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Abstract

The effect of bubble size on the properties of downward turbulent flows of bubbly liquids in a vertical channel is examined using direct
numerical simulations, where the full Navier—Stokes equations are solved by a parallelized front-tracking/finite-volume method. The turbulent
channel flow is driven downward by an imposed constant pressure gradient, and the friction Reynolds number, based on the friction velocity
and half-width of the channel, is 127.3. Bubbles of two different sizes, with diameters of 31.8 and 38.2 wall units, are introduced into the
turbulent flow with a monodisperse or bidisperse distribution. The results show that for the cases studied here the bubble size has little effect
on the void fraction distribution and the mean vertical velocity profile. The average velocity fluctuations and the vorticity profiles across the

channel do, however, change.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent bubbly flows in pipes or channels are found in
a number of applications in the power, chemical, food, phar-
maceutical and other industrials. Knowledge of the interaction
between the bubbles and the turbulent flow is of great impor-
tance for the design and safety of these applications. In the
past, many experimental studies have been carried out to study
the void fraction distribution, average velocity profile, interfa-
cial area, and the various properties of turbulent bubbly flows
in vertical pipes or channels (Kashinsky and Randin, 1999; Liu
and Bankoff, 1993 a,b; Nakoryakov et al., 1996; Oshinowo and
Charles, 1974; Serizawa et al., 1975 a,b; Sun et al., 2004; Wang
et al., 1987). These results indicated that the turbulence aug-
mentation or reduction, after the introduction of the bubbles,
depends on the void fraction and flow rates. However, some
discrepancies have been found among these results, even un-
der similar flow conditions. Serizawa et al. (1975 a,b) pointed
out that different bubble size distributions resulted in different
void fraction profiles: “wall-peaking”, “coring” and “saddling”.
The experiments of Liu (1993) and Liu and Bankoff (1993 a,b)
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showed that identical flow condition but different bubble sizes
resulted in different local hydraulic characteristics such as void
fraction distribution and turbulent structure. Nakoryakov et al.
(1996) studied the effect of bubble size on flow parameters
both in upflow and downflow. Liu (1997) studied the effect of
bubble size on the behavior of the turbulent shear stress close
to the wall. Felton and Loth (2002) investigated the motion of
bubbles of different sizes in a vertical turbulent boundary layer.
They observed sliding, bouncing or freely dispersing bubbles
in the boundary layer and measured the different void fraction
distributions. A further exploration of the effect of bubble size
was conducted by Tomiyama et al. (2002). They used a large
range of bubble diameters to study the transverse migration of
bubbles in an upward shear flow. It has been clarified through
a number of experiments that the lateral migration of bubbles
strongly depends on bubble size, i.e., in upward pipe or chan-
nel flows, small bubbles tend to migrate toward the pipe wall
and cause a wall-peaked bubble distribution, whereas large
bubbles tend to migrate toward the pipe center, resulting in a
core-peaked bubble distribution. However, most of the previous
investigations considered the case of upward bubbly flow, and
only a few investigations have been performed for downward
flows. Wang et al. (1987) and Kashinsky and Randin (1999)
showed results for the void fraction distribution, liquid velocity


http://www.elsevier.com/locate/ces
mailto:jlu@wpi.edu

J. Lu, G. Tryggvason / Chemical Engineering Science 62 (2007) 3008-3018 3009

profile and turbulent structures of downward turbulent bubbly
flows, but information about the effect of bubble size on down-
ward turbulent bubbly flows is still limited.

Many analytical studies have also been carried out to predict
the structure of bubbly flows. Bankoff (1960) was one of the
first to analyze the lateral void fraction distribution for a bubbly
flow by assuming a power law distribution for both the velocity
and the void fraction based on a variable-density single-fluid
model. Levy (1963) introduced a model based on Prandtl’s
mixing-length theory to predict the density distribution of a
turbulent bubbly flow. Later, many predictions have been done
using a drift-flux model (Clark and Flemmer, 1985) and two-
fluid models (Drew and Lahey, 1979, 1982; Lopez de Bertodano
et al., 1994) for bubbly flows, with a high degree of success. In
general, these models only include one bubble size, which is
specified as an input parameter, and the bubble size distribution
can therefore not be predicted. Although models of turbulent
polydisperse bubbly flow in vertical channels have been used to
predict the change of the void fraction profile that takes place as
the bubble size increases (Politano et al., 2003), these models
are still very limited.

