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Physical problem and governing equations

We consider the turbulent channel flow at Re, = 150 (= h™):
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Flow conditions: steady (% =0), 2D (g—}'/ = 0) and unidirectional
(#0, v=w=0)



Physical problem and governing equations

Governing equations:
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Physical problem and governing equations

Dimensionless equations (in wall units):
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Physical problem and governing equations
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Physical problem and governing equations

The systems of dimensionless PDEs on slide 4 can be written as a
system of ODEs by putting:
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Performing this change of variables yields the following system of 6
ODEs:



Physical problem and governing equations
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Note: RANS rewritten wrt 9u™ /0z", Tr. TKE wrt 8?+/8z+, etc.



Boundary conditions

The ODEs can be solved upon integration along z*. To perform

such integration B.C.s for Xi, ... , X are needed.

From DNS, we know that:
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Hence, at zt = Re:
X1 =07, X =0.006, X3=X4 =0, Xs =17, Xe =0 .



Solution with 6 ODEs

To solve the full system of ODEs, one must solve an Initial Value
Problem (IVP), not to be confused with a Boundary Value
Problem (BVP)l.

To this aim, one of the solvers of Matlab(rR) can be used, e.g.
ODE45 (which is based on an explicit 4t7/5% order Runge-Kutta
scheme) for the equations involving k and &, or ODE113 (which is
based on a Adams-Bashforth-Moulton scheme) better suited for

the equations involving w.

[] Given f(t) with 0 < t < 1: IVP specifies f(t = 0) and
f'(t = 0), BVP specifies f(t =0) and f(t =1).



Solution with 4 ODEs

Instead of solving the full system of ODEs, one can solve only the
first 4 ODEs and obtain 22- directly from:
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which gives:
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without the need to integrate the equations for X5 and Xg.
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Notes on the solution

1) When solving the full system of ODEs, one must impose the
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value of OxF — Re. ox— Since . -1 r = —0.006 |.
2) Possible “tricks” to improve the solution:
o Use:
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symmetric for zT > Re,
e Use: % ~ —1.84-1072 instead of 0 and/or
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symmetric for zt > Re,

e Change value of model’s constants. 11



