# Application of $k-\mathcal{E}$ model to channel flow 

Cristian Marchioli

May 29, 2020

Physical problem and governing equations

We consider the turbulent channel flow at $R e_{*}=150\left(\equiv h^{+}\right)$:


Flow conditions: steady $\left(\frac{\partial .}{\partial t}=0\right), 2 \mathrm{D}\left(\frac{\partial .}{\partial y}=0\right)$ and unidirectional $(\bar{u} \neq 0, \bar{v}=\bar{w}=0)$

## Physical problem and governing equations

Governing equations:

- Continuity: $\quad \frac{\partial \bar{u}}{\partial x}=0$
- RANS (x-comp): $0=-\frac{\partial \bar{P}}{\partial x}+\mu \frac{\partial^{2} \bar{u}}{\partial z^{2}}+\frac{\partial}{\partial z}\left(\rho C_{\mu} \frac{k^{2}}{\mathcal{E}} \frac{\partial \bar{u}}{\partial z}\right)$
- Transport equation for the TKE:

$$
0=P_{k}-\mathcal{E}+\frac{\partial}{\partial z}\left(\frac{C_{\mu}}{\sigma_{k}} \frac{k^{2}}{\mathcal{E}} \frac{\partial k}{\partial z}\right)
$$

- Transport equation for $\mathcal{E}$ :

$$
0=C_{\mathcal{E} 1} P_{k} \frac{\mathcal{E}}{k}-C_{\mathcal{E} 2} \frac{\mathcal{E}^{2}}{k}+\frac{\partial}{\partial z}\left(\frac{\nu^{t}}{\sigma_{\mathcal{E}}} \frac{\partial \mathcal{E}}{\partial z}\right)
$$

with $\nu^{t}=C_{\mu} \frac{k^{2}}{\mathcal{E}}$ and $P_{k}=-\rho \overline{u^{\prime} w^{\prime}} \frac{\partial \bar{u}}{\partial z}=-\nu^{t}\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}$.

## Physical problem and governing equations

Dimensionless equations (in wall units):

- Continuity: $\quad \frac{\partial \bar{u}^{+}}{\partial x^{+}}=0$
- RANS (x-comp): $0=-\frac{\partial \overline{P^{+}}}{\partial x^{+}}+\frac{\partial^{2} \bar{u}^{+}}{\partial z^{+^{2}}}+\frac{\partial}{\partial z^{+}}\left(C_{\mu} \frac{k^{+2}}{\mathcal{E}^{+}} \frac{\partial \bar{u}^{+}}{\partial z^{+}}\right)$
- Transport equation for the TKE:

$$
0=C_{\mu} \frac{k^{+2}}{\mathcal{E}^{+}}\left(\frac{\partial \bar{u}^{+}}{\partial z^{+}}\right)^{2}-\mathcal{E}^{+}+\frac{\partial}{\partial z^{+}}\left(\frac{C_{\mu}}{\sigma_{k}} \frac{k^{+2}}{\mathcal{E}^{+}} \frac{\partial k^{+}}{\partial z^{+}}\right)
$$

- Transport equation for $\mathcal{E}$ :

$$
0=C_{\mathcal{E} 1} C_{\mu} k^{+}\left(\frac{\partial \bar{u}^{+}}{\partial z^{+}}\right)^{2}-C_{\mathcal{E} 2} \frac{\mathcal{E}^{+2}}{k^{+}}+\frac{\partial}{\partial z^{+}}\left(\frac{C_{\mu}}{\sigma_{\mathcal{E}}} \frac{k^{+2}}{\mathcal{E}^{+}} \frac{\partial \mathcal{E}^{+}}{\partial z^{+}}\right)
$$

## Physical problem and governing equations

where:

- $\bar{u}^{+}=\frac{\bar{u}}{u_{*}}$
- $z^{+}=\frac{z \cdot u_{*}}{\nu} \quad$ (note: $\left.z=h \rightarrow z^{+}=R e_{*}\right)$
- $k^{+}=\frac{k}{u_{*}^{2}}$
- $\mathcal{E}^{+}=\frac{\mathcal{E} \cdot \nu}{u_{*}^{4}}$
- $\bar{P}^{+}=\frac{\bar{P}}{\rho u_{*}^{2}}$

Note: $\frac{\partial \bar{P}^{+}}{\partial x^{+}}=\frac{1}{R e_{*}} \frac{\partial \bar{P}^{-}}{\partial x^{-}}$with $\bar{P}^{-}=\bar{P}^{+}, x^{-}=\frac{x}{h}$ and $\frac{\partial \bar{P}^{-}}{\partial x^{-}}=-1$.

