the discrete form of (17.87). For quadrilateral elements with li: :ar velocity interp-
olation and constant pressure interpolation the two formulat-ons are identical at

the discrete level.
The penalty formulation does provide inherent smoothing or the pressure field

(Sani et al. 1981), although additional smoothing may also be :2quired (Hughes et.

al. 1979). The penalty method is usually considerably more economical than the
mixed interpolation (u, v, p) formulation. For quadratically-i iterpolated velocity
on elements with curved sides (to suit irregular geometries) the consistent penalty

function formulation is more accurate (Engelman et al. 19+2) than the use of

reduced integration and theoretically better supported.

The finite element method lends itsell to the constructior of general-purpose
codes for solving coupled fluid flow, heat transfer problems n complicated geo-
metric domains. FIDAP (Fluid Dynamic Analysis Program® is such a general-
purpose code and is described by Engelman (1982). A represer:ative problem that
can be successfully modelled by FIDAP is indicated in Fig. 17.11.

A conduit passing through a wing fuel tank contains three electrical wires at
different temperatures, FIDAP determines the natural convection in the air gap
surrounding the wires. Shown in Fig. 17.11 are the finite eleme=t grid, temperature
contours, velocily vectors and streamlines for a Rayleigh nun ser of 800000. The
solution indicates thermal plumes rising from the hot wire an.. dropping [rom the
cold wire. The grid contains 2654 nodes and 624 nine-node qu.:drilateral elements.

17.3 Vorticity, Stream Function Variables

As an alternative to solving the governing equations in primitive variables it is
possible to avoid the explicit appearance of the pressure by introducing the
vorticity and stream function as dependent variables (Sect. 11.5.1), at least in two

dimensions.
In two-dimensional flow the vorticity vector

G=curlq (17.88)
has a single component, which is defined conventionally as
L (17.89)

Ty ax

The transport equation for the vorticity (11.85) with the aid of the continuity
equation (17.1) is
2 A2
a  awg) aw) 1 (@ A, . (17.90)

o 2t ax "oy Rel\ax? )’

where the Reynolds number Re= U, L/v. In two dimensions a stream function can
be defined by

.m.b m@
ol et 17.91
e u % and v e (17.91)

and substitution into (17.89) produces the following Poisson equation for the
stream function:

(17.92)

Equations (17.90-92) constitute the governing equalions for the vorticity
stream function formulation of incompressible laminar flow. Strictly by substitut-
ing (17.91) into (17.90) it is possible to eliminate the explicit appearance of u and v.
However, such a formulation may produce less accurate solutions although it
does save the additional storage of u and v. Tnitial and boundary conditions to suil
(17.90-92) are discussed in Sect. 11.5.1.

The system of equations (17.90-92) is applicable to both steady and unsteady
laminar viscous fAow. However, only the vorticity transport equation (17.90)
depends explicitly on time. Consequently, for unsteady problems (17.92) implies
that the stream function field must be determined to be compatible with the time-
dependent vorticity distribution at every time-step.

For unsteady problems (17.90) is parabolic in time if v and v are known. Thus it
can be marched efficiently in time using an ADI or approximation factorisation
technique (Sect. 8.2). At each time step the discrete form of (17.92) is solved for .
Equation (17.92) is strongly elliptic if ¢ is known and can be solved by iterative
(Sect, 6.3) or direct methods (Sect. 6.2). Since (17.92) is a Poisson equation very
efficient direct methods (Sect. 6.2.6) are available if the grid is uniform.

For steady flow problems, (17.91, 92) and the steady form of (17.90) are a system
of elliptic partial differential equations. Since (17.90) is nonlinear it is necessary (O
employ an iterative algorithm, At each step of the iteration (17.90 and 92) are used
to update the { and ¢ solutions either sequentially or as a coupled system. Gupta
and Manohar (1979) employ a sequential algorithm.