Direct numerical simulation (DNS), where the flow field is
found by solving the governing equations numerically on suf-
ficiently fine grids so that all details (including the shape of the
bubbles and the flow around them) are fully solved, is an use-
ful tool to improve the current understanding of the local and
instantaneous properties of bubbles and turbulence. DNS of ho-
mogeneous buoyancy-driven bubbly flows with nearly spheri-
cal and deformable bubbles have been done by Tryggvason and
co-worker (Bunner and Tryggvason, 2002 a,b, 2003; Esmaeeli
and Tryggvason, 1998, 1999, 2005). In our previous studies,
we already used DNS to examine laminar bubbly flows in ver-
tical channels (Lu et al., 2006) and found that the lateral mi-
gration of nearly spherical bubbles resulted in two regions: a
core region with a nearly constant average liquid velocity and
void fraction and a wall layer that is bubble-free for downflow
and bubble-rich for upflow. The void fraction in the core region
is always such that the weight of the liquid/bubble mixture is
balanced by the imposed pressure gradient, and the velocity
fluctuations and the rise velocity of bubbles matched the results
for the corresponding homogeneous flow. We also examined
the effect of the average void fraction on a downward turbu-
lent bubbly flow using DNS (Lu and Tryggvason, 2006). The
results showed that most of the characteristics of laminar bub-
bly downflows carried over to turbulent downflows, although
the turbulent structures are different. One difference is that the
boundaries between the core and the wall layer for turbulent
bubbly downflows are not as sharp as for laminar downflows.
In that paper, the bubble sizes are the same for all cases.

In this paper, we use different size bubbles, but the same
average void fraction, to gain further knowledge of the effect
of bubble size on the void fraction profile, the liquid velocity
distribution and the turbulence modification in downward tur-
bulent bubbly flows. We perform DNS of downward turbulent
flows with monodispersed or bidispersed bubbles in a vertical
channel using two bubble sizes. The smaller bubbles are nearly
spherical, whereas the bigger ones are slightly ellipsoidal.
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Fig. 1. A sketch of the flow configuration studied here.

2. Problem specification and numerical method

We consider a turbulent flow in a vertical channel, shown
schematically in Fig. 1. The channel is bounded by two parallel
vertical walls and we align a coordinate system such that x is in
the streamwise direction, y in the wall-normal direction and z
the spanwise direction. The direction of the streamwise veloc-
ity is also shown in the figure. The channel width is H =20=2,
the length of the computational domain in the streamwise di-
rection is m and 7/2 in the spanwise direction. The flow is
assumed to be periodic in both the streamwise and the span-
wise direction, and no-slip boundary conditions are applied to
the walls.

The flow is driven downward by an imposed constant pres-
sure gradient dp/dx, and gravity g acts in the negative stream-
wise direction. At steady state, the average wall shear stress
Ty 1s related to the pressure gradient and the weight of the
bubble/liquid mixture via a streamwise momentum balance
according to

Ty = (dp/dx 4 ppg)o = fo. ¢))

Here, ¢ is the half-width of the channel, p, is the average
density of the mixture, and f = dp/dx + pyg is the sum of
the pressure gradient and the volumetric weight of the mix-
ture. Since the liquid and the bubbles are taken to be incom-
pressible, pg is constant. The value of f is therefore constant
due to the constant pressure gradient dp/dx imposed on the
bubbly flow. The direction of the flow depends directly on
the sign of f. In all simulations reported in this paper, f§ is
taken to be 0.0018, resulting in a downward flow. Since the
half-width of the channel ¢ is 1, we therefore get the aver-
age wall shear stress t,, = 0.0018. This value will be used
to check whether the turbulent bubbly flow is at statistically
steady state.
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Table 1
Parameters comparison for the liquid—bubble system used in the simulations
and the water—air bubbles system

Water—air bubble
system (20°C)

