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2.3 Unsteady Diffusion in a Semiinfinite Slab

We now turn to a discussion of diffusion in a semiinfinite slab. We consider a
volume of solution that starts at an interface and extends a very long way. Such a solution
can be a gas, liquid, or solid. We want to find how the concentration varies in this solution
as a result of a concentration change at its interface. In mathematical terms, we want (o
find the concentration and flux as functions of position and time.

This type of mass transfer is often called free diffusion (Gosting, 1956) simply because
this is briefer than “unsteady diffusion in a semiinfinite slab.” At first glance, this situation
may seem rare because no solution can extend an infinite distance. The previous thin-film
example made more sense because we can think of many more thin films than semiinfinite
slabs. Thus we might conclude that this semiinfinite case is not common. That conclusion
would be a serious error.

The important case of an infinite slab is common because any diffusion problem will
behave as if the slab is infinitely thick at short enough times. For example, imagine that one
of the thin membranes discussed in the previous section separates two identical solutions,
so that it initially contains a solute at constant concentration. Everything is quiescent, at
equilibrium. Suddenly the concentration on the left-hand interface of the membrane is
raised, as shown in Fig. 2.3-1. Just after this sudden increase, the concentration near this
left interface rises rapidly on its way to a new steady state. In these first few seconds, the
concentration at the right interface remains unaltered, ignorant of the turmoil on the left.
The left might as well be infinitely far away:; the membrane, for these first few seconds,
might as well be infinitely thick. Of course, at larger times, the system will slither into the
steady-state limit in Fig. 2.3-1(c). But in those first seconds, the membrane does behave
like a semiinfinite slab.

This example points to an important corollary, which states that cases involving an
infinite slab and a thin membrane will bracket the observed behavior. At short times, i
diffusion will proceed as if the slab is infinite; at long times, it will occur as if the slab
is thin. By focusing on these limits, we can bracket the possible physical responses to
different diffusion problems.

2.3.1 The Physical Situation

The diffusion in a semiinfinite slab is schematically sketched in Fig. 2.3-2. The
slab initially contains a uniform concentration of solute ¢j. At some time, chosen as
time zero, the concentration at the interface is suddenly and abruptly increased, although
the solute is always present at high dilution. The increase produces the time-dependent
concentration profile that develops as solute penetrates into the slab.

We want to find the concentration profile and the flux in this situation, and so again we
need a mass balance written on the thin layer of volume AAz:

) rate of diffusion

solute accumulation rate of diffusion
in volume AAZ ~ \ into the layer at z euitiof the Jager &3+
atz + Az
In mathematical terms, this is
d ) . y
E(AAZCO = AQjilz — Jilz+a2) (2.3-2)
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(a) Concentration profile in
a membrane at equilibrium

(b) Concentration profile slightly

after the concentration on
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Fig. 2.3-1. Unsteady- versus steady-state diffusion. At small times, diffusion will occur only
near the left-hand side of the membrane. As a result, at these small times, the diffusion will be
the same as if the membrane was infinitely thick. At large times, the results become those in
the thin film.
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Fig. 2.3-2. Free diffusion. In this case, the concentration at the left is suddenly increased to
a higher constant value. Diffusion occurs in the region to the right. This case and that in
Fig. 2.2-1 are basic to most diffusion problems.
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We divide by AAz to find

der _ (ﬂl_j_’{:_J_‘L (2.3-3)
at (z+ Az)—2 a

We then let Az go 10 Z€r0 and use the definition of the derivative
dcy a1
a1 0z
Combining this equation with Fick’s law, and assuming that the diffusion coefficient is
independent of concentration, we get

(2.3-4)

Hm 82(_.'\

at 0z
This equation 18 sometimes called Fick’s second law, and it is often referred to as one
example of a “diffusion equation.” In this case, it is subject to the following conditions:

t =0, allgz, Cij =:Cis (2.3-6)
t>0, z=0, a=cw (2.3-7)
7 =00, €| =Cloo (2.3-8)

Note that both ¢1ec and ¢ are taken as constants. The concentration Cieo 18 constant because §
it is so far from the interface as to be unaffected by events there; the concentration ¢y 18
kept constant by adding material at the interface.

ol .

2.3.2 Mathematical Solution

The solution of this problem is easiest using the method of “combination of vari- §

ables.”” This method is easy to follow, but it must have been difficult to invent. Fourier, b
Graham, and Fick failed in the attempt; it required Boltzman’s tortured imagination (Boltz-
man, 1894). )
The trick to solving this problem is to define a new variable

Z
V4Dt

The differential equation can then be written as

¢ = (239) |

d2c 2 _~‘~
dcy (a_; o= D#il (_Bﬁ\ (2.3-10) 4
dc \ ot dct \ 9z )/
or 1
dzCll de
4 2e—=0 2.3-11)
dc? kg d¢ (

In other words, the partial di fferential equation has been almost magically transformed intQ i
an ordinary differential equation. The magic also works for the boundary conditions; 1o 5
Eq. 2.3-7, ‘

= 0, ¢y =cC1o (23‘1
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and from Egs. 2.3-6 and 2.3-8,
=00, & =Cies (2.3-13)

With the method of combination of variables, the transformation of the initial and boundary
conditions is often more critical than the transformation of the differential equation.
The solution is now straightforward. One integration of Eq. 2.3-11 gives

— TR
— —ae 2.3-14
dz 1 )
where a is an integration constant. A second integration and use of the boundary condition
gives
cp=c

s o MY (2.3-15)

Cloo — €10
where

2[5 . ;
erf ¢ = ﬁ/ e ¥ ds (2.3-16)
VT Jo

which is the error function of £. This is the desired concentration profile giving the variation
{ of concentration with position and time.
i In many practical problems, the flux in the slab is of greater interest than the concentration
; profile itself. This flux can again be found by combining Fick’s law with Eq. 2.3-15:

d
= wnf = /D/mteC1P (c10 — Cioo) (2.3-17)
e Z
~One particularly useful limit is the flux across the interface at z = 0:
L
Jilz=0 = v/ D/mt(c10 — Cic0) (2.3-18)

This flux is the value at the particular time 7 and not that averaged over time. This distinction
‘will be important in Chapter 13.
“M"t this point, I have the same pedagogical problem I had in the previous section: I must
convince you that the apparently simple results in Eqs. 2.3-15 and 2.3-18 are valuable.
‘These results are exceeded in importance only by Egs. 2.2-9 and 2.2-10. Fortunately, the

nathematics may be difficult enough to spark thought and reflection; if not, the examples
at follow should do so.
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e 2.3-1: Diffusion across an interface The picture of the process in Fig. 2.3-2

ce affect the results given earlier?
Solution Basically, it will have no effect. The only change will be a new boundary
], replacing Eq. 2.3-7:

Cy = CX] _Cm




