uref \cdot Lref}{\lambda} = \frac{Uref Lref}{V} \qquad NUR. EFFNOLDS}$$

$$Con V = \int \frac{A}{F} \quad VISCOSITA' CINEMATICA$$

$$ENERGIA ADMIN St $\frac{\partial T}{\partial t} + \tilde{V}_{j} \frac{\partial T}{\partial \tilde{X}_{j}} = \frac{A}{Re} \cdot \frac{\partial^{2} T}{\partial \tilde{X}_{j}^{2}}$

$$Con Pr = \int \frac{\Delta Cp}{\partial \tilde{X}_{j}} \qquad NUR. PPANDTL$$

$$V = COFFE DI DIFFUSIONE DIFF$$$$