## Physical problem and governing equations

The systems of dimensionless PDEs on slide 4 can be written as a system of ODEs by putting:

- $X_{1}:=k^{+} \quad \rightarrow \quad X_{3}:=\frac{\partial k^{+}}{\partial z^{+}}$
- $X_{2}:=\mathcal{E}^{+} \quad \rightarrow \quad X_{4}:=\frac{\partial \mathcal{E}^{+}}{\partial z^{+}}$
- $X_{5}:=\bar{u}^{+} \quad \rightarrow \quad X_{6}:=\frac{\partial \bar{u}^{+}}{\partial z^{+}}$

Performing this change of variables yields the following system of 6 ODEs:

## Physical problem and governing equations

- $\frac{\partial X_{1}}{\partial z^{+}}=X_{3}$
- $\frac{\partial X_{2}}{\partial z^{+}}=X_{4}$
- $\frac{\partial X_{5}}{\partial z^{+}}=X_{6}$
- RANG:

$$
\frac{\partial X_{6}}{\partial z^{+}}=\left[\frac{\partial \bar{P}^{+}}{\partial x^{+}}-C_{\mu} X_{6}\left(\frac{2 X_{1} X_{3}}{X_{2}}-\frac{X_{1}^{2} X_{4}}{X_{2}^{2}}\right)\right] /\left(1+C_{\mu} \frac{X_{1}^{2}}{X_{2}}\right)
$$

- Transp. TKE:

$$
\frac{\partial X_{3}}{\partial z^{+}}=-\frac{2 X_{3}^{2}}{X_{1}}+\frac{X_{3} X_{4}}{X_{2}}-\sigma_{k} X_{6}^{2}+\frac{\sigma_{k}}{C_{\mu}}\left(\frac{X_{2}}{X_{1}}\right)^{2}
$$

- Transp. $\mathcal{E}$ :

$$
\frac{\partial X_{4}}{\partial z^{+}}=-\frac{2 X_{4} X_{3}}{X_{1}}+\frac{X_{4}^{2}}{X_{2}}-C_{\mathcal{E} 1} \sigma_{\mathcal{E}} X_{6}^{2} \cdot \frac{X_{2}}{X_{1}}+\frac{C_{\mathcal{E} 2} \sigma_{\mathcal{E}}}{C_{\mu}}\left(\frac{X_{2}}{X_{1}}\right)^{2}
$$

Note: RANS rewritten wit $\partial \bar{u}^{+} / \partial z^{+}$, Tr. TKE wrt $\partial \bar{k}^{+} / \partial z^{+}$, etc.

## Boundary conditions

The ODEs can be solved upon integration along $z^{+}$. To perform such integration B.C.s for $X_{1}, \ldots, X_{6}$ are needed.
From DNS, we know that:


Hence, at $z^{+}=R e_{*}$ :
$X_{1}=0.7, X_{2}=0.006, X_{3}=X_{4}=0, X_{5}=17, X_{6}=0$.

## Solution with 6 ODEs

To solve the full system of ODEs, one must solve an Initial Value Problem (IVP), not to be confused with a Boundary Value Problem (BVP) ${ }^{[*]}$.

To this aim, one of the solvers of Matlab $®$ can be used, e.g. ODE45 (which is based on an explicit $4^{t h} / 5^{t h}$ order Runge-Kutta scheme) for the equations involving $k$ and $\mathcal{E}$, or ODE113 (which is based on a Adams-Bashforth-Moulton scheme) better suited for the equations involving $\bar{u}$.
${ }^{[*]}$ Given $f(t)$ with $0<t<1$ : IVP specifies $f(t=0)$ and $f^{\prime}(t=0)$, BVP specifies $f(t=0)$ and $f(t=1)$.

## Solution with 4 ODEs

Instead of solving the full system of ODEs, one can solve only the first 4 ODEs and obtain $\frac{\partial \bar{u}^{+}}{\partial z^{+}}$directly from:

$$
\bar{u}^{+} \equiv X_{5}= \begin{cases}z^{+} & \text {for } z^{+} \leq 11.6 \\ 2.5 \ln z^{+}+5.5 & \text { for } 11.6 \leq z^{+} \leq R e_{*} \\ \text { symmetric } & \text { for } z^{+} \geq R e_{*}\end{cases}
$$

which gives:

$$
\frac{\partial \bar{u}^{+}}{\partial z^{+}} \equiv X_{6}= \begin{cases}1 & \text { for } z^{+} \leq 11.6 \\ 2.5 / z^{+} & \text {for } 11.6 \leq z^{+} \leq R e_{*} \\ \text { symmetric } & \text { for } z^{+} \geq R e_{*}\end{cases}
$$

without the need to integrate the equations for $X_{5}$ and $X_{6}$.

## Notes on the solution

1) When solving the full system of ODEs, one must impose the value of $\frac{\partial \bar{P}^{+}}{\partial x^{+}}=\frac{1}{R e_{*}} \frac{\partial \bar{P}^{-}}{\partial x^{-}}$. Since $\frac{\partial \bar{P}^{-}}{\partial x^{-}}=-1 \rightarrow \frac{\partial \bar{P}^{+}}{\partial x^{+}} \simeq-0.00 \overline{6}$.
2) Possible "tricks" to improve the solution:

- Use:

$$
\frac{\partial P^{+}}{\partial z^{+}}= \begin{cases}-8 \cdot 10^{-7} & \text { for } z^{+} \leq 30 \\ -2 \cdot 10^{-8} & \text { for } 30 \leq z^{+} \leq R e_{*} \\ \text { symmetric } & \text { for } z^{+} \geq R e_{*}\end{cases}
$$

- Use: $\frac{\partial k}{\partial z^{+}} \simeq-1.84 \cdot 10^{-2}$ instead of 0 and/or

$$
\frac{\partial \bar{u}^{+}}{\partial z^{+}}= \begin{cases}0.11 & \text { for } z^{+} \leq 15 \\ 2.46 / z^{+} & \text {for } 15 \leq z^{+} \leq R e_{*} \\ \text { symmetric } & \text { for } z^{+} \geq R e_{*}\end{cases}
$$

- Change value of model's constants.