Parameters Liquid-bubble system

used in the simulations

Channel size (x, y, z) n, 2, w/2 19.22 mm, 12.24 mm,
9.61 mm

Bubble size 0.25/0.30 1.53 mm/1.84 mm

Average velocity 0.63 0.31m/s

Morton number 1.54 x 10710 2.52 x 1071

E6tvos number 0.31/0.45 0.31/0.45

Channel Reynolds number 3786 3786

The liquid density is p; = 1 and the liquid kinematic vis-
cosity is v; = 1/3000. The friction velocity is therefore u™ =
VTw/p; = 0.0424, and the friction Reynolds number, based
on the friction velocity and the half-width of the channel, is
Re™ =uT§/v; = 127.3. The channel Reynolds number, based
on the average velocity (U = 0.63) of a flow without bubbles
and the width of the channel, is Re = U H /v; = 3786. In terms
of wall units, defined by l(J{ =v;/u™, the size of the channel is
400 x 254.6 x 200 in the x-, y- and z-direction, respectively.
This is a so-called “minimum turbulent channel”, and repre-
sents the smallest channel that can sustain turbulence (Jimenez
and Moin, 1991). The advantage of using this “minimum tur-
bulent channel” is that it allows us to perform simulations of a
turbulent flow with a minimal amount of computational effort.
To make the simulations as easy as possible, the density of the
bubbles is taken to be one-tenth of the liquid density. The dy-
namic viscosity of the bubbles and of the liquid are taken to be
equal, so the kinematic viscosity of the bubbles is 10 times that
of the liquid, comparable to what it is for air and water. The sur-
face tension is 0 =0.02 and the gravity acceleration is g =0.1.
The Morton number, M = g,u?/pla3, is therefore 1.54 x 1010,
The Morton number is slightly higher than for an air bubble in
water (M =2.52 x 10! at 20°C), but could be matched by
using an aqueous solution of sugar in water (Stewart, 1995).
Two sizes of bubbles are simulated in this paper. The diameter
of the small bubbles is dy = 0.25 or 31.8 wall units, and the
big bubbles’ diameter is dy = 0.3 or 38.2 wall units. The vol-
ume of a big bubble is 1.73 times that of a small bubble. The
E6tvos numbers, Eo = p; gd% /o, for the small and big bubbles
are 0.31 and 0.45, respectively. Ignoring the slight difference in
the Morton numbers and assuming that our bubbles are air bub-
bles in water, then the E6tvos number used here corresponds to
bubbles of a diameter of 1.53 and 1.84 mm, respectively. The
channel width is eight times the diameter of small bubbles, or
12.24 mm, and the corresponding channel length in the stream-
wise direction is 19.22 and 9.61 mm in the spanwise direction.
The channel Reynolds number of 3786 corresponds to an aver-
age velocity of 0.31 m/s. A comparison of the parameters used
here with real water-bubbles is shown in Table 1.The bubble
response time 7, can be determined according to Stokes drag
law as 1 = dé /36v;, and we therefore get 1, = 5.21 for small
bubbles and 7.50 for big bubbles. The Kolmogorov time scale
of the turbulent flow is given by 1 = (v;/¢)'/%, where ¢ is the

turbulent energy dissipation rate, which can be calculated from
the flow velocity field or can be determined from ¢= (ut)? Jkyy,
here, k=0.42 is the von Karman constant and y, is the bubbles’
average distance away from the wall. By assuming y, = 0.5,
we get ¢ = 3.64 x 107* and 1 = 0.96 for the turbulent flow.
The Stokes numbers, St = 15, /7%, are therefore 5.44 and 7.83
for the small and the big bubbles, respectively.

For a bubbly flow, the domain consists of bubbles and liquid
which are separated by an immiscible phase boundary with a
constant surface tension. The “one fluid” Navier—Stokes equa-
tions, valid for the whole domain and incorporating the jump
conditions at the interfaces, are

Oou

o +pV - -uu= —Vp+(p—p0)g+V-u(Vu+VuT)

p
+O'/ Kmpop(x—xyp)dAy. 2)
F

Here, u is the velocity vector, p is the pressure, and p and u
are the discontinuous density and viscosity fields, respectively,
g is the gravity acceleration, ¢ is the constant surface tension,
and J 7 is a three-dimensional delta function constructed by re-
peated multiplication of one-dimensional delta functions. « ¢
is twice the mean curvature, ny is a unit vector normal to the
front, x is the point at which the equation is evaluated, and
X is the position of the front. Because of the incompressibil-
ity of the liquid and bubbles, the mass conservation equation
reduces to

V-u=0 (3)

for the entire domain. When combined with the momentum
equation, Eq. (3) leads to a nonseparable elliptic equation of
the pressure. We also take the density and viscosity of each
fluid to be constants.