It is necessary to use under-relaxation in determining boundary values of the
vorticity, to provide a Dirichlet boundary condition for the steady form of (17.90).
The cause of this problem is that physical boundary conditions are available on i
and Ay /én but none on {. When numerical boundary conditions are constructed
for { which satisfy the integral boundary condition (11.90), no under-relaxation is
required (Quartapelle and Valz-Gris 1981), even though a sequential algorithm is

- used. _

However, if the steady form ol (17.90 and 92) are solved as a coupled syster the
two boundary conditions on ¢ and dy/dn are sufficient. Campion-Renson and
Crochet (1978) use such a formulation with a finite element method to examine the
flow in a driven cavity. No numerical boundary condition for { is required.



The pseudotransient strategy (Sect. 6.4) offers an alternati:2 path to obtain the
steady flow solution. To implement the pseudotransient approach (17.92) is

_.o_u_mnna U«
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E:mn :& steady state is Rmn:na (17.93) reverts to (17.97). The choice of the
time-step At that appears alter discretisation of (17.93) provid:s an additional level
of control over the pseudotransient iteration. The sequer.‘ial versus coupled :
treatment of (17.90 and 93) is also relevant to the pseudotrans.:nt strategy. .J%_om_
examples are provided in the next section.

17.3.1 Finite Difference Formulations

In this section we consider a typical sequential and a typival coupled solution
algorithm for the steady laminar flow in a driven cavity (Fig. (7.12). The lid of the
cavity moves continuously to the right with a velocity u=  No-slip boundary -
conditions on the velocity components u and v are equivalent, through (17.91), to
the indicated boundary conditions on  and &y/dn.

uzlvz0 ¢=0;8y/dy=1

A wU
/ v
$=0 v v=0
3y/8x=0 [ dy/3x:0
/
4
* 4
B/ wwwxw\\\:\\\x\x\\\\ C . Fig. 17.12, Two-dimensi- nal driven cavity
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A sequential algorithm due to Mallinson and de Vahl Davis (1973) is described
which is based on a pseudotransient solution of (17.90 and 93). In this formulation
uniform-grid three-point centred difference formulae are introduced for first and
second spatial derivatives. In the notation of Chap. 8,

_ mp
X Lt 0, e
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where

:Q.I 1,k = H:QT 1,k
24x

L (ul); and (17.94)
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Em._:mm,vn and de Vahl Davis write the semi-discrete form of (17.90) as

1 ) )
5 Wﬁ.,\_uix._‘hsﬁ: , where (17.95)
AL =(1/REV Ly — Lo () »
A =(1/Re) Ly, ) —Ly(w))x »

and ¢ is a relaxation parameter that can be varied spatially. When all grid points
are considered the following vector equation results:

ﬁum?slsm | (17.96)

The elements of the matrices 4* and A4* can be obtained from (17.94),
Equation (17.96) and an equivalent semi-discrete vector equation, based:on
(17.93), are advanced in time using an algorithm introduced by Samarskii and

Andreev (1963),
(1~ 32:\3@ oo dt[A5+ 210, > gk A7

1

(17.97)
[1-0.5¢ At 4] 4G 1= 4%* and = gef A8
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It is clear that (17.97) is equivalent to (8.23 and 24) with #=0.5 and the u and v
terms in 4%, A4’ evaluated at time-level n. This is essentially an approximate
factorisation with Crank-Nicolson time differencing. A consideration of the modi-
fied Newton method (Sects.6.4 and 10.4.3) suggests that setting f=1 would
produce a more rapid convergence to the steady state.

Mallinson and de Vahl Davis apply the Samarskii and Andreey scheme
sequentially to-(17.93 and 90). They find that the fastest convergence corresponds
to At~0.84x2=0.84y? and 4t~ 50edt. De Vahl Davis and Mallinson (1976) use
this algorithm to compare three-point central differencing and two-point upwind
differencing for the convective terms in (17.90) for large Reynolds numbers. Clearly
the higher-order upwind schemes (Sects. 9.3.2 and 17.1.5) could be incorporated
into the present method with some modification of the implicit algorithm.

