

Mechanisms for microbubble transfer in the near-wall region of turbulent boundary layer.

A. Giusti, and A. Soldati

Dept. of Energy Technology University of Udine via delle scienze, 208, 33100, Udine, Italy Corresponding author. Email: soldati@uniud.it

ICheaP-7

K

N

Bubbles in turbulent flows. Applications

Process industry Bubble columns

Skin friction reduction Microbubbles applied to a tanker

Prof. Akimi Serizawa (1)

3/43

Prof. Akimi Serizawa (2)

Prof. Akimi Serizawa (3)

Prof. Akimi Serizawa (4)

ICheaP-7

A Change of Laminar Sublayer Structure ?

(Comparison with Universal Velocity Profile)

Single-phase water flow : well correlated by the von Karman's universal velocity profile Milky bubbly flow : turbulent flows follow the universal velocity profile psuedo-laminar flows are far from the universal velocity profile. not on the extension of the velocity in the laminar sublayer transition flows are intermediate between the two

Objects of the talk

- 1. Examine macroscopic behavior of bubbles in turbulent boundary layers;
- 2. Review the dynamics of coherent structures in TBL;
- 3. Examine bubble dynamics in connection with turbulence structures;
- 4. Discuss limitations and advantages of current modelling approaches.

Obs. 1: Bubbles rise in still fluid

Rising velocity determined by equilibrium between drag (Stokes) and gravity:

$$v_s = \frac{d_p^2 g(\rho_f - \rho_b)}{18\mu}$$

Obs. 2: Bubble segregation in vortices

Bubbles rising under gravity

Bubbles segregate in high vorticity, low strain regions

Observation on bubbles

Observation:

Due to fluid forces → local bubble accumulation in high vorticity, low strain regions (Caporaloni et al., 1975 J. Atmos. Sci., Reeks, 1983, J. Aero. Sci., Wang & Maxey, 1993, JFM, ...);

Consequences:

- 1. Bubbles do not sample the vortical flow field homogeneously;
- 2. The flow field (statistics) perceived by bubbles may be different from the fluid flow field. Thus, bubble advection is different from fluid.

Microbubbles in vertical channel flow

Experiments shows that bubbles with initial uniform distribution in vertical turbulent flows... (Hibiki & al., 2004, Int. J. Heat and Mass Transf.)

...move away from the wall (downflow)

Reasons ? It is not clear if this phenomenon is "a product of the turbulence gradients, bubble lift forces, weak pressure gradients, bubble sizes, eddy dynamics, or a combination of these factors" (Felton K., Loth E., 2002, Int. J. Multiphase Flow)

ICheaP-7

Giardini Naxos, Italy, 15-18 May 2005

Turbulence is not only Statistics: it is a world of phenomena, much like an ecosystem

"Fluid motions in turbulent boundary layers are intermittent and have a strongly organized and coherent nature represented by the large scale motions. These motions, eventhough not exactly repeatable and only quasi-deterministic, control the transport of the dispersed species in such a way that the overall distribution will resemble not at all those given by methods in which these motions are ignored" (thanks to G. Mungal)

F.Hussain, Coherent Structures: Reality or Myth, PoF, 1983

Revolution one:

Fast Computers

Revolution two:

Concept of Coherent Structure (Brown & Roshko)

ICheaP-7

Near-wall Turbulent Structures

quasi-streamwise vortices blue: clockwise gold: counter-clockwise

wall shear blue: low-shear red: high-shear

quasi-streamwise vortices red: clockwise pale green: counter-clockwise

blue: ejections green sweeps

13/43

Simulations data

- DNS of Turbulent Flow Field
- Lagrangian Tracking of Microbubbles

DOWNFLOW Z 1885 Ш ⁺× •X Χ $\Delta z^{\dagger} = 300$ Ζ UPFLOW

Fluid simulation

 $Re_{\tau} = 150$ grid $64 \times 64 \times 65$ $128 \times 128 \times 129$ B.C. x and y dir. : periodic B.C. z dir.: solid wall

Bubble simulation 10^5 bubbles diameter 220 μm (1.65 w.u.)