These equations are solved by a second-order accurate
front-tracking/finite-volume method on a fixed, staggered grid.
The original method has been described in detail by Unverdi
and Tryggvason (1992) and Tryggvason et al. (2001), and
additional validation tests are described by Esmaeeli and
Tryggvason (1998, 1999). A comparison between this method
and a lattice Boltzman method (LBM) showed that re-
sults for the rise of a single bubble are in good agreement
(Sankaranarayanan et al., 2003). The current simulations are
done using a fully parallel code written in Fortran 90/95
for the simulations described by Bunner and Tryggvason
(2002a). Three major changes were, however, necessary for
simulations of bubbles in a turbulent channel flow. First,
nonuniform grids in the wall-normal direction are used
to accommodate the high resolution needed for the turbu-
lent boundary layer. Second, a third-order upwind scheme
(QUICK) (Leonard, 1979) is used for the advection terms.
It not only increases the accuracy, but also prevents unphys-
ical oscillations in high strain regions of the flow. Third, a
nonconservative form of the governing equations is used in
the new code. The conservative form used by Bunner and
Tryggvason (2002a) is found to cause increasing irregular-
ities in the velocities near the interface for high Reynolds
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number flows (Esmaeeli and Tryggvason, 2005). The new code
was tested extensively by comparing it with the original code
(which has been thoroughly validated) and by grid refinement
studies. It has successfully been used in our simulations of
bubble-induced drag reduction (Lu et al., 2005).

The simulations were done using grids with 192 x 160 x
96 grid points, uniformly spaced in the x- and z-direction but
stretched in the y-direction by a hyperbolic tangent function

. tanh(p(1 =2j/N)) .
y(j) = fanh(;) , j=0,1,...,N. 4)

Here, N =160 is the number of grid points in the wall-normal
direction and 7 is the stretching parameter, which is set to 2.2.
The grid spacings in wall units are Ax ™ =AzT=2.08 for the x-
and z-direction, and 0.79 < Ay* <2.19 for the y-direction. The
initial single phase turbulent flow was the same as that used
in Lu et al. (2005). By continuing the simulation of the single
phase turbulent flow, we confirmed that our code preserved
the statistics of the turbulent flow. We also ran one turbulent
bubbly flow case using a finer grid with 320 x 256 x 160 grid
points, and found that results were essentially the same as those
reported here.

3. Results

We performed three simulations of turbulent bubbly flows
with different bubble sizes. The average void fractions for these
flows are all the same, or about 3% achieved by adjusting the
number of bubbles. The other governing parameters of these
flows are the same, as listed in the previous section. Case 1
includes 36 small bubbles (dy =0.25), Case 2 is a combination
of 22 small bubbles (dyp=0.25) and 8 big bubbles (dy=0.3), and
Case 3 has 21 big bubbles (dy=0.3). The bubbles are spherical
initially and introduced into a single phase turbulent flow at
time zero, with a distribution of slightly perturbed regular array.
Initially the velocity field inside the bubbles is the same as
for the original flow, but it quickly adjusts to the presence
of the bubbles. As the flow develops, bubbles near the walls
are quickly driven toward the center region of the channel by
the lift force and by the wall repulsive force. The pressure
gradient forces the flow downward and as the bubbles are driven
away from the walls, the mixture density in the middle of the
channel decreases. Since the bubbles move slower than the
surrounding liquid for the downflow, the liquid velocity in the
middle is reduced and becomes nearly uniform. If too many
bubbles accumulate in the middle of the channel, the mixture
starts to rise due to buoyancy, thus creating a shear that drives
the bubbles back toward the walls. This migration of bubbles
and the interaction between the bubbles and the ambient liquid
gradually change the local properties of the flow. Eventually,
however, the turbulent bubbly flow reaches an approximately
statistically steady state, where the wall shear stress balances
the sum of the imposed pressure gradient and the weight of the
bubble/liquid mixture. For the present study, we will only show
results after the flow has reached an approximately statistically
steady state.