When solving (17.93) for the driven cavity problem the Dirichlet boundary
condition for ¢ is used. When solving (17.90) a Dirichlet boundary condition for { is
constructed. How this is done is indicated in-Sect. 17.3.2,

Rubin and Khosla (1981) solve (17.90 and 92) as a coupled system using a
modified strongly implicit procedure (Sect. 6.3.3). To obtain a diagonally dominant
system of coupled equations for large values of Re the following discretisation of

8(ut)/dx is introduced:

A o L2 OB+ (1= RILE GORR* +054x(1 =2 )Ll (1798)



Equations (17.99 and 100) constitute a 2 x 2 system of equations which is diagonally

where

LH D), _ L)y 1= ()] L= () _ ()= )y 1,0d dominant and couples together implicit (n+ 1) values of { and y at grid points
x \HG ik Ax J = AUk Ax : (j—1,k), (j, k), (j+ 1, k), (j, k—1) and (j, k+1). The velocity components in (17.99)
) ) are evaluated at the explicit (n) time level. If (17.99 and 100) at all interior nodes are
w::a_uﬁ,.Hllmm.hv:m*.nw_ocmﬂ:ﬂa whow_n_ﬁ._ﬂg.hnAﬁwwﬁ__.,Mnﬁmww,\_MwM:ﬂ:.m m.:m._"%imfﬂo_.mmmumuﬂm considered collectively the resulting sparse 2 x 2 block matrix equation can be
] ot i ek S bend it difmnee m,nzn_.:n. mo_<n.n_ efficiently using the strongly implicit procedure (Sect. 6.3.3). H:n details are
steady-state conditions it reverts to a three-point centrec : " provided by Rubin and Khosla (1981). Because of the strong coupling between {
. Using (17.98) and an equivalent ﬁo:d._,oﬂ d(vt)/dy, but assuming u, v >0, the and ¢ at the implicit time level no under-relaxation is required for stability when

discrete form of (17.90 and 92) can be written implementing the vorticity boundary condition.
[t 1 Ghia et al. (1982) combine the Rubin and Khosla formulation with multigrid
—~ 2hr Pl + Ly O] lwlﬁhﬁ+ Lt (Sect. 6.3.5) to obtain the flow behaviour in a driven cavity (Fig. 17.12) for Reynolds
4t & numbers up to 10000 on a 257 x 257 uniform grid. A typical result is shown in
n Fig. 17.13. The flow is characterised by a primary eddy filling most of the cavity
nw.” —0.54% Ly, (ul)}x—0.54y Ly, (0{)j.x » (17.99) and a sequence of counterrotating corner eddies. Ghia et al. note that the use of
multigrid produces an algorithm that is about four times more efficient than using

(17.100) the strongly implicit procedure conventionally on the finest grid.

~ s {La+ L35k -3 =0
17.3.2 Boundary Condition mau_mamiwzon

The implementation of the boundary conditions for the ¢, ¢ formulation will be
discussed in this section. Most attention will be given to the construction of the
vorticity boundary condition at the solid surface. However, the prescription of
appropriate boundary conditions at inflow and outflow boundaries is also im-
portant and will be discussed in relation to the flow past a backward-facing step.

As indicated in Fig. 17.12 the no-slip boundary conditions at a solid surface are

equivalent to

‘ 2\ .
ﬁHOmnn_ i ..nv Mvo \Tﬂ ntf,f .Ta( :.:o:

The first boundary condition is used with the Poisson equation for the
streamfunction (17.92). The second boundary condition is used in the construction
of a boundary condition fo icity, This will be illustrated for the lid (AD in
Fig. 17. Taylor series expansion of the streamfunction about the grid point

(j, k) on AD gives

agh] LA . (17.102)
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From the discrete form ‘M/n:.omu and (17.101a),
i g
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Fig. 17.13. Streamline pattern for flow in a driven cavity at Re=10000 (alter Ghia et al., 1982; reprinted

with permission of Academic Press)
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Consequently (17.102) can be rearranged to give

: 2
X o‘,nuliﬁ_,-_ +4y g))+0(4y) . (17.104)

This first-order formula was first used by Thom (1933) and has been used .
extensively since. Comparable formulae can be readily obtained for the other:

surfaces.