Configurations of the channel downflow upflow

Hypotheses spherical bubbles one-way coupling

V

15/43

Bubble equation of motion

Basic equation

(\mathbf{v}_{p} bubble velocity; \mathbf{v} fluid velocity at bubble position)

Steady-state Drag force (Crowe et al., 1998)

• Acts on particle/droplet in a uniform pressure field when there is no acceleration of the relative velocity between the particle and the conveying fluid

$$F_D = \frac{1}{2}\rho_c C_D A \mid \mathbf{u} - \mathbf{v} \mid (\mathbf{u} - \mathbf{v}) = 3\pi\mu_c D \frac{C_d Re}{24} (\mathbf{u} - \mathbf{v})$$

• Is different for bubbles or particles due to motion induced inside the bubble

Ν

Bubble equation of motion

Effect of the non-uniformity of the flow-field around the particle

Pressure gradient and Buoyancy (Crowe et al., 1998)

• Effect of local pressure gradient and shear on bubble surface

$$F_P + F_\tau = \int_S -p\mathbf{n}dS + \int_S \tau_{ij}\mathbf{n}dS = \int_V -\nabla p + \nabla \cdot \tau dV$$

• From N-S:

N

Bubble equation of motion

Eq. from "Maxey M.R., Riley J.J. (1983), Phys. Fluids 26(4)" Effect of time-variation of the flow-field around the particle

19/43

Unsteady forces: Basset force (Crowe et al., 1998)

Basset or history force: due to the lagging boundary layer development with changing relative velocity

$$F_{Basset} = \frac{3}{2} D^2 \sqrt{\pi \rho_c \mu_c} \int_0^t \frac{\dot{\mathbf{u}} - \dot{\mathbf{v}}}{\sqrt{t - t'}}$$

20/43

Unsteady forces: added mass (Crowe et al., 1998)

Virtual or apparent mass: Force required to accelerate the surrounding fluid when the particle moves with given relative velocity, U

$$\frac{dKE}{dt} = UF_{vm} = \frac{m_f}{2}\frac{dU}{dt} = \frac{V_d\rho_c}{2}(\mathbf{\dot{u}} - \mathbf{\dot{v}}) = \frac{V_d\rho_c}{2}\left(\frac{D\mathbf{u}}{Dt} - \frac{d\mathbf{v}}{dt}\right)$$

Surrounding fluid to be accelerated to move the bubble

Bubble equation of motion

Forces on bubbles - lift

$$f_{lift}^{+} = C_L \; \frac{1}{\rho_p^{+}} \left(\mathbf{v}^{+} - \mathbf{v}_p^{+} \right) \times \omega^{+}$$

(v_p bubble velocity, v fluid velocity at bubble position, ω fluid vorticity at bubble position)

23/43

K

•

N

Lift Coefficient (C_L)

24/43

$$C_{L} = \begin{cases} C_{L_{McL}} = \left[5.816 \left(\frac{Sr_p}{2 \ Re_p} \right)^{0.5} - 0.875 \frac{Sr_p}{2} \right] \frac{3}{4 \ Sr_p} \frac{J(\epsilon)}{2.255} & Re_p < 1 \\ C_{L_{McL}} \frac{5-Re_p}{4} + C_{L_{KK}} \frac{Re_p-1}{4} & 1 < Re_p < 5 \\ C_{L_{KK}} = \left[K_0 \left(\frac{Sr_p}{2} \right)^{0.9} + K_1 \left(\frac{Sr_p}{2} \right)^{1.1} \right] \frac{3}{4 \ Sr_p} & Re_p > 5 \end{cases}$$

Eq. from "Kurose, R., Komori, S. (1999), J. Fluid Mech. 384" (K_0 and K_1 tabulated as a function of Re_p in Kurose, Komori, 1999)

Bubble equation of motion

Wall effect on drag

25/43

Forces on bubbles - drag (2)

 $Direction \ parallel \ to \ the \ wall \\ C_{W_{\parallel}} = \ \left\{ 1 - \frac{9}{16} \left(\frac{d}{2z} \right) + \frac{1}{8} \left(\frac{d}{2z} \right)^3 - \frac{45}{256} \left(\frac{d}{2z} \right)^4 - \frac{1}{16} \left(\frac{d}{2z} \right)^5 \right\}^{-1}$