A snapshot of the bubble distribution at one time, after the
flow has reached an approximately statistically steady state,
is shown in Fig. 2 for all three cases. The darker bubbles are
the small ones, and the lighter bubbles are the big ones. Iso-
contours of the vertical fluid velocity, in a plane through the
middle of the domain, are also plotted. The bubble distributions
are very similar for all three cases. The bubbles are distributed
over the middle part of the channel, and a bubbly free zone
exists close to each wall. The bubbles show some tendency to
form horizontal clusters, especially the small bubbles, but the
distribution of the big bubbles in Case 3 is relatively uniform.
All the small bubbles look nearly spherical, while most of the
big bubbles are slightly elliptical. The average deformation of
all the bubbles will be shown later. The velocity of the fluid
changes rapidly near the walls, but is relatively uniform in the
center. Since the bubbles are rising relative to the liquid, the
velocity contours show the wake of several of the bubbles that
are located near the plane where we plot the velocity. Although
we show the bubble distribution only at a single instance for
each case, we have examined it at several other times and gen-
erally find that it is similar to what is shown here. Bunner and
Tryggvason (2002 a,b) and Esmaeeli and Tryggvason (2005)
have simulated homogeneous buoyant bubbly flows and
their results show that nearly spherical bubbles often gen-
erate horizontal clusters, like those seen in Fig. 2. Horizon-
tal bubble clusters have also been observed experimentally
(Figueroa-Espinoza and Zenit, 2005; Zenit et al., 2001).

In Fig. 3, we plot the horizontal (wall-normal) coordinate
of all the bubbles versus time for all three cases over a pe-
riod of 150 time units after the flows have reached approxi-
mately statistically steady states. Solid lines denote the small
bubbles, and the dotted lines are for the big bubbles. All the
bubbles meander in the center region of the channel, and it is
clear from the frequent changes in their paths that the bubbles
interact strongly with each other. Those bubbles that move to-
ward the walls bounce back quickly. The regions near the walls
remain completely free of bubbles and the thicknesses of the
two bubble-free zones are almost the same for all the cases. It
is clear that the path of both the small and the big bubbles in
Case 2 is similar and the paths in Case 1 and Case 3 look the
same. Thus we conclude that the bubble sizes in the cases we
studied here have little effect on the distribution of the bubbles.

To quantify the deformation of a bubble, we follow Bunner
and Tryggvason (2003) and use the square root of the ratio of
the largest and the smallest eigenvalue of the second moment
of the inertia tensor

L= (Imax/lmin)lﬂ’ (5
where the second moment of the inertia tensor is computed as

1

= Noly v, (xi = xi0)(xj — xjo)dV. ©)

Here, Vol, is the volume of the bubble and x;¢ and x ¢ are the
coordinates of the bubbles in the i- and j-coordinate directions.
For a spherical bubble, y = 1. For an ellipsoidal bubble, yx is
approximately equal to the ratio of the longest to the smallest
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Fig. 2. The bubble distribution and iso-contours of the vertical velocity in the middle plane of the channel. The darker bubbles are the small ones with a
diameter of 0.25, and the lighter bubbles are the big ones with a diameter of 0.30.
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Fig. 3. The path of the bubbles for all three cases. Solid lines denote the small bubbles, and the dotted lines are for the big bubbles.
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axis. In Fig. 4, we plot the average deformation of all the bub-
bles versus the wall-normal coordinate. The circles represent
the small bubbles, and the squares denote the big bubbles. The
deformations for the small and the big bubbles in Case 2 are
also plotted separately. The average deformation is calculated
by dividing the width of the channel into 10 equal bins and
averaging the bubble deformation in each bin over the same
period as in Fig. 3, after the flow has reached a steady state. We
have not calculated the deformations for the first two and last
two bins, since there are no bubbles in the bins closest to the
walls and very few bubbles in the next bins, as seen in Fig. 3.
The deformation is almost uniform for the small bubbles, but
the values in Case 2 are smaller than those in Case 1. The rea-
son is probably that for Case 2, where both sizes are presented,
some small bubbles are located in the wake of the big bubbles.
The deformations of the big bubbles in the center are smaller
than those in the outer region since they do not encounter any
fluid shear there. We note that the deformations of the big

bubbles in the bidisperse case are also smaller than those in the
monodisperse case.