Since a second-order accurate discretisation is used in the interior it is desirable:
to use a second-order accurate implementation of the boundary conditions.

(Sect. 7.3). This can be achieved as follows.
A second-order implementation of (17.103) is

=2+
?u_\:_k ! h_ehu Vikes 4 o) | (17.105)
In addition, a third-order accurate expressions for [y/8y];  is
o Hc_:;inlmf._.u,+u__5._..+m_\¢;:+Oﬁn€uu . (17.106)
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The nodal value y; , ., lies outside of the computational domain znd is eliminated -

3c. b § -

from (17.105 and 106) to give

0.5 3
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This form is attributed to Jensen (1959) by Roache (1972) and is used by Pearson
(1965) and Ghia et al. (1982).

Equation (17,107) produces more accurate solutions than the use of (17.104) in .

the comparative tests of Gupta and Manohar (1979). However, when used in a

sequential algorithm more iterations are required using (17.107), and for large
values of Re divergence may occur even when the boundary value of the vorticity is .

under-relaxed. When used in a coupled algorithm (17.107) causes no particular

difficulty.
An alternative vorticity boundary condition for { is available in a pseudo-

transient formulation,

Gat == IOy on] — g}
This appears to provide a more direct implementation of the boundary condition
(17.101b). The relaxation parameter § must be chosen appropriately (Israeli 1972)
to ensure convergence. However, Peyret and Taylor (1983, p. 187) point out a
rather direct link with a vorticity boundary value evaluation via (17.104), as

follows.
At the (n+ 1)-th step of a pseudotransient formulation the boundary value for

the vorticity is given by

(17.108) -
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where (7} is obtained [rom (17.104) and y is a relaxation coefl
(17.104) and (17.109) to eliminate (f, gives . §
2y e

Chkt =Lt 3 (Wfu-1 +4y =05 4y* 54) - -

If [8y/dn],, in (17.108) is replaced by ).k — ¥y—1)/ 4y the result is .,..“.

n " -m 1] n
ﬁba_f,._ Hﬁ&h +h_|_..€_._..w|_ +dy Q.L

To O(dy), (17.110 and 111) are equivalent if §=2y/4y. . Y
To examine suitable computational boundary conditions on open boundaries,
is convenient to consider the flow past a backward-lacing step, Fig~17.14. As notea
in Sects. 11.5 and 11.6.4, open boundaries can be classified as inflow and outllow
boundaries and the required number of physical boundary conditions are indicated

in Table 11.5.

i

h=1 |D p ! c
7777777277l e 777777 Fig 17.14. Flow pusl i buckward-fag mm...,..:wv

In relation to the flow past a backward-facing step (Fig. 17.14), AF is an inflow
boundary and BC is an outflow boundary. However, A8 will be either an inflow or
outflow boundary depending on the local sign of v,,. The crucial feature of
boundary AB is that it is remote from the backward-facing step and the local flow
direction is almost parallel to AB. Such a boundary will be called u [arfield
boundary and appropriate boundary conditions will be indicated below that do
not depend on specifically identifying it as an inflow or outflow boundary.

At an inflow boundary it is appropriate (Table I1.5) to specily all bul one of
the dependent variables for incompressible viscous flow. For flow past a back-
ward-facinig step it is appropriate to specify u(y), p(y) and to determine v(y) from
the interior solution. Thus in the stream function, vorticity formulation W is
specified at inflow; specifying { is not recommended. Roache (1972) prelers to
specify 8%/ 9x*=0. On AF in Fig. 17.14, { is obtained from (17.89) us