Direction orthogonal to the wall $C_{W_{\perp}} = \left\{ \left[1 - \frac{9}{8} \left(\frac{d}{2z} \right) + \frac{1}{2} \left(\frac{d}{2z} \right)^2 \right] \cdot \left[1 - exp \left(-2.686 \left(\frac{2z}{d} - 0.999 \right) \right) \right] \right\}^{-1}$

Eq. from "Fukagata, K., Zahrai, S., Bark, F.H., Kondo, S., (1999). Proc. 1st Int. Symp. on Turbulence and Shear Flow Phenomena (Eds. Banerjee, S. & Eaton, J.K., ISBM 1-56700-135-1)"

(d/2z ratio between bubble radius and distance between wall and bubble center)

Forces on bubbles - movie DWL

Forces on bubbles - movie UPL

N

Visualization of bubble behavior

20

30/43

Concentration profiles

buffer layer viscous outer v_x^+ sublayer region 100 15 $= 2.5 \log(z^+) + 5.5$ 10 10 1 5 0.00000000 $v_x^+ = z^+$ 0.1 0 100 _z+ 10

с

Upflow

K N

Bubble Wall-normal Drift Velocity

DWL: steady bubble distribution

UPL: bubbles migrate towards the wall

Upflow

V

32/43

Forces on bubbles

Downflow

× ×

Preliminary Conclusions

- Experimental observations:
 - upflow : bubbles migrate towards the wall
 - downflow : bubbles migrate away from the wall
- Numerical simulations:
 - without lift (not shown here): bubbles behave almost like tracers
 - with lift : simulate bubble migration towards/away from the wall
- Lift force results to be crucial for bubble behavior

DWL: shift velocity decreases near the wall

UPL: constant shift velocity

34/43

K

N

Fluid Velocity at Bubble Position

ICheaP-7

Bubbles in the Near-Wall Region

Downflow

Upflow

Bubbles distance from the wall: $1 < z^+ < 10$

Isolevels of fluid streamwise velocity: $z^+ = 10$

Visualization of bubbles next to the wall

Downflow

zoom of previous movies

black circles: bubbles trapped at the wall

Upflow

Lift Force Effect - Sketch

V

38/43

DWL: lift force prevents bubbles to reach the low-speed regions

UPL: trajectories of the bubbles (both resuspended or trapped at the wall) cross low-speed regions

Lift Force Effect - Forces on Bubbles

50 DOWNFLOW 40 \rightarrow : drag force 30 \rightarrow : lift force +~~ 20 bubble cannot reach the low-speed region 10 and is resuspended 0 480 500 520 540 560 v^+ 50 **UPFLOW** 40 \rightarrow : drag force 30 \rightarrow : lift force + N 20 bubble passes through the low-speed region 10 and reach the wall 0 y^+ 440 460 480 500 520

Conclusions

- In the downflow case, in proximity of the wall, bubbles preferentially concentrate in high-speed regions
- Lift is responsible of such preferential concentration
- Due to low density ratio, also unsteady forces are important on single-bubbles trajectories

Future developments (1)

- In the upflow case, bubble accumulation near to the wall is overestimated by our simulations with respect to experimental data
- ullet Importance of the lift force ightarrow importance of the force model

ICheaP-7

Future developments (2)

• Wall correction to Lift Force

$$F_{lift,wall} = 0.5 \pi R^2 \rho_f C_{L,wall} \left| \mathbf{v}_{p_{//}} \right|^2$$

Eq. from "Takemura, Magnaudet (2003), J. Fluid Mech." ($v_{p_{//}}$ bubble velocity parallel to the wall, R bubble radius, ρ_f fluid density)

Recent works on bubbles

- Ferrante and Elghobashi, 2004: DNS of bubble drag reduction on horizontal plate
- Felton and Loth, 2001,2002: experimental investigation on bubble behavior in the near wall region of a vertical upward turbulent boudary layer
- Takemura and Magnaudet, 2003: wall effect on transverse migration of a rising bubble
- Tomiyama et al., 2002: influence of bubble dimension on transverse migration

K

◀