We plot the wall shear stress, averaged over both walls, ver-
sus time in Fig. 5(a). The time period is the same as in Fig. 3.
The averaged wall shear must be balanced exactly by f at sta-
tistically steady state. The theoretical value is therefore 0.0036
(2f), and it is clear that the shear stress is close to the the-
oretical value at all times. The average value also matches it
very well. This figure therefore clearly shows that the motion
of the bubbly flow has converged very well to a statistically
steady state. The mixture flow rate versus time for the same pe-
riod is plotted in Fig. 5(b). The flow rate is found by averaging
the vertical velocity of the mixture over the whole computa-
tional domain and then multiplying by the cross-sectional of the
domain. The flow rates are essentially constant and almost the
same for all the cases. The bubble size therefore has little effect
on the flow rate of the mixture, since the average void fractions
are almost the same. The flow rates are, however, all lower than
the average flow rate for the turbulent flow without bubbles but
driven by the same f5, which is —1.98.

12 ¢ In our previous study of laminar bubbly flow (Lu et al.,
on N 2006), we found that the bubble/liquid mixture in the center
115 | R . “ a0 region of the channel is in hydrostatic equilibrium. The void
c ~g——— - . . . . .
2 R fraction distribution of the bubbly channel flow is therefore
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S in the center is given by
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Fig. 5. (a) The average wall shear stress versus time at a statistically steady state. (b) The total mixture flow rate (liquid and bubbles) versus time at a

statistically steady state.
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Fig. 6. The average void fraction profile versus the wall-normal coordinate for
all three cases. The solid line represents the prediction from the hydrostatic
model given by Eq. (7).

Here, ¢,y is the average void fraction, Ap is the difference of
densities of bubbles and liquid, g is the gravity and 0 is the
half-width of the channel. This model shows that the void frac-
tion is not depended on the bubble size at all. We used this
approach here to predict the void fraction distribution of the
turbulent bubbly flows at statistically steady state. The predic-
tion and the average void fraction profiles from the simulations
for all three cases are plotted in Fig. 6. The average void frac-
tions are computed by averaging first over planes parallel to
the walls and then over 150 time units. Since the domain is
small and the simulated time is relatively short, we have also
averaged the left and the right hand side, forcing the profile to
be symmetric. The dotted line is for Case 1, the dashed line
for Case 2, and the dash-dotted line for Case 3. The void frac-
tion in the center region of the channel is relatively constant
as found in many experiments (Wang et al., 1987; Kashinsky
and Randin, 1999). The profile predicted using the hydrostatic
model, Eq. (7), is shown by the solid line. It is clear that the
agreement between the averaged void fraction from the simula-
tions and the predicted value from the model is fairly good, and
that the bubble size does not affect the average void fraction
profile. The transition from zero void fraction near the walls to
the constant void fraction in the center is not as sharp as pre-
dicted by the model, and the averaged void fraction in the cen-
ter region of the channel is not exactly flat as predicted. This is,
we believe, due to the relatively larger bubble size compared to
the computational domain and the relatively small number of
bubbles used in our simulations. Our simulation with a higher
average void fraction of 6.0% shows a much flatter void frac-
tion profile in the middle of the channel (Lu and Tryggvason,
2006).

In Fig. 7 we plot the vertical liquid velocity (the velocity
multiplied by an indicator function set to unity in the liquid and
zero in the bubbles), average over time in the same way as the
void fraction in Fig. 6 (solid lines). The dotted lines represent
the average vertical velocity profile of the corresponding single
phase flow. The average bubble velocity, calculated by averag-
ing over bubbles in equal size bins, as for the average defor-
mations, is also shown in the figure. The first and last bins are
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Fig. 7. The average vertical liquid velocity profiles versus the wall-normal
coordinate.

empty, since there are no bubbles there for the downward flow.
It is clear that the liquid velocity is almost uniform in the middle
region of the channel. The average velocity of the bubbles is es-
sentially uniform for the small bubbles, but for the big bubbles
the average bubble velocity is smaller at the edge of the center
region. This may be due to the slightly larger deformation of
the big bubbles there, as can be seen in Fig. 4. The slip veloc-
ity of the bubbles is calculated from the difference between the
vertical velocity of the bubbles and the corresponding liquid ve-
locity. The average slip velocity of the small bubbles in Case 1
is equal to 0.20. The value for the big bubbles in Case 3 is 0.23
and higher than in Case 1. The average slip velocity for Case 2,
with bubbles of two sizes, is 0.20, which is about the same as
for Case 1. Considering the big and small bubbles in Case 2
separately, the average slip velocity of the small bubbles is 0.19,
slightly lower than in Case 1, and the average slip velocity of the
big bubbles is 0.23, the same as for Case 3. Using the formula
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Fig. 8. A semi-log plot of the dimensionless velocity versus the wall-normal
coordinate.

suggested by Rodrigue (2001) for the terminal rise velocity of a
single bubble in an unbounded fluid and the correlation of Ishii
and Zuber (1979) to correct for the effect of a finite void frac-
tion (equal to the average void fraction in the central region of
the channel), we obtain slip velocities of 0.18 and 0.20 for the
small and big bubbles, respectively. These velocities are smaller
than the simulation results, as one would expect since the
correlation is based on experimental results for contaminated
bubbles.

A semi-log plot of the dimensionless velocities, normalized
by the friction velocity u™, versus the distance from the wall,
measured in wall units, is shown in Fig. 8. The logarithmic
“law of the wall” ut = (1/x)In y™ + B, where k = 0.41 and
B =5.95, is also plotted in the figure. The solid line denotes
the mean velocity profile of the corresponding single phase
turbulent flow, which agrees very well with the “law of the
wall.” The profiles for all three cases of bubbly flows are almost
identical to each other. In the region of y* <54.8, which is
the theoretical thickness of the bubble free-zones in Fig. 6, the
velocities of the liquid are slightly lower than for the single
phase flow. In the middle of the channel the liquid velocity
profiles are flat, unlike the single phase velocity which increases
slowly toward the center of the channel. The dimensionless
velocities for all cases are almost the same.

The root mean square (RMS) vertical velocity fluctuations
for all three cases are plotted in Fig. 9(a) and the corresponding
velocity fluctuations in the wall-normal direction are plotted in
Fig. 9(b). The averaging approach is the same as for Figs. 5
and 6, and the velocity fluctuations are normalized by the fric-
tion velocity. The legends are the same as in Fig. 6. In the
bubble-free wall layers, both the vertical and the wall-normal
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1.5

05 |
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Wall-normal Velocity Fluctuations

Fig. 9. The root mean square (RMS) velocity fluctuations in the streamwise
direction (a) and in the wall-normal direction (b) for all three cases. The
velocity fluctuations are normalized by the friction velocity.
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Fig. 10. The average Reynolds stress profile versus the wall-normal coordinate.
The Reynolds stress is normalized by the square of the friction velocity.

velocity fluctuations for bubbly flows are lower than the cor-
responding fluctuations of the single phase flow. The vertical
velocity fluctuations in the wall layer do not change with the
bubble size, but the wall-normal ones increase with the bubble
size. In the middle of the channel, both fluctuations are higher
than those of the single phase flow and increase with the bubble
size. For Case 2, with the two bubble sizes, the magnitude of
the velocity fluctuations is between the corresponding values
of the monodispersed small bubbles (Case 1) and big bubbles
(Case 3).

In Fig. 10 we plot the average off-diagonal components
of the Reynolds stress tensor, (u'v’), as a function of the
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Fig. 11. The bubbles and iso-surfaces of the streamwise vorticity for the single phase flow and three bubbly flows. The yellow iso-surfaces denote the positive
streamwise vorticity and the blue green ones are for the negative streamwise vorticity.
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Fig. 12. The streamwise vorticity squared profile versus the cross-channel
coordinate. The vorticity is normalized by T, /u.

wall-normal coordinate, normalized by the square of the fric-
tion velocity and averaged in the same way as for the velocity
and the void fraction plots. We have also averaged over the left
and the right hand side of the channel, but taking into account
that the fluctuations are antisymmetric around the centerline.
For the single phase flow, (u'v’) varies linearly across the
channel, since the total shear stress must balance the pressure
gradient and the viscous contribution to the shear stress is neg-
ligible in the core region. For the bubbly flows, on the other
hand, (u'v’) is almost zero in the middle region of the channel,
since the mixture is in hydrostatic equilibrium. Near the walls
the flow is bubble-free, but (u’v’) is much smaller than for
the single phase flow. It is clear that the bubble size has little
effect on the Reynolds stress distribution.

In a turbulent channel flow, the wall layer is characterized by
the streamwise vortices. The rise of the bubbles also generates
a significant amount of vortices. In Fig. 11, the bubbles and iso-
surfaces of the streamwise vorticity are shown for the single
phase flow and the three bubbly flows at one time, as in Fig. 2.
The yellow iso-contour surfaces denote positive vorticity and
blue green ones indicate negative vorticity. The vortex pairs
near the walls for all flows with and without bubbles are clearly
visible. However, the vortices are depressed in the bubbly flows
compared to the single phase flow. In the middle region of the
channel, there are no vortices for the single phase flow, but for
the bubbly flows we see significant vorticity although perhaps
not as coherent as near the walls. It is clear that the vortices
are generated by the bubbles since most of the vortices are
located in the wake region of bubbles, and stronger vortices are
generated by the big bubbles.

Since the streamwise vorticity is both positive and negative,
in Fig. 12 we plot the streamwise vorticity squared (the en-
stropy), averaged over planes parallel to the walls and over 150
time units, versus the normal-wall coordinate. The enstropy is
normalized by (1/ 10)%, where 1o is a reference time equal to
u/ty. The vorticity is very high at the walls for all cases due
to the wall-bounded vorticity necessary to bring the velocity
induced by the streamwise vorticities to zero. Then there is
another maximum in the wall layer due to the streamwise vor-
tices. For the single phase flow, there is then a decline toward
the middle of the channel. But for the bubbly flow, the vortic-

ity squared increase again due to the vortices induced by the
bubbles. Thus, in the center region of the channel, the vorticity
in the bubbly flows is larger than in the single phase flow. But
in the wall layer, the vorticity for the case with small bubbles
is smaller than in the single phase flow and the vorticity in the
case with big bubbles is larger than in the single phase flow.
In the whole channel, the big bubbles generate more vorticity
than the small bubbles.

4. Conclusions

In this paper we have examined by direct numerical simu-
lations the effect of bubble size on the properties of turbulent
bubbly downflow at steady state. We have looked at three sys-
tems, one with small bubbles, one with bigger bubbles, and a
third with both small and big bubbles. This study complements
our earlier study of the effect of void fraction, reported in Lu
and Tryggvason (2006). The present results show, as found in
the earlier paper, that nearly spherical bubbles migrate away
from the walls until the core region of the channel is in hy-
drostatic equilibrium. The wall layer is free of bubbles and the
thickness of the wall layer can be predicted by how much void
fraction needs to be added to the core to bring it into hydro-
static equilibrium.

Although the bubble size does have some effects on the
turbulent structure of bubbly flows—bigger bubbles generate
larger velocity fluctuations in the middle region because the
larger slip velocity of the bigger bubbles both perturbs the flow
more and results in the deposition of more vorticity into the
flow—bubble size has little effect on the void fraction distri-
bution and the liquid mean velocity profile at steady state. The
primary role of the bubbles is to reduce the weight of the mix-
ture in the core region and once it is in hydrostatic equilib-
rium there is no further average migration or lateral transport
of the bubbles. Furthermore, the velocity profile is determined
by what goes on in the wall layer, where there are no bubbles.
In the current simulations, the Stokes numbers St = 15 /1) for
both bubble sizes examined are larger than 1, so the bubble re-
sponse time scales are larger than the Kolmogorov time scale.
The bubbles therefore do not follow the surrounding liquid and
the bubbles are not trapped by the coherent vortices near the
walls. Here, all the bubbles move toward the center region of
the channel due to the lift force induced by the high shear near
the wall. In the center region of the channel, the flow is es-
sentially homogeneous and most of the vorticity is due to the
bubble motion. We note that Goz et al. (2001) showed that the
difference between homogeneous flows with bubbles of two
sizes and flows with only one size were relatively small, as long
as the size difference was not too large and the void fraction was
the same.

Although the simulations carried out here are limited to
only one low void fraction, we have already carried out some
preliminary simulations with average void fractions up to
6% and got similar results. The results presented here should
be helpful for further development of models for multiphase
flow.
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